'+ .Documentazione.
-~ tecnica

" S _ ‘Sistemi di R
' L sviiupp'o o

. uussEsrl - .
Servizic. Distnbuzmne Apple

Via Pacini, 220 -

C 20191 Milane SRR
e Tel (02) 2387783 2367406 _

o '-su licenza escluswa s
. Apple Computer S p A,

g' Manualisticaed . ¢

Z, editoria speciaiizzata -

o Macmtosh

Programmer s,

o Worksh.p
'.:'Reference

.-_-.'.""Versmn 1 0

' MPWOO

Macintosh Programmer’s Workshop Reference

October 3, 1986
Apple Technical Publications
This docyment contains preliminary information. It does not
include
» final editorial corrections
* final art work
» an index.

It may not include final technical changes. |

o

& APPLE COMPUTER, INC.

This manual and the software
described in it are copyrighted,
with all rights reserved. Under
the copyright laws, this manual
or the software may not be

_copied, in whole or part,

without written consent of
Apple, except in the normal use
of the software or to make a
backup copy of the software.
The same proprietary and
copyright notices must be
affixed to any permitted copies
as were affixed to the original.
This exception does not allow
copies to be made for others,
whether or not sold, but all of
the material purchased (with all
backup copies) may be sold,
given, or loaned to another
person, Under the law, copying
includes translating into
another language or format.

You may use the software on any
computer owned by you, but
extra copies cannot be made for
this purpose.

© Apple Computer, Inc,, 1985,
1986

20525 Mariani Ave.

Cupertino, California 95014
(408) 996-1010

Pascal Compiler © 1982, 1983,
1984, 1985, 1986 Apple
Computer, Inc., © 1981 S§vS§

Ing.

C Compiler © 1984, 1985, 1986
Green IHills Software, Inc.

Apple, the Apple logo,
AppleTalk, LaserWriter, and
Lisa are registered trademarks of
Apple Computer, Inc,

ImageWriter, MacDraw,
Macintosh, MacPaint,
MacWrite, and Switcher are
trademarks of Apple Computer,
Inc. .

Motorola is a trademark of
Motorola, Inc.

UNIX is a trademark of AT&T
Bell Laboratories.

Simultaneously published in the
United States and Canada.

MPW SAMPLE PROGRAMS

Apple Computer, In¢. grants
users of the Macintosh
Programmer’s Wotkshop a
royalty-free license to
incorporate Macintosh
Programmer’s Workshop
sample programs into their own
programs, or 1o modify the
sample programs for use in
their own programs, provided

_such use is exclusively on Apple

computers, For any modified
Macintosh Programmer’s
Workshop sample program,
you may add your own
copyright notice alongside the
Apple copyright notice.

Contents

Figures and Tables x
Preface e xwvii

Power tools for Macintosh programmers x
What you'll need x : :
Hardware requirements x
System Folder requirements x
Pascal and C requirements x
Documentation: x
About this ranuzl x
. Syntax notation x

System Overview ¢ 1

A road map x
The MPW Shell x
File handling commands x
Editing commands x
Structured commands x
Other built-in commands x
MPW tools x
Assembler x
Pascal tools x
C Compiler x
Linker x
Make x
Resource Compiler and Decompiler x
Conversion tools x
Applications x
ResEdit x
Debugger x
Special command files x
Sample program files x
System Folder x

BN

;/—‘N.._.‘

™

Overview of MPW files and directories x

Chapler 1 Gelling Started =x 12

Installing the system x
HD-20 insullation x
Macintosh XL installation x
Installing the system on 800K disks
Startingup x - :
Editing x
Giving commands x
The Enter key x
Executing several commands at once x
Terminating a2 command x
The Help command x
File Handling commands x
File and window names x
Selection specifications x
Directories and pathnames x
‘Command search path x
Changing directories x
An aside: the Alias command x
Pathname variables x
Wildecards (filename generation) x
Building a2 program x
Assembling and compiling x
Linking x
Automating the build process with Make x
Running an application x

Chapie_rZ Basle Edifing s 32

‘Features x
File format x.
' Menu commands x

Apple menu x
File menu x
Edit menu x
Find menu x
Format menu x
Windows menu x
User-defined menus x

Editing with the command language x

Vi

Chapter 3 Using the Command language xx 45 -

Qverview X
Types of commands x
Entering and executing commands x
Structure of a command x
Command name X
Parameters x
Coinmand terminators x
Comments x
Simple versus structured commands x
Running an application outside the Shell environment x
Command files x
Special command files x
The Startup and UserStartup file x
Suspend,Resume, and Quit x
Command aliases x
Executable error messages x
Variables x
Predefined variables x
Variables defined in the $tartup file x
Parameters to command files x
Defining and redefining variables x
Exporting variables x
Command substitution x
Quoting special characters x
How commands are interpreted x
Structured commands x
Conrtrol loops x .
Processing command parameters x
Expressions X
Filename generation x
Redirecting input and oufput x
Standard input X
Terminating input with Command-enter X
Standard output x
Diagnostic output x
Pseudo-filenames x
Defining your own menu commands x
Sample command files x
*Add Menu as Group” x

Chapler 4 Advanced Editing e 21

Editing Commands x
Selections xx

Chapter 5

Chapter 6

Current selection x
Selection by line number x
Position x
Extending a selection x
Pattern x :
Pattern Matching (Using Regular Expressions) x
Character expressions x
“Wildcard” operators x
Repeated Instances of regular expressions x
Tagging regular expressions with the ® operator x
Matching 2 pattemn at the beginning or end of 2 line x
Inserting invisible characters x
Note on forward and backward searches x
Some Useful Examples x
Transfering DumpObj output x
Finding 2 whole word x

Editing Resources With ResEdlt e %

About ResEdit x
Uses x
Extensibility x
Using ResEdit x
Warking with files x
Working within 2 file x
Working within a resource type x
Editing individual resources x
'CURS' resources x
'DITL' resources x
'FONT resources x
'ICN#' resources x
Creating a resource template x

Resource Compiier and Decompller e I

About the Resource Compiler and Decompiler x
Resource Decompiler x
- Standard type declaration files x
Using Rez and DeRez x
Structure of a resource description file x
Sample resource description file x
Resource description statement x
Syntax notation x
Special terms x
Include x
Syntax x

Vi

Resource Atisibutes x
Read x
Syntax x
Description x
Dara x
Syntax. x
Description x
Type x '
Syntax x
Description x
Data-type specifications x
Numeric types x
Boolean type x
Character type X
String types X
Point and rectangles x
Fill and align types x
Fill specifications x
Align specifications x
Array type x
Switch type x
Resource x
Syntax x
Description x
Data statements x
Switch data x
Array data x
Sample resource definition x
Symbolic names x
Preprocessor directives x
Variable definitions x
Include directives x
If-Then-Else processing x
Resource description syntax X
Numbers and literals x
Expressions x
Variables x
Strings x
Escape characters x

Chdpier7 Building o Program ¥4

Overview of the build process x
Structure of 2 Macintosh application x
Linking x

What to link with x

wiil

Chapter 8

Linking together code written in different languages x
File types and creators x
Putting together an MPW tool x
Putting together a desk accessory or driver x
Linking a desk accessory or driver x
The desk accessory resource file x
Using Make x
Format of a makeFile x
Dependency rules x
Double-f dependency rules x
Default rules x
Built-in default rules x
_ Directory dependency rules x
Variabies in makefiles x
Shell variables x
Defining variables within 2 makefile x
Built-in Make variables x
Comments x
Quoting x
Executing Make's output x
Debugging makefiles x
An example x
Morc about linking x
Linker functions x
Segmentation x
Setting resource attributes x
Controlling the numbering of code resources x
Resolving symbol definitions x
Multiple external symbol definitions x
Unresolved external symbols x
Linker location map x
Optimizing your links x
Library construction x
Using Lib to build a specialized library x
Removing unreferenced modules x
Gundelmes for choosing files for a specialized
library x

Debugging xx I &1

About MacsBug x

Instailing MacsBug x

Theory of operation (a technical as:de)

Using MacsBug x

The MacsBug command language x
Numbers x

Chapter ¢

Strings X
Symbois x
- Expressions x

Commands x
General commands x
Memory commands x
Break commands x
A-Trap commands x
Heap Zone commands x
Disassembler commands x
Summary x

Command Reference axc 20{

Command prototype x

AddMenu — Add menu item x

Adjust — Adjust lines x

Alert — Display alert box x

Alias — Define and write command aliases x
Align — Align text to left margin x

Asm — 68xxx Macro Assembler x

Beep — Generate ones x

Begin...End — Group commands x

Break — Break from For or Loop x

C — C Compiler x

Canon — Canonical spelling tool x

Catenate — Concatenate files x

Clear — Clear the selection x

Close — Close a window x

Compare — Compare text files x

Confirm — Display. confirmation dialog x
Continue — Continue with next iteration of For or Loop x
Copy — Copy selection to Clipboard x

Count — Count lines and characters x

Cut — Copy selection to Clipboard and delete it x
CvtObj — Convert Lisa object files to MPW object files x
Date — Write the date and time x

Delete — Delete files and directories x
DeleteMenu — Delete user-defined menus and items x
DeRez — Resource Decompiler x

Directory — Set and write the default directory x
DumpCode — Write formatied code resources X
DumpObj — Write formatted object file x
Duplicate — Duplicate files and directories x
Echo — Echo parameters x

Eject — Eject volumes x

o

Entab — Convert nins of spaces to tabs x

Equal — Compare files and directories x

. Erase — Initialize volumes x

Evaluate — Evaluate an expression x

Execute — Execute a command file in the current scope x

Exit — Exit from command file x

. Export ~- Make variables available to programs X
- FileDiv — Divide a file inio several smaller files x

Files — List files and directories x

Find — Find and select a text patern x

Font — Set font characteristics x

For... — Repeat commands once per parameter x
Help — Display summary information x
If... — Conditional command execution x

Lib — Combine cbject files into a library file x
Link — Link 2n application, tool, or resource x
Loop...End — Repeat command list until Break x
Make — Build up-to-date version of 2 program x
MDSCvt — Convert MDS Assembler source x
Mount — Mount volumes x

Move — Move files and directories x

New — Open a new window x

NewFolder - Create a directory x

Open — Open 2 window x -

Patameters — Write parameters x

Pascal — Pascal Compiler x -

PasMat — Pascal program formatter (*pretty-printer”) x
PasRef — Pascal cross-referencer x

Paste — Replace selection with contents of the Clipboard x
Print — Print text files x

Rename — Rename files and directories x
Replace — Replace the selection x

Request -—— Request text from a dialog x

Rez — Resource Compiler x

RezDet — The resource detective x -

Save — Save windows x

Search - Search files for a pattern x

Set — Define and write Shell variables x

SetFile — Set file auributes x

Shift — Renumber command file positional parameters x
Tab — Set a2 window's tab value x

Target — Mzke a window the target window x
TLACvt — Convert Lisa TLA Assembler source x
Unalias — Remove aliases x

Unmount — Unmount volumes x

Xi

Xii

Appendix A

Appendix B

Appendix C
Appendix D .

Appendix E

"Appendix F

Unset — Remove Shell variables x
Volumes — List mounted volumes x
Windows — List windows x

Macintosh Workshop Files 3 3%9

Distribution files (annotated) x
HD-20 configuration X
800K disk configuration x

Summaﬁ of s_oloctlons and Regular Expressions %x- Yo

Selections x
Regular expressions x
Option key characters x

MPW Characiers xx 46
Resource Description Syntax xx 40
File Types, Crectors, and Suffixes xx 4/%

writing an MPW Tool e 421

Shell facilities x
Parameters X
Shell variables x
Standard I/O channels x
Status results x
Signals- x
Exit processing X
Restrictions x
Initialization x
Memory management x
Heap x
Stack x
Windows, graphics, and events x
Style x
User interface x

. ‘—\E

Appendix G - Writlng a pdsk Accessory or Other Drver Resource xx 433
Appendix H Objoct F_llo Format Jae 439
Appendix | In Case of Emergency xx Y49
Glossary

Index

xiii

Figures and tables

System Overview xx

Figure 1 Steps in program development xx
Figure 2 Setup of MPW folders and files xx

Chopiérl Getting Started xx

Figure 1-1 Worksheet windows xx

Figure 1-2 Press enter to execute selected text xx
Figure 1-3 Help summaries xx

Figure 1-4 Hierarchical directory structure xx
Figure 1-5 Setting the default directory xx
Figure 1-6 Executing Make output for samples xx
Table 1-1 Basic file handling commands xx

Chapter 2 Basic Editing xx

Figure 2-1 Text selected with Find command xx
Figure 2-2 Text highlighted in the active window and target
window xx '

Chapter 3 Using the Command Language xx

Figure 3-1 Trafficking in variables xx

Figure 3-2 Standard input and outpul xx

Figure 3-3 Redirecting diagnostic output xx
Table 3-1 Command terminators xx

Table 3-2 Variables defined by the Shell xx
Table 3-3 Variables defined in the Startup file xx
Table 3-4 Parameters 10 command files xx
Table 3-5 Special characters and words xx
Table 3-6 Quoles xx

Tabie 3-7 Structured commands xx
Table 3-8 Expression operators xx
Table 3-9 Filename generation operators xx

Table 3-10 1/Q redirection xx
Table 3-11 Pseudo-filenames xx

Chapter4 Advanced Editing xx

Figure 4-1 A selection specification xx
Figure 4-2 Selections in two windows xx

Xiv

Chapter 5

Chapter 6

Chapter 7

Apperidix B

Appendix C

Appendix E

Table 4-1 Editing commands xx
Table 4-2 Selection commands xx
Table 4-3 Regular expression operators xx

Editing Rescurces With Restdit xx

Figure 5-1 A disk volume window xx
Figure 5-2 A file window x=x

Figure 5-3 A resource type window xx
Figure 5.4 Editing 'CURS' resources xx
Figure 5-5 Font editor window xx

‘Figure 5-6 TCN#' window xx

Figure 5-7 Window template data xx

Resource Compller and Decompller xx

Figure 6-1 Rez and DeRez xx

Figure 6-2 Creating 3 resource file xx

Figure 6-3 Padding of literals xx

Figure 6-4 Internal representation of a Pascal string xx
Table 6-1 Resource description file expansion operators xx

Table 6-2 . Resource Compiler escape sequences xx

Puiting Together an Appilcation, MPW Tool, or Desk Accossory

Figure 7-1 Buddmg a program xx

Figure 7-2 Linking =x ;

Figure 7-3 Building a desk accessory with DRVRRuntime xx
Table 7-1 ~ Files to link with xx

Table 7-2 File types and creators xx

Table 7-3 Makefile summary xx

Summary of $slactions and Regular Expressions xx
Table B-1 Selections xx

Table B-2 Regular expressions xx

MPW Charocters xx
Table C-1 MPW operators xx

File Types, Creciors, and Suffixes xx
Table E-1 File types and creators xx

XV

Appendix £ Writing an MPW Tool xx

Figure F-1 Parameters in C and Pascal xx
Figure F-2 /O buffering xx
Figure F-3 Memory map XX

XV

/(

Preface

Power Tools for Macintosh
Programmers

- The Macintosh™ Programmcr’s Workshop provides professional
software development tools for the Apple® Macintosh computer.
Briefly, the Macintosh Workshop consists of the following parts:

MPW Shell (the programming environment)
68xxx Assembler

'Iink.er '

Resource Editor

Resource Compiler and Decompiler
Debugger

The system aiso includes many other tools for creating and
manipulating text and resource files. The following Macintosh
Workshop products are separately available:

® Macintosh Programmer’s Workshop Pascal provides the
additional tools, interfaces, and libraries you need to develop
applications, tools, and desk 4ccessories in Pascal.

8 Macintosh Programmer’s Workshop C provides the Green
Hills Software C Compiler, along with the interfaces and librarics
needed to develop applications, tools, and desk accessories
inC, :

Power Tools for Macintosh Programmaers xvii

XViii

Preface

MacApp is an expandable “generic application.” MacApp
provides of 2 set of object-oriented libraries that automatcallv
implement the standard Macintosh user interface, thus
simplifying and speeding up the process of software
development.

The entire MPW system is outlined in detail in the "System
Overview” section that follows.

The Macintosh Programmer’s Workshop provides numercus
advantages over previous development systems. Among these
advantages are .

® Integration—the various components of the MPW system all run
within the MPW Shell environment The integrated environment
enables you, for example, to automate build procedures for
 programs.

8 Command scripting——in addition to menu commands MPW
provides a full command language. You can combine any series
" of commands into 2 command file (or “script™) for fast,
" accurate, automatic results.

B Regular expression processing—the editor component of the
Shell provides powerful search and replace capabilities with
regular expressions, which form a language for describing
complex text patterns. Regular expressions allow you, for
instance, to restructure complex tables with a single command

® Extensibility—you can create your own integrated tools to run
within the Shell environment. You can also add your own menu

commands to the Shell; these commands c2n be command files,

integrated tools, or stand-alone applications.

Taken together, these features add up to a level of integration,

" power, and ease of ‘use not found in any previous microcomputer-

based development system.

What you'll need

This section describes the hardware and documentation needed 0
develop software with the Macintosh Programmer’s Workshop.

P

.,

Hardware requirements

The Macintosh Workshop runs on the Macintosh Plus, the
Macintosh 512K and 512K Enhanced, and the Macintosh XL. The
system runs on both the original 64K ROMs and the newer 128K
ROMs. Apple’s Macintosh penpherals mcludmg the
LaserWriter™, are supported.

The Workshop requires a minimum disk storage of 1.6 Mbytes (two
800K disks). Use of a hard disk is recommended but not
required—with. the minimum disk configuration, you can use only
one language at a time, without swapping disks. A Macintosh Plus
with an Apple Hard Disk 20™ is the recommended configuration.

Both 400K (nonl’uerardnczl) and 800K (hierarchical file system)
disks are supported. The software is shipped on 400K disks. Hard
disks may be either hierarchical (HFS) or non-HFS volumes, but
using non-HFS volumes is more awkward.

System Folder requirements

The Systerm Folder provided with MPW includes version 3.2 of the
System file and version 5.3 of the Finder. System file 3.2 is required .
Jfor MPW. In addition, the following versions of the printer drivers
are required:

m Laser Prep 3.1

a Iﬂ_mgeWriter 23

m AppleTalk® ImageWritar™ 2.3

These files are available on version 1.1 or later of the System Tools
disk, and on version 1.0 or later of the Printer nstallation disk.

& HD-20 .S’taﬁup Disk Users: If you are using a 512K Macintosh
* with the’ 64K ROM and an HD-20 (HFS) startup disk, you must
use version 1.1 or a later version of the HD-20 Stantup disk.

Pascal and C requirements

MPW Pascal requires most of the available memory in 512K
systems.

MPW C requires a Macintosh Plus or a 1-Mbyte Macintosh XL.

What You'll Need XX

XX

Praface

Documentation

All programmers will need Volumes I-1I of Inside Macintosh
(published by Addison-Wesley, 1985), the definitive guide to the
Macintosh operating system and user-interface toolbox. In order to
program for the Macintosh Plus, you'll also need Volume IV of
Inside Macintosh. 1f you need to understand and control the
numeric environment, you'll need the Apple Numerics Manual, a

" guide to the Standard Apple Numeric Environment (SANE). Lastly,

you'll need the appropriate documentation for the programming

language you'll be using:

@ Assembly Language: Macintosh Programmer's Workshop
Assembler Reference. This mamual is included in your Macintosh
Programmer’s Workshop package. You'll also need the .
appropriate microprocessor documentation from Motorola.

Pascal: Macintosh Programmer’s Workshop Pascal Reference.
This manual is available as part of a separate MPW product.

C: Macintosh Programmer's Workshop C Reference. This
manual is available as part of a separate MPW product. For a
guide to the C language itself, you'll need The C Programming
Language by B. Kemighan & D. Ritchie, or 2 similar C manual.

- About this manual

This book describes the MPW development system, including the

- Shell and tools. This manual is written for programmers who are

already familiar with the Macintosh. It outlines the process of
building-a program, but does not deal with the particulars of writing
it. Language-specific information is covered in the manuals listed
above.

Syntax notation

The following syntax notation is used to describe Macintosh
Workshop commands:

terminal " Plain text indicates a word that must appear in
the command exacty as shown. Special
symbols (-, §, &, and so on) must also be
entered exactly as shown.

P

nonterminal
[optienal]
repeated...

alb
(grouping)

Items in italics can be replaced by anything
that matches their definition.

Square brackets mean that the enclosed
elements are optional.

Ellipses (...) indicate that the preceding item
can be repeated one or more times.

A vertical bar indicates an either/or choice.

-Parentheses indicate grouping (useful with

the | and ... notation).

This notation is also used in the MPW Help file. (See “The Help
Command” in Chapter 1.)

Filenames and command names are not sensitive {o case, By
convention, they are shown with initial capital letters.

Terms printed in boldface appear in the glossary.

About this Manuai XXi

System Overview

A road map xx

The MPW Sheil xx

File handling commands x
Editing commands x
Structured commands x
Other built-in commands x

- MPW tools xx
Assembler x

Systam Overview

This section outlines the program dcvclopment prbcess and contains a general
description of the various parts of the Macintosh Programmer's Workshop.

A Road Map

Figure 1 illustrates the typical stages of program development Examples in Chapter 1
recapitulate these steps, using the /nside Macintosh sample program as an example.

e —— = s

System Overview

VN

—

-

Libraries
{'OBJ "

CODE

Edit program
(Sheit editor)

Source
files

(TEXT)

Assemble or Compile
L {Asm, C, Pascal)

=
"o

Other Resources

Create resources
(RasEdit or Rez)

!

Rasourcs
fife

Application,
Toai, or Oriver fila
(exacutable code
resources)

A Road Map

(e8]

Figure |
Steps in program development

The rest of this section describes the various parts of the Macintosh Workshop, and
how they relate to the development process. (See Chapter 1, “Genting Started,” for
information about entering MPW commands.)

The MPW Shell

The MEW Shell is an application that provides an integrated, window-based
environment for program editing, file manipulation, compiling, linking, and
program execution. The other parts of the Macintosh Workshop—the Assembler,
Compilers, and other tools described below—all operate within the Shell
environment. These ools can perform input and output to files and to Shell
windows, -

The Shell combines a command language and 2 text editor. You can enter
commands in any window, or execute them by using menus and dialogs. The
command language provides text editing and program execution functions,
including parameters to programs, command file (scripting) capabilities,
input/output redirection, and structured commands.

The MPW Shell integrates the following functional components:

m An editor for creating and modifying text files. The editor implements normal
Macintosh-style editing together with scriptable editing commands so that you
can program the Shell to perform editing functions. (See Chapters 2 and 4.)

® A command interpreter that interprets and executes commands that you enter
in a window or read from a file. (See Chapters 3 and 9.)

#& Buiit-in commands—besides editing commands, these include commands for
handling files without returning to the Finder, processing variables, program
control flow, and more. (See Chapter 3.)

File handling commands

The MPW Shell provides the following built-in commands for manipulating files and
directories without having to exit to the Finder:

4 Systemn Overview

I

Catenate
Close
Delete
Directory
Duplicate
Eject
Equal
Erase
Files
Mount
Move
NewFolder
Open
Rename
Save
SetFile
Target
Unmocunt
Volumes
Windows

concatenate files

dose a window

delete files and directories
set the default directory
duplicate files and directories
eject volumes

compare files and directories
initialize volumes

list files and directories
mount volumes

move files and directories
open a new window

create a directory

open a window

rename files and directories
save windows

. set file auributes

make a window the target window
unmount volumes

list mounted volumes

list windows

2T,

Editing commands

Besides the Macintosh’s usual mice-and-menus editing capabilities, 2 number of
built-in- editing commards are provided. You can use these commands both
interactively and in command files. Editing commands feature the use of regular
expressions, a set of special operators that forms a powerful language for defining

text patierns.

Adjust
Align
Clear
Copy
Cut
Find
Font
Paste
Replace
Tab

adjust lines

align text to left margin

delete the selection

copy selection to the Clipboard

copy selection to the Clipboard and delete the selection
find and select a text pattern

set a window’s font characteristics

replace selection with contents of the Clipboard
replace the selection

set a window's tab value

The MPW Shef

Structured commands

The shell aiso provides 3 number of built-in structured commands. Used mainly in
command files, these commands provide conditional execution and looping

capabilities.

if...

For...
Loop...End
Begin...End
-Break
Continue
Exit

conditional command execution

repedtl commands once per parameter
repeat commands until Break

group commands

break from For or Loop .

continue with next iteration of For or Loop
exit from command file

Other built-in commands
The MPW Shell also provides a number of other predefined commands.

AddMenu
Alert
Alias
Beep
Confirm
Date
DeleteMenu
Echo
Evaluate
Execule
Export

. Help .
Parameters
Request
Set
Shift
Unalias
Unset

add menu item

display alert box

define alternate command names

generate tones

display confirmation dialog

write the date and time

delete user-defined menus and items

echo parameters _

evaluale an expression

execute a command file without affecting variable scope
make variables available to programs

display summary information

write parameters

request text from a dialog

define and write Shell variables

renumber command-file positional parameters
remove aliases =

remove Shell variables

MPW tools

MPW tools are programs thal run within the Shell environment. The following tools
are provided with the Macintosh Workshop; several are described in more detait in

the following sections.

6 Systern Overview

Asm 68xxx Macro Assembler

c C Compiler (available as a separate product)

Canon canonical spelling tool

Compare compare text files

Count count lines and characters

CvtObj convert Lisa® object files to MPW object files

DeRez Resource Decompiler

DumpCode dump code resources

DumpObj dump object files

FileDiv divide a file into several smaller files

Lib combine object files into a library file

Link link an application, tool, or resource

Make - program maintenance tool

MDSCvt convert MDS ‘Assembler source

Pascal Pascal Compiler (available as a separate product)

PasMat Pascal program formatter (pant of the MPW Pascal product)

PasRef Pascal cross-referencer (part of the MPW Pascal product)

Print print text files -

Rez Resource Compiler

RezDet the resource detective

Search search files for a patiern

TLACvt convert Lisa TLA Assembler source
Assembler

"The Assembler translates 68000, 68010, and 68020 assembly-language programs into
object code. 68881 floating-point instructions and 68851 memory-management
instructions are also supported. The Assembler provides powerful macro facilities,

- code and dam modules and entry points, local labels, and (optional) optimized
instruction selection, Assembly-language interfaces are provided to the “Inside
Macintosh” libraries (including the 128K ROM). Other libraries and example files
are also provided, ' I

Pascal tools

The Pascal system is provided as 2 separate product, MPW Pascal which includes
the following:

® Pascal Compiler

® Pascal cross-referencer (PasRef)

® Pascal program formatter (PasMat)
® Pascal runtime library

MPW tools

® Pascal interfaces to the “Inside Macintosh” routines (including the 128K ROM
routines)

m - sample programs

Macintosh Workshop Pascal is an improved version of Lisa Pascal. The
improvements include SANE numerics, access to C functions and global data,
arbitrary-length identifiers, and Object Pascal extensions.

-

C Compiler

The C Compiler is also provided as part of a separate product, MPW C, which
inctudes the following:

» C Compiler
® Standard C Library

a C interfaces 1o the “Inside Macintosh” libraries (including the 128K ROM
routines)

8 sample programs

The C Compiler implements the full C language as defined in The C Programming
Language, by Brian Kernighan and Dennis Ritchie. The usual extensions to this
definition provide enumerated types and structure assignment, parameters, and
function results. In addition, Apple extensions provide SANE numerics and
interfaces to Pascal functions and Macintosh traps. Most Standard C Library
functions, including character and string processing, memory allocation, and
formarted input/output are also provided. '

Linker

The Linker combines object code files and rescurces into executable programs,
including only the code and data modules that are referenced. The Linker replaces
the code segments in an existing resource file, without disturbing other resocurces in
the file. An option directs the Linker to produce a link map as a tex: file. A separate
tool, Lib, provides library manipulation.

Make

The Make tool simplifies software contruction and maintenance. Its input is a list of
dependencies between files, and instructions for building each of the files. Make
generates commands 1o build specified target files, rebuilding only those
components that are out-of-date with respect to their dependencies.

8 System Overview

s ‘-*"\

Resource Compiler and Decompiler

The Resource Compiler (Rez) reads a textual description of a resource and converts it
into a resource file. The Resource Decompiler (DeRez) converts resources into a
textual representation that can be edited in the Shell, and recompiled with
Rez—DeRez can be used to create Resource Compiler input from any existing
resource files. Rez and DeRez use templates (type declarations) to define resource
types. Definitions of the standard Macintosh resource types ('MENLU, 'STR#!, 'ICON',
and so on) are provided in two commented text files, Types.r, and SysTypes.r.

Another tool, RezDet, checks resource files for consistency.

Conversion tools

TLACvt converts Lisa Workshop Assembler '(’I‘LA) source files to MPW Assembler
source files. CviObj converts Lisa Workshop object files to the MPW object file
format. : '

MDSCvt converts Macintosh 68000 Development System (MDS) Assembier source
files to MPW Assembler source files. :

Canon is a 100! for regularizing the spelling and capitalization of identifiers in source
files moved from other systems. (In the Macintosh Workshop languages, all

characters are significant rather than just the first eight as in the Lisa Workshop. In C,
case also matters.) . S

Appilications

Applications are stand-alone programs that can be iaunched from the Shell, but that
execute outside the Shell environment. A single application, ResEdit, is provided
with MPW. It is assumed that you already have the Font/DA Mover, which is
distributed on the System Tools and System Installation disks. Any application,
such as MacPaint or MacWrite, can be executed from the MPW Shell. '

ResEdit

ResEdit is an interactive, graphically based resource editor for creating, editing,
copying, and pasting resources. MPW Pascal includes a set of extended Resource
Manager routines that make it possible o write your own add-on resource editors for
ResEdit. :

-

Applications

Debugger

The MacsBug 68000 debugger is provided with the Macintosh Workshop. MacsBug
resides in RAM together with your program. MacsBug allows you to examine
memory, trace through a program, or set up break conditions and execute a program
until they occur. Another version of MacsBug, in the file MacsBug. XL, is provided
for use on the Macintosh XL.

Special command files

Several special command files are provided. These text files contain commands that
are read by the MPW Shell at startup and shutdown. '

The Startup file is a command file containing a startup script thzt is run each time
you start the MPW Shell. It, in turn, executes 2 file called UserStartup, which you
can use to customize the Workshop. The Stanup file is discussed in detail in
-Chapter 3.

The Suspend and Resume files are comm:md files that preserve the state of the
Shell environment while a stand-alone application is executing. The Quit file
aflows you to save the state of the Shell environment when you exit to the Finder.

Sample program files

Source files are provided for the sample application from Inside Macintosh, as well
as for a sample MPW tool and a sample desk accessory. Assembly-language versions

. of these programs are contained in the folder AExamples. MPW Pascal and MPW C
“also include Pascal and C versions of the sample files, in the folders PExamples and

CExamples. The Examples folders also contain instruction files and makefiles for
building the sample programs; these are discussed in the next chapter.

System Folder

The latest versions of the System file and Finder have been provided for use with
MPW and on your application disks. Several fonts have been removed from the
Systemn file, to reduce its size for use with systems without 2 hard disk.

10 System Qverview

*»Note: System flie version 3.2 is required for use of MPW. MPW also requires the
printer drivers provided on the System Tools 1.1 or Printer nstallation 1.1 disk.

Overview of MPW files and directories

Appendix A contains a complete, annotated list of all of the Macintosh Workshop
files. It also describes the recommended setup of files on an HD-20 or set of 800K
disks. Figure 2 shows the initial setup of your MPW folders and files on an HD-20:

(The Pascal and C systems are included) '

€ File Edit Uiew Special

MPY Shell StartUp UserStartlp Suspend Resume = Quit

Il als

MPW Help . SysErrsErr Tools ~ Applications Debuggers

AExamples Alncludes Libraries Rincludes

Ovarview of MPW filas and directories A

o

CExamples Cincludes Clibraries

PExamples PLibraries Plnterfaces

Figure 2
Setup of MPW folders and flles

For important information about setting up your MPW system, see ‘Irxétalh‘ng the

System” in Chapter 1.

12

System Overview

N

-

R

-

m

Chapter 1

Getting Started

Installing the system xx

HD-20 instaliation x

Macintosh XL installation x
Instailing the system on 800K disks x

. Starting up xx
Editing xx

Glving commands xx

The Enter key x

Executing several commands at once x
Terminating a command x

The Help command x

File handling commands xx

Flle and window names xx

Selection specifications x
Directories and pathnames x
Command search path x
Changing directories x

An aside: The alias command x
Pathname variables x
Wildcards (filename generation) x

Building a program xx

Assembling and compiling x
Compiling Resources x

Linking x
Automating the build process with make x
Running an application xx

14 Chapter 1: Gefling Started

P

This chapter introduces the use of the Macintosh Programmer’s Workshop, and

briefly describes the steps in developing a Macintosh application. It shows you how
to assemble, link, and run a simple application by using examples contained in the
“Examples” folders. Example files included for assembly language, Pascal, and C,

Installing the system

The Macintosh Programmer’s Workshop is shipped on five 400K disks; the Pascai
and C systems occupy another two disks each. This section describes how to mstall
the Macintosh Workshop files onto the foliowing disks:

® the Apple HD-20, which uses the hierarchical file systemn (HFS)
® 2 Macintosh XL hard disk, Wh.lCh uses the “flat” {nonhierarchical) file system
E 2 set of 800K floppy disks

Appendix A, “Madintosh Workshop Files,” shows the recommended layout of files
on an HD-20 or 800K disk system. HFS pathname rules are explained in this chapter.

% Note: A command file pamed Startup is executed by the MPW Shell during
initialization. This file defines several Shell variables, ‘including the variables
that indicate. the location of MPW tools, applications, include files, and
libraries. The file originally named “Startup® works with the standard

© configuration (HD-20, hierarchical file system). Special Startup files have been
provided for use with nonhierarchical file systems and 800K-only systems—see
the instructions that follow. '

Note also that System file version 3.2 is required for using MPW, (A version of this
file, with several fonts removed, is shipped with the system.)

HD-20 installation
Use the Finder to do the following:
1. Create a folder named MPW on the hard disk.

2. Copy the contents of all five disks (except the System Folder on the MPW1 disk) to
folder MPW. If you have Pascal or C, also copy those disks into the MPW folder.

3 Move the entire contents of the folder More Tools to the Tools folder; throw away
More Tools.

Installing the system

4. Move the file Asm to the Tools folder. If you have Pascal or C, move the Pascal
and CCompilers (named Pascal and C) into the Tools folder. MPW Pascal
includes some additional Pascal tools, PasMat and PasRef, which should also be
moved inio the Tools folder.

% Note: The files Startup, UserStartup, Suspend, Resume, Quit, MPW.Help, and
SysErrs.Err need 1o be in the same folder as the MPW Shell application, or in the
Sysiem Folder,

By default, the Macintosh- Workshop assurnes installation in the MPW folder as

described above. Other configurations are possible—but you'll need to make some

simple changes to the pathnames defined in the Startup file so that the Shell and tools .
can find various files. (

Macintosh XL instailation

A separate Startup file, Startup.XL, has been provided for use with nonhierarchical
fite systems. To install MPW onto a Macintosh X1, use the Finder to do the following:

1. Rename the file Startup (for example, to Starmp.HD20), and rename the file
Startup. XL to Startup.

2. Simply copy all of your Macintosh Workshop files onto the hard disk—the
distribution files have unique names, so you needn’t worry about any name
conflicts.

< Note: The file Sample.r appears with the assembly-language, Pascal, and C
examples. All three Sample.r files are identical, so the name conflict can be
safely ignored. The file Memory.r also appears with both the Pascal and C
examples.

Folders aren’t recognized by the nonhierarchical file system, so the arrangement of
- files in folders is irrelevant to the functioning of the system. (

< Note: The examples in this manual assume a hard disk running HFS. Theyll
work properly on a Macintosh XL if you leave off any pathname prefixes.-

Installing the system on 800K disks

Another Startup file, Startup.800K, has been provided for your use if you are running
MPW from 800K disks. To install the system onto a set of 800K disks, use the Finder to
do the following:

1 Rename Startup (for example, to Starup.HD20), and rename the file
Startup.800K to Startup. '

2. Copy the distribution files and folders onte your 800K disks to create the
arrangement given in Appendix A under “800K Disk Configuration.”

16 Chapler 1: Getting Started

N

./.‘1-\'-

' Several configurations of files are possible. We recommend creating an MPW boor.

disk and a separate disk for each language system you use. The startup disk should .
contain the System Folder, MPW Shell, RIncludes and Libraries folders, and a Tools
folder containing'a number of the most useful tools. This disk should remain in the
drive while you run MPW. Each of the language systems will also fit onto a single disk
(which means that you-can use only one language at a time).

With this arrangement, the MPW disk has about 100K bytes free allowing you to add

-printer drivers, fonts, or frequently used tools. The language disks each have

300-400K of free space for your source, object, and application files. (You can also
move the Examples folders to free up additional disk space.)

% Note: The examples in this manual assume you are mnnmg MPW from an
HD-20. To make the examples work on an 800K- only system, you'll have w0
change some of the pathnames used in the examples, and make sure the correct
disks are on-line. (See Appendix A.) .

Starting up

% Note: A small RAM cache (perhaps 32K) is useful when running MPW. Larger
caches may be _used on the Macintosh Plus with the Assembler and Pascal, but
are not recommended when using MPW C. Use of MPW with the Switcher is not
recommended. :

From the Finder, select and open the MPW Shell icon. The Worksheet window
(shown in Figure 1-1) will appear with its full pathname in the title bar (for example,
“HD-MPW-Worksheet™. This window has no close box, and is always present on the
screert; otherwse it's just like any ot.her window. '

You can also start the Workshop by double-clicking on any Macintosh Workshop text
document or tool. :

Startng up

17

€ File Edit Find Feormat Windows
=== ID:MPW:Worksheet =
|

MPY Shell

Figure 1-1 :
Worksheet window

A status panel at the window's lower-left comer shows the name of the command
that's currently executing. When you first start the Macintosh Workshop, it begins by
executing a command file called Startup. The Startup fle defines several variables
and command aliases (alternate command names); this file is further described in
Chapter 3. :

Important

The Starfup file must be In the same directory as the MPW Shell, or in the System
Foidler.

18 Chapter }: Getting Started

VN

ST

Editing

Basic editing functions are available as menu commands. You can open z file with
the open command or by selectiong i’s name on the screen and choosing the open
selection command (command-W) from the File menu.You can select and edit text
with the usual Macintosh editing techniques, using menu commands to Qut, copy,
and paste selected text. The menu commands are fully described in Chapter 2,
“Basic Editing.”

Editing with MPW is unique in that most menu functions are duplicated in the Shell
command language. Editing and other command-language functions are fully
integrated—you enter and execute editing commands just like any other commands.

‘Editing commands are entered in the active window (the topmast window), but they

act on text in the target window (the second window from the top), or another window
that you explicitly name. The command language lets you produce command files of

_ editing commands: You can save any series of commands as 2 normal text file, and

execute the file by simply entering the filename. Command-language editing is
discussed further in "Editing With the Command Language” in Chapter 2.

Giving commands

In MPW, commands may be either built-in commands, tools, applications, or
command files, as explained in the *System Overview” section. Commands are
written as a series of words separated by spaces or tabs. By default, command output
and any error messages appear immediately after the command. Commands are not

case sensitive. You can have multiple open files, and you can enter commands in
any window,

The simplest commands consist of the command name only. For exampie, type the
command

Date

and press the Enter key (without pressing Return first—that is, the insertion point
must be on the same line as the command when you press Enter). This command
lists the date and time:

Tuesday, February 14, 1987 7:12:00 aM
Commands can have parameters. For example:

Date -d

The -d option tells the Date command to list the date only:

Tuesday, February 14, 1887

Giving commands

19

The Enter key

. The Enter key serves as a “do it” buiton, causing commands to be executed. You can

“type commands from the keyboard and hit Enter to execute the command line.
(When no text is selected, the entire line is executed, regardless of where the
insertion point is on the line) You can also select command text that is already on
the screen and press the Enter key to execute the selected text.

The Enter command on the Edit menu has the same effect as pressing the Enter key,
Command-Retumn is also equivalent to Enter.

- Executing several commands at once

By selecnng several lines of command text and then pressing Enter you can execute
~ any number of commands with one stroke. An example is shown in Figure 1-2.

€ file Edit Find Format LWindows
_—m—aa————= HD:MPIJ:Iorksheet

date -d .
Tuesday, Februarg 14 1987

IR B s :E-'la_l—lq:- . e LT
TBEackup

Figure 1-2
Press Enfer 1o execute selected text

In Figure 1-2, executing the selected text would first make a new folder (directory)
named Backup; then copy the files Startup into Backup, pisagmisthenasse
Semsteapmilmis; and then list all of the files in Backup. (Each of these commands, and
the pathname syntax, is described in the following sections.)

20 Chapter 1: Getfing Started

_‘/'h\.‘

o

You can also directly execute text files that contain other commands, simply by
entering the filename of the command file. Executing 2 command file has the same
effect as selecting the commands in an open window and pressing Enter—the only
difference is the scope of variable and alias definitions (discussed in Chapter 3).

Important

Commands that don’t produce any output run siently: this facilitates their use in
command files.

Terminating a command

To terminate a command while it's executing, press Conima.nd—period, the standard
Macintosh command for this purpose.

Important

Many commands (ncluding Asm, C. and Pascal) nomndily take thelr input from a file;
however. if no file is specified, they will begin reading from the console (“standard

[input*). If the Shell appears not to be listening to the commands you are entering. it

probabiy isn't: The currenty executing command (shown in the active window's
status parel) may be reading the text that you enter. If a program is reading from
standard input, you can press Command-Enter (or Command-Shift-Retum) to

indicate end-of-file and terminate Input. (See "Terminating Input With Command-
Enter” in Chapter 3.)

The Help command

The Help command displays summary information for commands. For example, to
display a description of the Files (list files) ¢command and its options, type the
command '

Help Files
and press the Enter key. You'll see the following syntax description:

Files (option..] [name.] > filelist
~c creator # list only files with this creator
-1 # long format {type, c¢reator, size, dates, etc.)
-q # don't quote filenames with special characters
-r ¥ recursively list subdirectories
-L rLype # list only files with this type

Glving commands

2t

% Note: The square brackets are a syntax element indicating that a parameter is
optional. Ellipses (...) indicate that the preceding item may be repeated. Syntax
notation is described in the Preface to this manual. The number sign (#) is the
MPW comment character.

You can directly edit and execute the text on the screen. For example, you can edit
the above text as follows:

m use the mouse 10 select [option..] and [name..}; replace them with the
option -1 and the directory name AExamples '

a remove the output specification > fileList

The result is a command that will list the files in directory AExamples, in long
format:

Files -1 AExamples

(AExamples is the directory containing sample assembly-language programs; -1 is an
option that generates “long” output.) Press Enter to execute the command—
directory information will appear immediately following the command.

You can also use the Help command to display additional summary informaﬁon,
including '

s an annotated list of all MPW commands
® an annotated list of the characters that have special meanings t0 the MPW Shell
m descriptions of the syntax of expressions, selections, and text patterns

For general information about Help, execute the Help command with no
parameters:

Help
This command displays the information shown in Figure 1-3

Figure 1-3
Help surmmaries

22 Chapter 1: Getting Started

S

worksheet@

hel
HPLI 1 0 Help Summarles

Heip summaries are available for each of the MPU commands.
To see the {ist of commands enter "Halp Commands”. Brief
descriptions of Expressions, Selections, Patterns and

the Characters that have special meaning to the MPW Sheil are
diso included. '

To see Halp summaries, Enter a command such as
Help commandName information about commandName

"
I Help Commands % aiist of compands
Help Expressions % summary of expressions
’ *
-
®

Help Patterns summary of patterns (regular express:ons)
.Heip Selections summary of selactions
L T Ui Ul T LR af HFW Shet]

Chaar o terz

o 03l

MPY Shell '

You can directly execute the Help commands given in the *Help Summaries” list

File handling commands

The MPW Shell lets you manipulate files withcut returning to the Finder. Table 1-1
introduces the most commonly used file handling commands.

<+ Notre: The descriptions in the table omit some of the command options that are
available. For complete descriptions, see Chapter 9, “Command Reference.”

- _ Table 1-1 '
(_ Basic fle handling commands
Catenate [file...] Read the data fork of each file and write it to standard output. (By
default, standard output is to the active window, immediately after
the command.)
Delete name. .. Delete file or directory name. If name isa directory, all of its
contents are deleted.
Directory directory Set the default directory to directory.
Directory Directory with no parameters writes the pathname of the current

directory.

File handling commands 23

Duplicate name... targetName Duplicate file or directory nameto file or directory targetName.

Files { name... | List names of directories and files.

Move name... targetName " Move file or directory nameto targetName.
New [name] ' Open a new window.

NewFolder name... Create the new directory name

Open name Open a window.

Rename namel name2 Rename namel to name2.

Save window Save a2 window.

Volumes [name... 1 List mounted volumes.

‘Windows . List open windows.

.
File and window names.

“ Note: All of the examples in this manual assume 2 hard disk named "HD:",
using the hierarchical file system. If you are using a non-HFS system, all
pathname specifications should be omitted.

In the Macintosh Workshop, files and windows are specified in the same way. When a
name is passed as a parameter to a command, the system looks first for an open .
window with that name; if no window is foand, it looks for a file on the disk.

The following rules apply 10 naming:
& Names are not case sensitive,

B A single component (file or directory name) of an HFS pathname is limited to 31
~ characters, .

. Any character except a colon () may be used in 2 file or directory name. (Colons
separate elements in a pathname.)

I's wisest to avoid using spaces and special characters in filenames. When using
filenames that contain spaces, you'll need to quote them so that they won't be
interpreted as individual words in the command language—for example, you would
need to specify the name “System Folder” as follows:

Files HD:"System Folder™
For the rules concerning quoting, see “Quoting Special Characters” in Chapter 3.

24 Chapter 1: Getting Started

P

7N

Selection specifications

Commands that take filenames for parameters can also act on the current selection in
a window. The current selection character, § (Option-8), represents the currently
selected text in a window. There are two possibilities:

§ Currently selected text in the target window. (The target window is
' the second window from the top, as explained in Chapter 2.)

name.§ Currently selected text in window name.

For example, the Count command counts lines and/or characters in a file. The
command '

Count -1 Sample.a.$.

counts the lines within the current selection in the window Sample.a.

The current selection is explained more fully in *Editing With the Command
Language” in Chapter 2. '

% Note The MPW Shell uses a number of special metacharacters (like §) from the
. extended character set. These characters are fully listed in Appendix C.

Directories and pathnames

With the hierarchical file system (HFS), specifying a filename alone is often not
enough to identify a file—you frequently need to specify a pathname. A full

- pathname is specified as follows:

volume-name:|direciory-name: .. lfilename

A full pathname contains at least one colon (), but cannot begin with a colon. An

- example of a full pathname is

"HD :MPW:MPW Shell™

(The quotation marks are required because the filename “MPW Shell” contains a
space.)

A partial pathname is usually all you'll need to specify. When HFS encounters a
partial pathname, it begins the path at the current default directory. To maintain
compatibility with the nonhierarchical file system, the following definition is
applied: Any name that contains no colons or begins with a colon is considered a
partial pathname.

For example, the name

:AExamples

is taken as a pardal pathname. However, the name

Fle and window names

25

MPW:

is taken to be a il pathname (that is, a volume name only), rather than meaning the
directory HD:MPW. (When in doubt, you can always specify the full pathname for a
file or command.)

Double colons (::) in a pathname specify the current directory's parent directory;
riple colons specify the “grandparent” directory (fwo levels up), and so on. See the
“File Manager” chapter in Volume IV of Instde Macintosh for more information on
HFS conventions.

“» Note: Notice that there’s no single “root” directory—each volume name (that
is, disk name) is a separate starting point for a directory tree.

Figure 1-4 shows a directory “tree” describing your MPW files-

Figure 1-4
Hlerarchical directory structure

You can use the Files command to list the names of files and directories. For
example, the command

Files HD:MPW:
might display the following:

:AExamples:
:AIncludes:
:Applications:
:Debuggers:
:Libraries:
'MPW Shell!
MPW.Help
Quit
Resume
:RIncludes:
Startup
Suspend
SysErrs.Err
:Tools:
UserStartup
Worksheet
elc.

In the output of the Files command, the names that begin and end with colons are
directory names, and the other names are filenames. All of these names are partial
pathnames—in this case, “HD:MPW" forms the beginning of each pathname. Also
note that filenames containing special characters are quoted.

26 Chapter 1: Getfing Started

/—-\I

TN

Command search path

When you enter a command name (that is, a partial pathname), the Shell searches
for the command in the directories listed in the Shell variable {Commands}. This
search path is initially set to: (the current directory), MPW: Tools, and

MPW: Applications, as described in Chapter 3. '

Changing directories

You can change the default directory with the Directory command. Assuming you
have a hard disk named HD, you could change the default directory to the directory
AExamples in the MPW folder with: the command - :

Directory HD:MPW:AExamples

Like most commands, Directory runs silently—it generates output only if an error
occurs. To verify that you have set the appropriate directory, enter the Directory
command with no parameters: '

Directory
This command displays the default directory.

Remember that to specify a pathname containing spaces or other special characters,
you'll need to quote it by surrounding it with sigle or double quotes.
(See Chaptet 3.) :

An aside: the AlicS command

For frequently used commands such as Directory, you may get tired of typing the

-entire command name. You can easily define your own alternate names with the

Alias command. For example:

Alias CD Directory

After executing this command, you can execute the Directory command by entering

the new command name:

CD
To make an alias definition part of the Shell’s standard startup procedure, place the
definition in the file UserStartup.

. File and window names 27

Pathname variables

One way of specifying a pathname is by using Shell variables. For example, the Sheil
variable {MPW], defined in the Starup file, expands to form the full pathname for.
the MPW folder, in this case “HD:MPW:”. Thus, the previous Directory command
could be entered as

Directory "{MPW}AExamples"

in this part.icﬁlar case, the quotes aren’t necessary, but their use is recommended as a
general practice when variables are included in 2 pathname, because the pathname
could contain spaces-or other special characters. .

You can use the Set command to define and redefine variables, as descﬁbed in
Chapter 3. To see the values of all currently defined variables, enter the Set
command with no parameters:

Set’

Wildcards (fiienom_e generation)

You can specify a number of files at once by using the wildcard characters ? and = .
(Option-X). The ? character matches any single character (except a colon or-
Return); = matches any string of zero or more characters (other than colon or
Return). For example, the command

Files =. a

lists all filenames in the current directory that énd with the suffix “.2", (Several other
wildcard characters can also be used 10 generate ﬁIenames——-see “Fllename
Generation” in Chapter 3.)

Building ¢ program

This section introduces the MPW tools for assembling or compiling and linking a
program, using the Sample application provided with MPW. (This application is the
same as the Inside Macintosh sample application, and is available in Pascal, C, and
assembly language.) Instructions files are provided for each language. To see these
instructions for assembly language, open the file named Instructions.a in the
AExamples folder. You can select and enter commands directly from the
Instructions file, just as you can from any text file.

28 Chapter 1! Getting Started

< Note: The examples in this section refer to assembly language, but the process is
the same for C or Pascal. ' .

Assembling and compiling

Before executing the example assemble or compile commands, you'll need to set the
appropriate default directory (AExamples, PExamples, or CExamples) by selecting
and entering the proper Directory command, as shown in Figure 1.5.

&€ File Edit Find Format Windows
[EN=——===—= HD:MPW:AExamples:Instructions.es =

Instructions for Assembly Language Excmples

. The files used to create all of the following example programs ai
the folider "AExamples™. Depending on the configuration of your m
you must select and execute one of the following commands to char
directory to the correct folder.

Directory " HFUGAE ampd es” S0t bgurat

Directory ~ {Boot}" ® for Macintosh XL
Directory "Asm:AExamples” * for 800K disks

* {To execute the command select it and press Enter.)

MPY Shell

Figure 1-5 :
Setting the default directory

< Note: The number sign (#) is the MPW comment character.

You can assemble or compile the Sample program with one of these commands:
Asm Sample.a

Pascal Sample.p

C Sample.c

Buliding a program

29

Unless errors occur, the Assembler and Compilers run silently, like most MPW
commands. The spinning “beachball” cursor indicates that the command is
executing. (The name of the currently executing command is shown in the stams
panel at the active window’s lower-left corner,)

% Note: Asm, Pascal, and C are not built-in commands: they are separate files on
the disk. If you've instzlled your MPW files as specified at the beginning of this
chapter and set the appropriate default directory, you won't notice any
difference. Otherwise, you may have to specify the command’s full pathname,
(The Shell expects to find Asm, Pascal, and C in the Tools folder; the
appropriate pathname was defined in the Startup file.) ;

If the command returns with an error message indicating that it wasn't found,
check the instatiation instructions at the beginning of this chapter. Make sure thar
the Startup file is in the same folder as the Shell application, and that the other
files and folders are set up as specified; then restart MPW.

‘The Asm command produces the object file Sample.a.o. To create an executable
fiie, this file must be linked, and combined with the additional resources needed by
the program.

Compiling resources

In addition to code, the Sample application includes 2 number of other resources (a
window, menus, and so on). A textal description of these resources is contained in
the file Sample.r. You can use the Resource Compiler, Rez, to compile these
resources as follows:

Rez Sample.r -o S'é.mple

This command compiles the resources described in Sample.r, placing them in the
resource fork of the file Sample. (-0 is a Rez option for specifying the output file,)

Note that you can also use the interactive resource editor, ResEdit, to create or
modify resource files, See Chapter 5 for information,

Linking

The Linker links object code and produces executable code resources; these
resources are placed in the resource fork of the output {-0) file, without disturbing
other rescurces in the file. To link the sample assembly-language program, enter the
command :

Link Sample.a.o -o Sample

30 Chapter 1: Getting Started

. This command produces the executable application Sample. For the Pascal or C

programs, you'll also need to link your object code with 2 number of library files. A
shoricut is described in the next section.

Automating the program bulld process with Make

When a- program has more than a few modules, it becomes difficult to keep track of
which other parts of a program need 1o be recompiled after you update a particular
module. The Make command helps you keep track of these dependencies—it does
this by referring (© a text filé called a makefile, which contains a set of dependency
rules, A sample makefile has been provided in each of the Example folders.

To see how Make works with the assembly-language sample program, refer again to
the Instructions file in the AExamples folder. To automaticatly generate the -
commands for building Sample.a, enter the command '

Make -f MakeFile.a Sample

If the Sample program is up-to-date with respect to its component files (Sample.a
and Sample.r), Make will generate no output. If Sample needs to be updated (or does
not exist), Make will generate the set of commands required to rebuild it. This list of
commands appears immediately after the Make command line. To build the file, just
use the mouse to select these commands, as shown in Figure 1-6, and press the Enter
key. : :

€ File Edit Find Format Windows h -

i ==—==="—"os= HD:MPW:REnamples:Instructions.a

examples. Execute the Make command below to see these cominds, m
then execute the commands themselves.

Hake -f MakeFile.a Sample

Feo Zanple.r -o Zanple
Azt Zample . a
Lirk Sanple. s o o Janpla

Figure 1-6
Executing Make output for Sample

Buliding a program 3

% Note: The 9 character that appears in the Link command is the Shell escape
character, and dRetum functions as a line continuation character—see *Quoting
Special Characters” in Chapter 3.

The result of these commands is an executable application, Sample.

Running an Application

You can run an application, like any other command, by selecting the application
name (in this case, Sample) and pressing the Enter key. (The Sample application
simply puts up a window and allows you to edit text in the window.)

You can also pass parameters to applications, as explained in Chapter 3. When you
quit from an application, you'll return to the MPW Shell. Two special command files
called Suspend and Resume save and restore Shell variables and other information
when you mun an application and return to the Sheil,

32 Chapter 1: Getting Started

N

o

Chapter 2

Basic Editing

Features xx
File format xx

Menu commands xX

Apple menu x

File menu x

Edit menu x

Find menu x

Selection expressions X

Selection by line numbers x
*Wildcard™ operators x

Format menu X

"Windows menu x

User-defined menus x

Editing with the command language

P

This chapter describes simple editing using menu commands. Advanced editing
capabilities are discussed in Chapter 4, “Advanced Editing.”

Features

The MPW Shell praovides the following editing features:

3 Both menu and command-language echu.ng The menu commands prowde the
usual Macintosh interface,

® Selecting text by program syntax. You can double-click on any of the characters

) t 1 { b " !

to select everything between the character and its mate, (T o select text between
quotes, dick on the lft quote.)

= Complete integration of editing functions with the command interpreter. In the
- MPW Shell, there is no separation of *¢command® and "editor” modes. To the
Shell, text is text—it is only when you try to directly execute a stnng of text that the
Shell decides whether it is 2 legitimate command or not. :

® Scripable commands. Because editing commands are part of the command
language, you can use them with structured commands and variables to put
together command files that define new editing commands. (See Chapter 4.)

8 Regular expressions for matching text patierns. These make possible powerful
search and replace functions that ehmmzte the need to make repetitive changes by
hand. (See Chapter 4.)

File format

Shell text is saved as a text-only (TEXT) file. The file contains tab and return
characters, but no other formatting information. This format is compatible with
other applications that create text-only files—for exampie, the Shell can process
MacWrite files saved with the Text Only option. When you select the Open
command, the Shell displays all text-only files in its standard file dialog, regardless
of the file creator.

File forrmat 33

% Note: From the Finder, you can open a text file created by ancther application
by selecting both the MPW Shell and the text file icons, and then choosing the
Open command.

You can display the invisible characters (spaces, tabs, returns) with the Show
Invisibles menu item. ' :

A file’s tab setting, font setting, selection, window settings, auto-indent state, and
invisibles state are saved with it, in the resource fork of the file.’

Me_nu commands

In general, the menu interface is the familiar Macintosh implementation. There zre 2
few differences and extensions, which are deuiled in the following sections. (Ir's.
assumed that you are already familiar with standard Macintosh editing techniques.)

All menu commands act on the active (that is, the topmost) window.

»

< Note: Many menu items (including several items in the File menu and all user-
defined iterns) are disabled when running commands. This prevents you from
closing windows that the command may be reading, and from trying to run
another command at the same time.

¢ Menu

About the MPW Shell - Displays version and copyright information. .

File Menu

New. . Puts up a New dialog, shown below. The MPW New dialog
allows you to enter 2 name and select 2 directory location
for the document, '

34 Chapter 2: Basic Edlfing

.‘/_—m\

P

oaw

O AExamplies
C Alncludes
2 Applications
{3 CExamples

k_

QO Clncludes

Open...

Open Selecticm

Close

Save

Open document

Putsupa.nOpéndia.logﬂlataﬂowsyoutoopenanyTEXI‘
file on the disk. When you open a file for the first ime,
the selection point is at the top of the file. For subsequent
Opens, the file reappears in the same state in which it was
saved; that is, the previous selection or insertion point is
preserved unless the file has been modified outside the
editor. '

Note: 1If you try to open 2 document that's already open
in another window, that window will be brought to the
front.

If you select 2 document name within a window, the Open
Selection command automatically displays the selected
name. This is a useful shortcut when you have already
displayed filenames on the screen, with the Files
command for example—you can then select a filename
and open 1 file directly, bypassing the usual Open

dialog. Variable and command substitution do not occur
on the selection. '

Closes the active (topmost) window.

Saves the active window under its current name, without
closing it. This menu item is dimmed if the contents of
the window haven't been modified since it was last saved.

Menu commands

35

Save as... ‘ Puts up a Save As dialog, allowing you 10 change the name
: and directory location of the active window. Saves the
current contents of the window as the “Save As” file, and
allows you to continue editing the new file. The old file is
closed without saving, under its original name.

Save a Copy... Saves the current state of the active window to a new file
: on the disk. You can then continue editing the old file. -
Rever to Saved Throws away any changes you have made since you last

' © saved the active window. _
Page Setup... Puts up the standard Page Setup dialog.
Print Window/ Prints either the entire active window or the selection in
Print Selection | the active window. If any text is selected in the active

window, that text is printed. If no text is selected, Lhc
contents of the entire window are printed. :

The Print menu item doesn't put up the usual Print dialog.
Instead, you can specify printing parameters by setting

- the Shell variable {PrintOptions}, described in

" Chapter 3. Printing options include the number of copies
to print, which pages to print, print quality, font and font

size, headings and title, borders, and printing the pages
in reverse order (for use with the LaserWriter). See the
description of the Print command in Chapter 9 for a
complete specification of these options, or enter the
command Help Print to see a summary.

Technical Note: The Print Window menu item executes
the Shell command

Print (PrintOptions} "{Activel™ 4
22 "{Worksheet}™

Print Selection executes the same command, with .§
added after the name of the active window.

Important: For the Print command to work properly,
you must install the printer drivers available on version
1.0 or later of the Printer mstallation disk. Use the
Chooser Desk Accessory from the Apple menu to specify
which printer to use. Use the Page Setup dialog to specify
paper size, orientation, and reductions or enlargements.

Quit Returns to the Finder, first allowing you to save the
current state of all open files.

36 Chapter 2: Basic Editing

27 .
i \

.'/- "

Edit menu
Undo

Cut
Copy
Paste

Clear
Select All
Align

Shift Left, Shift Right

Undoes the most recent changes to fext in the active
window (but not changes to resources such as the cursor
position or font and tab settings). You can select Undo
again to redo changes.

Copies the current selection in the active window to the
Clipboard, and then deletes it from its original location.

Copies the current selection in the active window to the
Clipboard.”

Replaces the contents of the current selection in the
active window with the contents of the Clipboard.

Deletes the current selection in the active window.
Selects the entire contents of the active window.

- Aligns the currently selected text with the top line of the

selection.

These commands move the selected text left or right by
one tab siop. You can thus move a block of text while
maintaining indentation. Shift Left adds a tab at the -
beginning of each line. Shift Right removes a tab, or the
equivalent number of spaces, from the beginning of each
line. If you hold down the Shift key while using these -
menu items, the selection will be shifted by one space,
rather than by one tab.

Enter Executes the currently selected text. This. is e.xacﬂy the
same as pressing the Enter key.

Find menu

Find... Puts up a Find dialog, and finds the string you specify.. By

default, the editor searches forward from the current
selection in the active window (and does not wrap
around),

Menu commands

37

Find what string?

Find Same . Repeats the last Find operation, on the active window.
Find selection . Finds the next occurrence of the current selection in the
active window.
Display Selection Scrolls the current selection in the active window into
: view,

Replace... Puts up a Find-and-Replace dialog:

Find what string?

Replace with what string?

-

Replace Same Repeats the last Replace operation.

Note: For Find and Replace operations, a beep indicates that the selection was
not found.

Four switches govern the operation of the Find and Replace commands. (A check
mark indicates that an item is selected.)

38 Chapter 2. Basic Editing

-

T

Search Backward Search backward, from the current selection to the
' beginning of the file. (Normally, searching is forward,
and stops at the end of the file)

Entire Word Search for entire words only. To the editor, a word is

' composed of the characters a-z, A~Z, 0-9, and the
underscore character (_), (These defavlt values can be
changed by redefining the Shell variable {WordSet}—see
“Predefined Variables” in Chapter 3.)

Case Sensitive ~ Searching is normally case insensitive; selecting this
menu item specifies case-sensitive searching. (It does
this by setting the Shell variable {CaseSensitive]l-—see
“Variables Defined in the Startup File® in Chapter)

Selection Expression = Enables the full selection and regular expression syntax,
o . as used with the command language and described in
Chapter 4. These expressions allow powerful selection
and pattern matching capabilities that use 2 special set of
metacharacters, introduced below. .

Selection expressions

When the Find menu’s “Selection Exprassion” switch is selected, you can use a
special set of expression operators to specify selections and text patterns. ‘This
section introduces a commonly used subset of these selection operators. Many more
capabilities are available, and a full discussion is deferred to Chapter 4, *Advanced
Editing.” . '

Selection by line number. A number given by itself specifies 2 line number. For
example: o

— - o e
— — W —

Find what selection expression? 7.

39

Cancel
e eyt vty e o rr— s ——"

- This command selects line number 30 in the active-window.

Menu commands

39

“Wildcard” Operators. The same wildcard operators used in filename generation
can-also be used 1o specify text patterns for Find commands: '

? Any single character (other than Return).

= Any string of 0 or more characters, not containing a
Return (to get the = character, press Option-X). -

[characteriistl Any character in the list.

Note: The brackets must be typed; they don't indicate an
opticnal syntax element.

[~characterLisi Any character not in the list (to get the — character, press
Option-13.

These patern matching operators are part of a larger set called regular expression
operators, A regular expression consists of literal characters and/or regular
expression operators, and must be enclosed in slashes {/.../). For example:

e A b= bamperr sl A BT
e e

Find what selection expression?
Jinits)/

R

This command finds and selects any string that begins with “init”, and is followed by
any characters other than a return, as shown in Figure 2-1,

40 Chapter 2: Basic Editing

AN

-

N

€ Fule Edlt Fmd Furmat wlndows |
'D HD: MPLU: Euamples p: Sample p %

{HeruSelect)
END; {OF DoLommand)
4 BEGIN {main PROGRAN)}
@it il ization o
Ini téraf(@thePort); {Imhal iza QuickDraw}
ini tFonts; {initial ize Font Hanager)

FlushEvents(everyEvent,0); - {call 0S Event Mgr to discard any pre
tni thindows; {initial iza Hindew Hanagcr)

MPW Shell

Figure 2-1
Text selected with the find commcnd

As mentioned, many additional Find and Replace capabilities are available—see
Chapter 4. In the command language, the Find menu functions are pesformed by the
Find and Replace commands. There's also 2 tool named Search that can search
through a list of files for the occurrence of any text pattern.

Formcat menu

Tabs... . | _Putsupidialogmatlcr.s_you:‘»etmenumbc:ofspacsmat _
a tab character will signify for the active window. (The
default Tab setting is set by the Shell vanable {Tabt,
described in Chapter 3.}

Auto Indent Toggles Auto Indent on and off. When Auto Indent is on,
pressing Retam lines up text with the previous line. (A
check mark indicates that Auto Indent is on.)

Show Invisibles Displays the invisible characters as follows:

Tab A
Space ¢
Return -

Menu commands

41

9 Point

10 Point

éic.,

Chicago

Courier

etc. The rest of the menu consists of a selection of the fonts
installed in your System file. Available font sizes are
outlined.

Note: Selecting a font and font size affects the entire
active window, not just the current selection in that
- window. : : '

Windows menu

The Windows menu lists all open windows. Selecting a window from the menu brings
that window to the top. The name of the target window is undedined. A check
indicates that a2 window contains changes that have not yet been saved.

Clipboard The Clipboard is always listed first, and zappears even if
the Clipboard isn'l open. You can therefore use this
menu item to open the Clipboard. The pathnime of the
Clipboard includes the directory that contains the MPW
Shell. :

Worksheet ' The Worksheet always appears second in the Windows
- menu. The menu item lists the full pathname of the
Worksheet. '

User-defined menus

You can define }'rour" own menu commands with the AddMenu command, described
in Chapter 3. These commands can be appended 1o existing menus, or you can
credle new menus,

42 Chapter 2: Basic Edifing

VN

Editing with the command language

Almost all menu functions have equivalents in the command language. In most

respects, there is no difference between the menu items and their command-

language equivalents. The primary difference is thar with the command language,
vou enter commands in the active (topmost) window, and the editing command acts
on a selection in another window. You can explicily name a window as a parameter
to-the command. If you don't specify a window, the command acts on the target
window (the second window from the top).

For example, to use command-language techniques to edit the file SysTypes.r, you
must first open that file, and then dick on another window, such as the Worksheet
window, to make it the active window. You'll enter your commands in the active
window, as shown in Figure 2-2. When you select text in the active window, it’s
highlighted in the normal Macintosh fashion. In other windows, selectad text is
indicated by dim highlighting (outlining), as shown in the target window in

Figure 2-2.

€ File Edit Find Format Windows
HD:MPLU:Worksheet =55

fired SORVR S

1

MPW Shell

/* - ORUR

tupe 'DRUH' (
boclean;)
booledn dontNeadLock, needlock;
boclaan dontNeedTime, needTinae;
boolean dontNeedGoodbye, needGoodbye;
boolean : noStalusEnable, statusEnablie;
boolean noCtiEnable, ctifnable; .
bociean noliriteEnable, writeEnable;

. boolean noReadEnable, readEnabie;

bute = 0: -

Figure 2-2
Text highlighted In the actfive window and targst window

Editing commands generally act on 2 selection. (The Find command simply creates
2 selection—“DRVR” in this example.)

Editing with the command languags

L]

43

The § metacharacter (Option-6) is the current selection character-—it indicates
the current selection in a window. For example, the following command erases from
the current selection or insertion point in the target window to the end of the window:

Clear §:oe

The infinity character, = (Option-5), is 2 selection o'perdtor that indicates the end of
a window, as described in Chapter 4. The Clear command given zbove is so useful
that you may want to add it as a menu item—see Chapter 3 for 2 description of adding
your own menuy items 1o MPW, : ’ '

44 Chapter 2: Basic Editing

PN

T

T

Chapter 3

Using the Command

Language

Overview xx

Types of commands xx

" Entering 'and'ox.cming commands xx

Structure of a command xx

Command name x

Parameters x

Command terminators x

Comments x

Simple versus structured commands x

Running an application ocutside the She!l envirenment xx
Command files xx

Special command flles xx

The Startup and UserStartup files x '
Suspend, Resume, and Quit x

Command aliases xx
Executable error messages x
Variables xx

. Predefined variables x

Variables defined in the Starup file x
Parameters (o command files x

Defining and redefining variables x
Exporting variables x

Command substitution xx
Quoting special characters xx
How commands are Interpreted xx

Structured commands xx

Conirol loops x
Processing command parameters x
Expressions x

Fllename genseration xx

Redirecting Input and outpul xx

Standard input x

_ Terminating input with Command-enter x
Standard ocutput’ x

Diagnostic output x

Pseudo-filenames x

Defining your own menu commands xx

Semple command files xx

“AddMenuAsGroup™ x
‘CC- x .'

46 Chapter 3 : Using the Command Language

T

PR

P

So far, we’ve introduced only isolated groups of commands without treating the

- Shell’'s command language as a whole. This chapter describes the complete syntax of

the MPW command language and explains its use. The commands themselves are .
described in Chapter 9, “Command Reference.”

Overview

Bestdes the built-in commands already introduced, the command language

provides the following features: _ :

[buxit-tn and user-definable variables of the form {variableNama

] command aliases, used to create zliernate names for commands

s command substitution, by which commands enclosed in back quotes, * are
replaced by their output

a a quolng mechanism for disabling special characters or msemng invisible
characters in text: d literalizes a single character; *..." and "..." quote strings

¥ an extensive set of structured commands for controlling the order of command
execution, including Begn .End, If...Else...End, and For...In.. End

» .filename generation with “wildcard® operators such as = and ?
W redirection of input and output with the <, >, >>, 2, and 22 operators

When you enter command text, the Shell first interprets and processes all special
symbols, before actually running the command. The order of interpretation is
explained later in this chapter under *“How Commands Are Interpreted.” For the
most part, the order of presentation in this chapter follows the order of
interpretation by the Shell. '

In order to begin using MPW, you shouid read the followmg of this chapter sections
is a nummum

* m the opening sections of the chapter which descnbe the basic form of all

commands: “*“Types of Commands,” *Entering and Executing Commands and
“Structure of a Command"* -

8 "Command Files* and 'Specml Command Files*
B “Variables”
& “‘Quoting Special Characters"

The operators and syntax of the command language are summarized in Appendix C.

Overview

47

Types of commands

In ali, four kinds of commands are provided: .
" Built-in commands, such as Files or Duplicate, are part of the MPW Shell.

m Tools, such as Link or Asm, are executable programs (that is, separate files on the
disk) that are fully integrated with the Shell environment.

= Command files, such as Startup, are text files that contain commands. You can
combine any series of MPW commands in a text file, and execute the file by -
entering its filename, just like any other command, You can also pass parameters
to a command file and use them in commands within the file.

m Applications, such as ResEdit or MacPaint™, are stand-alone programs that can
be launched from the Shell, but run outside the Shell environment '

To execute a tool, application, or command file, the proper program file needs to
be on your disk.

<+ Note: A built-in command overrides a command file or executzble program
with the same name. You should therefore use either full pathnames or quotes to
specify 2 command file or program with the same name as 2 built-in command.
{Quotes work for this purpose because the names of built-in commands must
appear unquoted—see “Guoting Special Characters” later in this chapter.)

Entering and executing commands

Pressing the Enter key executes command text. You can select command text on the
screen and press the Enter key to execute the selected text If no text is selected,
pressing Enter executes the entire line that contains the insertion point.

Important

If no text is selected. pressing Enter atways passas the entire fine to the Shell (or
to whatever other program happens to be reading from the consocie-—this rule
also applles to your own integrated programs that run within the Sheib.

Caution

if you enter ¢ line that ends with the Shell escape character, . the command
interpreter will pause, watting for the rest of the line.

The Enter menu item and the key combination Command-Retun both have the
same effect as the Enter key.

48 Chapter 3 : Using the Command Language

All commands return a status value: 0 indicates successful completion; nonzero
values usually indicate an error. This value is returned in the {Status} variable,
described Jater in this chapter. :

Structure of a command

A command is written as a list of words separated by blanks. (Blanks may be either
space or tab characters.) The first word is the name of the command, and each word
that follows is passed as a parameter to the command. The general form of a simple
command is

commandName | parameters... | cOmmaﬂdTermfﬂatof
Each of these elements is described below.

Command name

The command name is either the name of 2 built-in command or the filename of
the program or command file to execute. The command name is passed as
parameter 0, and can be referenced by command files in the variable {0t
-explained below under “Variables.” Command names are not case sensitive,
Alternate names can be defined for 2 command—see “Command Aliases” in this
chapter for information,

Parameters

Each of the subsequent words in 2 command is 2 parameter 1o the command or to
the Shell: You can reference parameters within command files by using the variables
i1}, {2},... {n}. (See Table 3-4.) Note that certzin parameters, such as /O
redirection, are interpreted by the Shell, and never seen by the program. Vanables
are also interpreted before being passed to the program.

By convention, there are two distinct types of parameters to commands: options
and files. See the “Command Prototype” section at the beginning of Chapter 9 for
more details on these conventions.

Sfructure of @ command

49

Command terminators

tach command is normally terminated by a return character. Commands can also
be terminated by the pipe symbol (|), the conditional execution operators (&&
and | 1), or the simple command terminator (;). Each of these symbols may be
followed by a return. Table 3-1 describes the command terminators in order of

~ precedence. '

Table 3-1
Commanrd Tenmninators

cma’J. b ocmd2 Saves the standard output of ¢m.’1 \n a temporary file and uses it as the
standard input of ¢cmd2, (Standard 1/O is explained later in this chapter.)

. Note: In MPW, unlike UNIX systems, the' commands execuie sequentially.
cmdl && cmd2 Executes cmd?2 only if cmdl succeeds (that is, returns a status value of 0).

cmdl V| emd2 Executes cmd2 only if ¢cmd]! fails (teturns a nonzero status vaiue),
cmdl 3 cmd2 Executes cmd1 followed by cmd2: this terminator allows more than one.

command to appear on a single line.

These command terminators may be applied to both simple and structured
commands. They all group from left to right. Parentheses can be used to group
commands for conditional execution and pipe specifications. Some examples
follow. . :

Files | Count -1

This command pipes the output of the Files command (a list of files and directories)
to the Count command, which counts the lines in the list.

{(Asm Sample.a && Link Sample.a.o ~o Sample.code). 1! .9
(Echo Failed; Beep) '

This example begins by assembling Sample.a. If that operation succeeds, it links the
obiect file; but if the assemble-and-link operation fails, it echoes the message
“Failed”, and beeps. :

.

4 Note: You can continue a command onto the next line by typing ¢ (Option-D)
followed by a return. Both characters are discarded when the line is interpreted.
(For more information about the 9 escape character see “Quoting Special
Characters” in this chapter.)

Except as modified by structured commands, commands are read sequentially and
execuled as they are read.

50 Chapter 3 1 Using the Command Languoge

-

Comments

The number sign (¥) indicates a comment. Everything from the ¥ to the end of the
line is ignored. (Comments always end at the next return, even if the return is

preceded by a 4.)

Simple versus structured commands . _
All of the commands introduced so far have been simple commands; Simple

~ commands consist of a single keyword, followed by zero or more parameters. Sin’fplé

commands are distinguished from structured commands—commands such as
For and If, which let you control the order in which other commands are executed.
All of the structured commands are built-in, and usually have more than one
keyword. The entire structured. command is read before its execution begins. For
example, '

For file In =~.¢; Count {file}; Znd
For information, see *Structured Commands” in this chapter.

Running an application outside the Shell environment

You can run an application outside the MPW Shell environment by executing the
program name just like any other command. For example, - .

ResEdit

The application is loaded and launched as if it had been started from the Finder. Any
files specified as parameters are passed to the program via the application parameter

handle, in Finder fashion. (See “Finder Information™ in the Segment Loader chapter

of Inside Macintosh) The following option is available on the command line: --

-p file... Tell the program to print the specified files.
For exampile, '
MacPaint -p "HD:Screen 1" "HD:Screen 2" -

This command tells the Shell to run MacPaint (assuming MacPaint is in the direc_tdry'
MPW:Applications:), and to print the files Screen 1 and Screen 2, :

The Shell environment is saved when the application is launched and restored when
the application terminates. (These actions are performed by the Suspend and
Resume command files, described below.)

Running an application outside the Shell environment 5

Caution
Running an application from a commend flle terminates the command flle.

Command files

You can create your own commands by writing text files of previously defined
commands. You can execute such 2 file just like any other command within the Shell
environment—the name of the file you created is the name of the new command.

For example,

Date _

Echo VOLUMES. . \v0eivaernnnenrsonas [P e eaasnaanaa,
Volumes _ o '

Fcho CUrrent DiTZ@CEOLY. . v v v crancsrransrannsnnnensnans
Directory _

Echo Files........ciiiiieennniness et
Files '

If this text is on the screen, you can execute it by selecting it and pressing the Enter
key. You could also save this text a5 a command file so that it's always available, To.
save it under the name “Info”, for example, you could first select the command text,
and type the following command in another window:

Duplicate § Info
You can now execute this series of commands by entering the command name Info

You can pass pammeters to 2 command file just as you would to.a predefined
command, using the normal Shell syntax:

filename [parameters...]

Paramelters can be referred to within the command file by using the built-in variables .
{1}, {2},...1n}, explained below under “Parameters to Command Files.”

52 Chapter 3 : Using the Command Language

/’—\\

~

& Note: As a matter of convenience, command files (as well as applications and
tools) are usuaily kept in directories that the Shell automatically searches when a
partial pathname is given for a command name. This convention allows you 10
invoke the command by using its simple name instead of its full pathname. The
Shell variable {Commands} contains a comma-separated list of directories to be
searched; you can easily modify. it to include additional directories.

MM_“W_——

Special 'commqnd files _

The files described in this section are provided with MPW. You can modify
commands in each of these files to suit your needs, :

Important

Each of these files must be In the same directory as the MPW Shell, or in the
System Folder. - : : S

The Startup and UserStartup files

When you start up the Shell, commands are initially read from a file named Startup.
The Shell executes the commands in Startup as if you had entered them interactively.
The Startup file provided with MPW contains several default variable and alias
definitions, You can modify the commands in Startup to suit your own needs; for
instance, you can change the default pathnames to suita special directory
configuration. :

Startup executes another command file called UserStartup. It's recommended that
vou use this flle for your own changes and additions 10 the startup sequence. You can
redefine the variables defined in Startup, set and export any number of additional
command-language variables, and define aliases and add-on menus. Alizses and
variables are fully described in the following sections.

Suspend, Resume, and Quit

When you run an application from the Shell, commands are read from the file
Suspend. When you quit the application and return to the Shell, commands are read
from the file Resume. The Suspend and Resume files save state information about
variable definitions, exports, aliases, and windows before running an application,
and restore the state after returning to the Shell.

When you quit from the Shell, commands are read from the file Quit. The Shell
execules these commands before closing any windows. .

special command files

53

+ Note: If you cancel from the Quit command, the Quit file will already have been
executed.

Like Startup and UserStartup, these command files run as if you had entered Lhe'
commands interactively. You can modify them to suit any special requirements you
might have.

Command aliases

An alias is an aiternate name for 2 command (and possibly some parameters). The
Alias command is used to define aliases, and to display the list of aliases. If an alias
has been defined, it will be recognized by the cornmand mterpreter and the
corresponding deﬁmuon will be substituted. -

* Nopte: Variable substitution and alias subsr.itur.ion 6ccur on the alias definition
itself, after it has been substituted

The following commands are used to define and undefine aliases:

Alias name word... Name becomes an alias for the list of words (a command
may consist of more than one word).

Alias name Displays any alias definition associated with name.

Alias o Displays all alias definitions.

Unalias name - Removes.'any alias definition associated with name.

Unalias Removes all alias definitions.

Aliases are local to the command file in which they ‘are defined (and are giobally
available if they are defined in the Startup file). Aliases are automatically inherited
from enclosing command files, and may be redefined locally. However, aliases
redefined locally will revert to their previous value when the command file
terminates.

See the Alias and Unalias commands in Chapter 9 for-a complete specification of
aliases and additional examples.

Executable error messages
The following alias is defined in the Startup file:
Alias File Target

That is, the word “File” is defined as an alias for the Target command, which opens a
file as the target window. (See “Editing With the Command Language” in Chapter 2.)
This alias is useful when a compiler returns an error message such as

54 ' Chcp'rer 3 Using the Command Language

™,

File “Count.c" 7 Line 73 # Not a parameter name: counts

By selecting the entire line and hitting the Enter key, you'll autom.nucnlly open the
specified file as the target window, find and select the offending line, and bring the
window to the top. The comma.nd that the Sheil actually executes is

Target "Count.c" ; Line 353

(“Line” is a command file, which automatically finds and selects'a line by number .
and then brings the target window to the top.)

—_— e
Variables |

The Shell provides several predefined variables and allows you to declare any
nurmnber of additional variables. Variables are used for

® shorthand notation

m providing status information

® local variabies in command files

® parameters to command files and tools

m setting certain defaults for the MPW Shell

You can define or redefine variables with the Set command, and remove vanable
definitions with the Unset command. For example,

Set PFiles HD: MPW PFiles:
This command deﬁnes a variable {PFiles} wnt.h the value *HD:MPW:PFiles:”.

Variables have strings as their values. You can reference them by using the notation
{namel, where name is the name of the variable. When a command containing 2
variable {namd is executed, (name is replaced with the current value of the
variable. For example,

Files {PFilesl}Src.p

In this example, {PFiles} is replaced with its defimuon before the command is
executed.

A variable may form one or more words, or part of a_word. If a variable is undefined,
[nam_ei is removed (that is, replaced with the null string).

Variable names are case insensitive, and can't include the right brace character (}),
for obvious reasons. It's wise to avoid using any special characters in variable
names—f{uture extensions to the command language may assign specxal meanings (o
some of these characiers.

Variables

55

Predefined variables

Table 3-2 lists the variables defined by the MPW Shell. These variables provide the
status value returned by the last command, and the pathnames of several files and
directories.

Table 3-2
Variables defined by the Shell

{Status} _ Result of the last command executed. (A value of 0 means successful

completion. Any other value is an error code: Typically, 1 means an error in

parameters, and 2 means that the command failed)

{Boot} " Volume name of the boot disk.
{Active} Fuil pathname of the current active window, : :
{Target} Full pathname of the target window (that is, the second window from the
' top—by default, this is the window where editing commands take effect).
{Worksheet} Full pathname of the Worksheet window.
{SystemFolder} Full pathname: of the directory that contzins the System and Finder files.
{ShellDirectory} Full pathname of the directory that contains the MPW Shell.
{Command} Full pathname of the last command executed. (For built-in commands, this is
the name of the command.) - :
Variables defined in the Startup file
Table 3-3 lists the variables that are defined in the Startup file (described in the
“Special Command Files” section in this chapter). These variables define pathnames
and defauit seqings to the Shell, and are referenced by the Sheli and by some of the
Workshop tools. You can change any of these definitions to suit your own needs.
"¢ Note: Hierarchical file system (HFS) pathname conventions are described in
Chapter 1.
Table 3-3 '
Variaobles defined In the Startup file
Variables referenced by the command interpreter:
{MPW} The volume or folder containing the Macintosh Programmer's Workshop.

Initially set to' " {Boot }MPW: ",

56 Chapter 3 : Using the Command Language

.-/-(T

{Commands}

{Exit}

- {Echo}

. {Test}

Variables referenced by the editor: 7.

' {CaseSensitive}

[Tab}
(WordSet}

;/ﬂ\"'.

{PrintOptions}

A list of the directories that the Shell searches when looking for a command 10
execute. Directories in the list are separated by commas. A single colon
indicates the default directory. {Commands} is initially set to

:, (MPW}Tools:, [MPW}Applications:

—that is, the current directory, then HD:MPW:Tools, and then
HD:MPW:Applications. '

When anfl:i is set to a nonzero value, command files terminate whenever a
command returns 2 nonzero status. This nonzero status is returned as the stanes

. value of the command file. (See the {Status} variable in Table 3-2.) (Exit} is

initially setto 1.

* When {Echo} is set to 2 nonzero value, commands are written to diagnostic -

output after variable substitution, command substitution, and filename
generation, and just prior to execution. This capability is useful for watching
the progress of 2 command file and for debugging command files-—as the first
line of your file, you would include the line

Set Eche 1 _

{Echo} is initially set to 0.

When {Test} is set 10 2 nonzero vaiue, the command interpreter executes built-
in commands and command files, but not tools or applications. {Test} is

useful for checking the control flow in command files. (If's most useful if
{Echo} is also nonzero.) {Test} is initially set to 0. :

Any nonzero value specifies case-sensitive pantern matching. {CaseSensitive)
is initially set to 0 (that is, false). You can also set {CaseSensitive} by selecting
the “Case Sensitive” item from the Find menu. (See Chapter 2.) :

Default b setting for new windows (initially 4).

The set of characters that constitute 2 word 1o the editor (for Find and Replace
menu commands, and for word selection by double-clicking). By default,
{WordSet} is set to the characters a-z, A-Z, 0-9, and _ {underscore). If a
character is not in the list, the editing commands regard it, like a blank, as 2
break between words.

Options used by the Print Window and Print Selection menu commands.

Initially set to *~h'. (The -h option prints pages with headers. For more
information on possible print options, see the Print command in Chapter 9.)

Pathnames for lbraries and include Jiles:

{RIncludes)

.'/- '

The directory that contains Resource Compiler (Rez) include files. Initally set

to " [MPW}RInclu_des LN

Variables 57

{Alncludes} The directories 1o search for assembly-language include files, referenced by
the Assembler. Initially set to " {MPW}AIncludes:™.

{Libraries} The directory that contains shared library files. Initially set to
"{MPW)Libraries:".

{CIncludes} The directories to search for C include files, referenced bV the C Compzler
_ Initially set to " (MPW)CIncludes:™.
{Clibraries} The directory that contains C hbrzry files. Initially set to

"{MPW}CLibraries:".

{Pinterfaces} The directories to search for Pascal interface files, referenced by the Pascal
Compiler. Tnitiaily set to " {(MPW}PInterfaces:"

{PLibraries} - ‘The directory that contains Pascal library files. Initially set to
* (MPW)}PLibraries:"

% Note: For variables such as {Exit} and {CaseSensitive} that can be either *“true*
or “false,” the variable is considered *true” if it is set to anything other than zero
-or the nuil string (a string of length zero). The variable is considered “false™ if it
is set to zero, null or undeﬁnecL The best way to set one of these variables is as
follows:

Set Exit 1 # turn (exit) on
Set Exit 0 # turn {exit]} off

(These values also apply to expressions that return 2 boolean value, defined later
in this chapter under "Structured Commands.”)

Parameters to command files

When a command file is executed, its parameters automatically sét the value of
ceriain Shell variables. These variables are explained in Table 3-4.

Table 3-4

Parameters to command flles

{0} Name of the currently executing command file.

{1}, {2},...(n} First, second, (or mzth) parameter passed to the current command file. (These
values are null for commands entered interactively.)

{#} ' Number of parameters (excluding the command name).

{Parameters} Equivalentto [1} {2} ...(n}.

["Parameters”} Equivalentto "{1}" "{2}" ..."{n}*". This form shouid be used if the

parameters could contain blanks or other special characters.

58 Chapter 3 : Using the Command Language

TN

N

The {Parameters} variable is especially useful when the number of parameters is
unknown. The quoted forms, such as "{1}* or {"Parameters”, are usually preferable
lo the unquoted forms beciuse, afier variable substitution, {1}, {2}, and so on could
contain blanks or other special characters. For exampie, consider the Line
command file (which is useful with error messages as explained above under
“Executable Error Messages”) .

Find "({1}" “{Target}" $ F:Lnd line n in the target window.

Cpen "{Target}" # Make the target window the active 0
(top) window, -

This command file takes one parameter, a line number.Paramer.er {1} is quoted to
handle the case where Line is called without any parameters. In this case the value of
{1} is the null string, and without the quotes the {1} would completely disappear,
leaving the name of the target window as the only parameter to Find. The quotes
ensure that at least a null string is sent to Find as.its first parameter—this is essential,
becatmerhewmdownamemustbetkwsecondpmmter Also notice that the
(Targed variable is quoted, because it’s a filename that might contains blanks or
other special characters. (For more information on quoting rules. see *Quoting
Specdial Characters later in this chapter.)

Defining and redefining variables

The following commands are used to define and modify variables:

. Set name value ~ Assigns the string value to variable name.

Set name Writes the value of variable name 1o standard output.

Set Writes a list of all variables and their values 1o standard
ouiput.

Unset name Removes the definition of variable name.

Unset Removes the definition of all variables in the current scope.
(For an explanation of the scope of a variable, see the next
section.)

Caution

Removing dali variables in the cutermost scope can have serious consequences.
For example, the Shell uses the variable {Commands) to locate MPW tools, and
the Assemnbler and Compilers use other variables to help locate Inciude flles.

Some voricbles such as {Boot}, cannot be reinitiallzed without restaring MPW.

Defining a variable and makmg it available for use by command files and programs
involves two separate steps:

Variables

5e

1. You can define a varable with the Set command, Note that variables are local to
the command file in which they are defined-—a variable definition ceases 1o exist
when its command file terminates.

2. You can pass a variable to command files and tools with the Export command,
After you export a variable, nested command files can reference that variable,
-and may override its value locatly—but any redefinition is strictly local, and
terminates when the command file terminates. It's impossible to affect the value of
a variable in an enclosing command file. (See Figure 3-1.)

Exporting variables _ , _
The Export command makes variables available to command files and tools:

Export namae... Exports the named variables. ' '
Export | .~ Writes the list of exported variables to standard output.

You can define 2 variable globally by setting its value in the Startup file and exporting
it. Fignire 3-1 illustrates how Export works.

40 Chapter 3 : Using the Command Language

#—-Userstartup Fila—-

Set wvar X
‘Export var

{(var} = "y-
ACommandFile

ACommandFile

Set var Y
Export var
ANcotherCommandFile

.# ANotherCommandrile

- # (var} = wyw
Set var 2z
Export wvar
4 {(var} = ngn

S

{var} = "yn

[Va:} = nxn

L

Figure 3-1 .
frafficking In varables

Stamip can be thought of as the command file enclosing all other commands
(including interactive commands).

Command substitution &1

< Note: You can use the Execute command to execute 3 command file without
creating a new scope for variables, exports, and aliases. The Shell “executes” the
Startup, Suspend, Resume, and Quit command files, and Startup uses Execute to
run the UserStartup script. For more detzils about Execute, see Chapter 9.

Command substitution

Command substitution causes a command to be replaced by its output. You can
specify command substitution by enclosing one or more commands in back

quotes, "...” (/-).. When the command is executed, the standard output of the
enclosed commands replaces the °...". Command substitution can form part of a
word, 2 complete word, or several words. Command substitution is not done within
“hard” quotes (that is, the standard single quotes ... ').

% Note: If the standard output of the enclosed commands contains return
characters, the returns are replaced by blanks. If the output ends with 2 retum,
this return is discarded.

For example, the command

Echo The date is “Date’
. echoes the parameters, replacing the Date command with its output, as follows:

The date is Wednesday, October 22, 1986 10:40:00 PM

The following example duplicates the files whose names are cutput by the Files
command:

Duplicate "Files -t MPST MyDisk:" "{MPW}Tools"

"Files -t MPST MyDisk:" is replaced with a string of filenames of type MPST
(that is, MPW tools) before the Duplicate command is executed; these files are then
copied to the folder (MPWTools. This command is useful because the Files
command allows you to specify files with a certain type or creator, which you can't do
with wildcard operators. . '

Quoting special characters

There are numerous characters that have special meanings to the MPW Shell.
Normally, the Shell performs the action indicated by the special character—but you
can disable a character’s special meaning (that is, include it as a literal character) by
quoting it. You commonly need quotes when specifying filenames that contain
blanks or other special characters, or when searching for the literal occurrence of a
special character.

462 Chapter 3 : Using the Command Language

l ST

~

- Table 3-5 lists all of the special symbols recognized by the Shell.

Table 3-5
Special characters and words
Character Mecning : Where described
Space Separates wdrds' _ “Structure of a Command”
Tab . Separates words “
Return Separates commands “Structure of a Command”
; Separates commands ' (Table 3-1)
! - Separates commands, piping output to input
&& Separates commands, execuung the second if the
_ first succeeds .
!I Separates commands, executing the second if the
first fails _
()] - Comimand grouping; grouping in filename
generation
Comments *Structure of a Command”
] Escape character: quotes the following- character this section
AN Quotes all other special characters (Table 3-6)

L Quotes other special characters, except 9, {, and °
Fows Quotes other special characters, except 4, {, and °
Quotes other special characters, except 3,1 and h

—_—
-

{...) Variable substitution o - *Variables”
. Command substitution ' S “Command Substitution”
? Matches any character in filename generation “Filename Generation”

Matches any string in filename genération
Character list in filenamie generation
Zero or more repetitions in filename generation

" [
—

+ One or more repetitions in filename generation
« » . . Specified number of repetitions in filename
generation
< Input file specification ' “Redirecting Input and Quiput”
> Output file specification _ (Table 3-10)
>> Qutput file specification (append) - '

Diagnostic file specification
Diagnostic file specification (append)

v
[\

Reserv_ed for future use

Note: Within regular expressions (/.../ or \...\), a number of characters not listed here are also
considered special. See “Pattern Matching” in Chapter 4 for details.

Quoting speclal characters 63

You can literalize a character by preceding it with the Shell escape character, d
(Option-D), or by including it within the quote symbols *...", "...", /.../, or \...\. The
escape character, 3, quotes a single character only; the other quote symbols may be
-used-to quote-part or all of a word: These symbols are described in Table-3-6.

Table 3-6
Quotes

g ~ Escape character: Take the single character ¢ literally. dReturn is discarded, allowing
you [0 continue 2 command onto the next line.

Note The combinations dn, dt, and of are exceptions 1o this pattern: they are used
for inserting return, tzb, and form feed characters, respectively.

L “Hard quotes™: Take the enclosed string literally—no substituticns occur. The quotes
are removed before execution.

" © "Soft quotes™ Take the enclosed string literally. dc, variable substitutions, and
command substitutions occur. The quotes are removed before execution.

/oo Sor NN Regular expression quotes: Normally used to enclose regular expressions. Take the
entire string literaily, including the quote characters—~the / or \ characters are not
removed, Variable substitutions and command substitutions occur. '...", "...", and d
have their usual meanings—however, théy are not removed.

Single quotes, double quotes, and d are removed before parameters are passed to
programs {unless they are themselves enclosed in quotes). For example, here is how
you could define an AddMenu that compiles a C program in the active window:

Wromg: :
AddMenu Extras "C Compile™ C "{Activel}l"™
Right: _ .
_ AddMenu Extras "C Compile™ 'C "{Activel™"

The first example won't work because the {Active} variable will be expanded when the
menu is added (it should be expanded when the menu item is execited). The second
exampie is correct—when the AddMenu command is executed, the single quotes
defeat variable expansion; they are then suipped off before the item is actually
added. The doubile quotes remain, in case the pathname of the active window
happens to contzain any special characters.

Note: When quoting spaces (as in filenames), you'll usually use the *..." form of
the quotes, 10 permit variable and command substitution.

Slashes (or backslashes) are used to pass regular expressions as parameters to
commands, without filename expansion occurring. For example,

Search /proc=/ Sample.p

64 Chepter 3 - Usihg the Command Language

SN

PN
/ “

P

This command searches the file Sample.p for any string beginning with the

characters “proc”. (See “Patiern Maiching” in Chapter 4 and the description of the

Search command in Chapter 9.)

How commands are interpreted

When you send text to the command interpreter (by pressing the Enter key or the
equivalent, the following sequence of steps is performed:

1. Alias substitution.

2. Evaluation of control constructs. (This means that control constructs can't be
produced by command substitution, for instance.).

3. Variable substitution, command substitution. All variables (unquoted .or
quoted with *...", /.../, or \...\) are replaced with their value. All commands
enclosed in ~...” (unquoted or quoted with "...", /.../, or \...\) are replaced with
their output. : '

4. Blank interpretation. Aftet variables and commands have been substituted, the
.. command text is divided into individual words separated by blanks. A blank is an
unquoted space or tab. :

Note: The following symbols are normally considered separate words, whether
. or not they are set off by blanks:
: i I && () < > >> > o
Within expressions (used with If and Evaluate), all operators are considered
separate words, unless they are quoted—see “Structured Commands” in this
chapter. -

5. Filename generation. A word that contains any of the unquoted characters ?, =, -
L *, +, or « after variable substitution is considered a filename pattern. The word
is replaced with an alphabetically sorted list of the filenames that match the
pattern. (If no filename is found that matches the panem, an error results.)

6. Input/output redirection. Because this step is performed last, variable
substitution, command substitution, and filename generation can all be used o
form the filenames used in 1/0 redirection.

7. Execution. -

Anv part of this process can be suppressed by using quotes as described in the
previous section. Single and double quotes are remaved prior to. execution.

Structured commands

Structured commands

Structured commands (isted in Table 3-7) override the normal sequential execution
of commands. They can be used interactively and within command files. They may
be nested arbitrarily deeply (subject to 2 limitation on stack space). The entire
structured command is read before execution begins.

Caution:

After the Shell "executes” an opening parenthesis or the opening word of g
Begin, If. For, or Loop command, it will not execute any subsequent commands
untl a matching closing paranthesis or End word Is encountered. While it is
waiting for the end of the command. the status panel of the Worksheet window
will contain the left parenthesls character, (. or the commuand name. You can
abort the entire structured command by typing Command-period.

The status value for a structured command is the status of the last command executed
within the structured command (except for the Exit command, which lets you set
your own status vaiue), :

% Note: Expressions (used in If, Break, Continue, and Exit) are defined in the
section following the wable,

Table 3-7 -
Structured commands
(command...) Parentheses are used 1o group commands for conditional execution, pipe
_ specifications, and input/output specifications.
Begin...End Begin
End

Like parentheseé, Begin and End group commands for conditional
execution, pipe specifications, and input/output specifications.

If... If expression

[Else If expression

command...] ...
[Else

command, .. |
End -
Executes the commands following the first expressfon whose value is true
(that is, nonzero and non-null). At most one of the lists of commands is
executed. If none of the commands is execuied, If returns a status value of 0.

&6 Chapter 3 : Using the Command Language

For name In word...
command. ..
End

Executes the e_ncloséd commands once for each word from the “In word .
list.-For each iteration, a variable of the form {mame} represents the
current value from the word... list. (See the examples below.)

Loop...End Loop.

command. ..
End

Repeatedly executes the enclosed commands, The Break éommand is used
o terminate the loop.)

Break [If expression]

Terminates execution of the _Emzhediately enclosing For or Loop. If the
expression is present, the loop is terminated only if the expression
evaluates to true (nonzero and non-null). .

Continue [If expression]

Terminates this iteration of the immediately enclosing For or Loop and
continues with the next iteration, If the expression is present, the Continue
is executed only if the expression evaluates to true (nonzero and non-null),

- Exit [number) | 1f expression |

Exit terminates execution of the command file in which it appears. If
number is present, it is returned as the status value of the command file;
otherwise, the status of the last command executed is returned. If the
expression is present, the command file is terminated only if the expression
evaluates to true (nonzero and noa-null). (You can also use Exit
interactively, 1o terminate execution of ail previously entered commands.)

The return characters in the command definitions above zre significant—a return
must appear at the end of each line as shown above, or be replaced by a semicolon
G

The following keywords are recognized when they appear unquoted as the first word
of 2 command: :

Begin For If - Else Loop End Break Continue Exit

The keyword “In” is recognized when it appears unquoted following For; the keyword
“If” is recognized when unquoted following Else, Break, Continue, and Exit. These
keywords are not considered special in other contexts and need not be quoted.

Structured commands

&7

% Note: These keywords can't be produced as a result of variable substitution or
command substitution.

You can apply conditional execution (&& and | |), pipe specifications i), and
input/output specifications (<, >, >>, 2, and 22) to entire structured commands
(that is; to, Begin...End, If.. Else .End, For...End, and Loop:..End, 2nd to
commands within parentheses). The operator should appear following the End word
* or closing parenthesis. For example, you can collect the output of a series of
commands and redirect it as follows: '

Begin
Eche Good day
Echo Sunshine
End > CQutputFile

Input/cutput specifications are discussed later in this chapter. Each of the stractured
comurmands is described in detail in Chapter 9.

“Control loops
The For and Loop commands are used for looping.

"The For...End command executes the enclosed commands once for each word in the
“In word..." list. The current word is assigned 1o variable name, so you can
reference the current word by using the Shell variable notation, {name. For -
example,

For File In =.c
C "{File}" : Echo "{File}" compiled.
End '

The Loop command provides unconditional looping—you'll need to use the Break

command to terminate the loop. You can break from a loop and continue with the

" next iteration with the Continue command. For example, the command file below
runs 2 command several times, once for each parameter.

&8 Chapter 3 : Using the Command Language

P

#4# Repeat - Repeat a command for several parameters ###

§ .
Repeat command parameter..
" -
Execute command once for each parameter in the parameter
list. Options can be specified by including them in- '
quotes with the command name.
#
Set cmd "{1}"
Loop -
Shift
Break If "{1}" == nn
{emd} "{1}"
End -

parameters have been used. Using command file Repeat, you could compile several
C programs, with progress information, using the command

Repeat 'C -p! Sample .C Count_. ¢ Memory.c
Repeat might also be used to set the font and fontsize for all the open windows:

Repeat 'Font Courier 10' “Windows"

Processing command parameters

In addition to the commands introduced in Table 3-7, there are several other
commands that are highly usefu! in command files. The following commands are

. used to display or modify parameters:

Echo [parameters...] Wri_tés its parameters, separated by blanks and
: terminated by a return, 10 standard output.

Parameters Iparameters...] Writes its parameters, including its name, to standard
output. One parameter is written per line, preceded by
the parameter number in braces and a space. A return
is written following the last parameter.

Shift {numeber] Renames the parameters by subtracting mumber from
the parameter number; that is, parameters number+1, .
number+2, and so on are renamed 1, 2, etc. If
number is not specified, the defauit value is 1. Shift
does not affect parameter {0} (the command name),

Structured commands

&9

Echo and Parameters are useful for checking how your parameters will behave before
actually passing them to a command (for instance, to check how your quotes are
working out). For example

Parameters "=

For an example of how the varicus structured commands can work together see
“Sample Command Files” at the end of this chapter.

Expressions

Expressions are used in the If command and in If statements in the Break, Continue,
and Exit commands. They're also used in the Evaluate command, which returns the
result of an expression.

Table 3-8 lists the expression operators in order of decreasing precedence (some
operators have several alternate symbols). Groupings indicate operators of the same
precedence.

Table 3-8

Expression operators
Operator i Operaiion
I Cexpr) ' Expression grouping
2. - ' Unary negation
- Bitwise negation
o NOT - Logical NOT
3. * _ Multiplication
+ DIV Division
% MOD Mcdulus division
4, + ' Addition
- Subtraction
5. << Shift left
>> Shift right
6. < Less than
<= £ Less than or equal
> Greater than
>= 2 Greater than or equa.l
7. == Equal
= <> # Not equal
=~ Equal pattern {regular expression)
e Not equal pattern (regular expression)

70 Chapter 3 : Using the Command Language

8. & Bitwise AND

9. - Bitwise XOR
10. ; Bitwise OR
11, && AND Logical AND
12, gy OR Logical OR

All operators group from left to right. Parentheses can be used to override the

operator precedence. Null or missing operands are interpreted as zero, The result of -
an expression is always 2 string representing a decimal number. Relational operators
return the value 1 when the relation is true and the value 0 when the relation is false,

Logical operators. The logical operators !, NOT, —, &&, AND, | |, and OR _
interpret operands of value ¢ or null as false and nonzero, non-null operands as true.

Numbers. Numbers may be either decimal or hexadecimal integers representable
by a 32-bit signed value: Hexadecimal numbers begin with either § or 0x. Every
expression is computed as a 32-bit signed value. 'Overﬂows are ignored.

string operators. The operators ==, fa, == and 1~ compare their operands as
strings. All others operate on numbers. For example

If {Status} != 0; Beep -3a,25,200; End

Comparing text pattemns. The =~ (equal pattern) and !~ (not equal pattern)

... Operators are like == and != (which compare two strings), except that =~ and !~ are
- used for comparing a string with a text pattern, The right-hand side is a regular

" expression against which the lefi-hand operand is matched. For example:

If "{1}" !~ /= lacpl/
Eche Filename must end with .4, .c, or .p
End

** Note: The regular expression must be énc_losed in the régaular expression quotes,
/.../. See Chapter 4, “Advanced Editing,” for more information about regular
expression syntax. - . : B

If the regular expression contains the tagging operator ®, then, as a side effect of
evaluating the expression, Shell variables of the form {®n} containing the matched
substrings are created for each tag operator in the expression. (For an example, see
the implementation of 2 wildcard rename command under the description of the
Rename command in Chapter 9.)

Use of special characters. Within expressions in the If, Break, Continue, Exit, and
Evaluate commands, the following Shell operations are disabled:

@ Filename generation
@ Conditional execution (| | and &&)

Structured commands

71

@ Pipe specifications (|)

® Input/output specifications { >, >>, 2, 22, and <)

This ailows the use of many expression operators that would otherwise have to be
quoted. For If commands, the conditional execution or /O specification shouid
come after the End word. For other commands that contains expressions, you can

specify conditional execution or 1/O redirection by enclosing the command in
parentheses. For example,

{(Evaluate {1} + {2}) 2 Errors

—_—
Filename generation
After variables have been substituted, 2 word that contains any of the characters

, y : R

is considered a filename patiem. The word is replaced with an alphabetically sorted
list of filenames that march the pattern. An error is returned if no filename is found
that matches the pattern.

You can specify a group of file (or window) names with r.he *wildcard” notation given
in Table 3-9.

Table 3-9

Filename generation operators

? Matches any single character (except return or colon).

= : Matches any string of zero or more characters (except return or colon).

[characterList] Matches any character in the list.

[= characterList] Maiches any character not in the list.
* 0 or more repetitions (" is the same as =)
- 1 or more repetitions

“«..» Numeric range

< Note: The pattern matching is case insensitive.

% Note also: The pathname separator (;) must appear explicitly in the
pattern——the : character will never be substituted for 2, =, or[...].

These special characters are the same regular expression operators used in
editing commands. For a complete discussion of regular expressions, see Chapter 4,
“Advanced Editing.”

72 Chapter 3 : Using the Command Language

. "“\.

e s,

Naturally, you need to be careful with these wildcard operators. The Parameters and
Echo commands are very useful for double-checking which filenames a command
will generate. For example, before giving the command . :

Delete =.c.o
you might want to run the command
Para_.meters -, .0

This command lists your *.c.o” files to standard output so that you can make sure you
really want to delete them all.

% Note: Wildcard characters only generate names that match existing filenames;
they do not create new files. For example, the following atempt to rename files
will not work:’ : : '

Rename =,0bj =.o

An example of how to perform a wildcard rename is contained under the
description of the Rename command in Chapter 9.

Redirecting input and output

All commands (built-in commands, command files, and tools) a.fc provided with
three open files: standard input, standard output, and diagnostic output -
(Figure 3-2). By default, standard input comes from the console; standard cutput

- and diagnostics go to the window where the command was executed, immediately

following the command.

| -

> 5> Standard
Standarg Command '
Input —_B
T~~~ Diagnostig
2,22 Cutput
Figure 3-2

Standard input and output

Redirecting Input and output

73

You can override these default assignments with the <, >, and 2 symbols described in
Table 3-10. Note that input and output specifications are interpreted by the Shell;
they are not passed (o programs as parameters. Parentheses can be used to group
commands for input/output specifications.

Table 3-10

IO redirection

< name ‘Standard input is taken from name. _

> name Standard output replaces the contents of name. File name is created if it doesn't
exist. _ :

>> name Standard output is appended to name. File name is created if it doesn’t exist.

2 name Diagnostic output replaces the contents of name. File name is created if it doesn't
exist. - :

2> name Diagnostic output is appended to name File name is created if it doesn’t exist.

Files and windows are treated identically—when given a name, the system looks first)
for an open window. Input and output can also be applied to selections:

n § indicates the current selection (in the target window).

m name.§ indicates the current selection in window name.

From the point of view of a tool running within the Shell environment, input always
comes from the standard input file and output goes to the standard output file. The

program doesn’t need to know whether standard input happens to be text from a file,
from a window, or typed in from the keyboard. For example, in the statement

Program > CutputFile °

the string “> OutputFile” is interpreted by the Shell and is not passed as a parameter
to the program-—this process is completely invisible to the program.

1/O specifications also apply to command files. The standard input, standard
output, and diagnostic output files provided to 2 command file become the defaults
for commands in the file.)

For more on input and output, see “Standard Input/Cutput Channels® in
Appendix F. :

74 Chapter 3 : Using the Command Language

PN
I

i

Standard input

By default, standard input comes from the console. Normally, you supply this input
by typing text and pressing Enter, or by selecting text that is already on the screen
and pressing Enter. You can redirect standard input with the < operator. Note,
however, that most commands that read standard input also accept a filename
parameter. For example, the following two commands have the same result:

Catenate < Sample.c
Catenate Sample.c

Therefore, the < operator is provided for completeness, and not because it provides
significant new functionality. Many commands, including the Assembler and
Compilers, optionally read standard input to allow input 10 be read from a pipe (1)
or entered interactively, as explained in the next section.

Terminating input with Command-Enter

. Many commands read from standard input if no filename is specified. For example,

if you execute the command

. Asm) . .
_the Assembler will begin reading from standard input—thar is, y;ou can enter text o

i, and it will process each line as you enter it.

" You can repeatedly enter text to a program that reads standard input, by typing or

selecting text and pressing Enter. End-of-file is indicated by holding down the:
Command key and pressing Enter. For example, after you execute the command -

Catenate >> {Workshéet}

the Catenate command will be running (its name will appear on the status panel at the
bottom of the window). You 'can now enter data from the keyboard or select and
enler text from various windows, and all of it will be concatenated to the Worksheet
window. Command-Enter indicates end-of-file and terminates the command.

Standard output

By default, standard output dppears in the active window immediately following the
command. When commands are executed from menus, standard output appears
following the selection in the active window. You can redirect standard output with
the > and >> operators. For example, '

Catenate Filel FileZ > CombinedFile

Redirecting Input and output 75

The Catenate command concatenates File2 to Filel—but instead of sending the
oulput to the active window, it is sent to the file named CombinedFile. If window
CombinedFile is open on the desktop, its contents are overwritten. Otherwise, file
CombinedFile is replaced (or created if it doesn't exist).

The >> operator appends standard output to the end of a window or file. If the named
file doesn't exist; a new file is created. For example,

Catenate § >> AFile

appends the contents of the current selection to AFile.” (If the command was entered
. in the activé window, the current selection is the selection in the rarget window.) You
can also specify a selection in a named window:

Catenate Sample.c.§ >> AFile

Diagnostic output

By default, a command’s diagnostic output also appears immediately after the
command, interleaved with standard output. The diagnostic output of commands
executed from menus appears following the selection in the active window. You can
redirect diagnostic output exactly as you redirect standard output, except that you use
the operators 2 and 22 in place.of > and >>. You may find it useful to have all error
reporting appear in a separate window set aside for that task. For example, in

Figure 3-3, the Assembier has been run, and error and progress information has
been appended to the Ers window.

" & File Edit Find Format Windows

HD:MPil:llorksheet HFFFtFFFct

MPW Shell

HD:MPLU:AEHamples:errs

..continuing with sample.a

...including HD:MPU:Ainciudes:QuickEqu.a
..continuing with sample.a
.including HD:MPY:Rincludes:SysEqu.a

.continuing with sample.a

QUICKDRHN

GLOBALDATA

SETUPHENUS

SHOHABOUTMED IALOG

ANCAMMANND

76 - Chapter 3 : Using the Command Language

-

I

Figure 3-3
Redirecfing dlagnostic output

Pseudo-filenames

Pseudo-filenames are 2 set of device names that you can use in place of filenames,
but that have no disk files associated with them. Any command can open a pseudo-
filename as a file. These device names are most commonly used for /O redirection.

Table 3-11 shows the avzilable pseudo-filenames,

The last three names, StdIn, $tdOut, and StdErr, are used to explicit.ly represent.
input and output. You can use these specifications, for example, to send a
command’s output and diagnostics to the same file: '

Search /NULL/ =.,¢ > Found 32 Dev:Stdout

Because the Shell opens. standard input, standard output, and diag;nosﬁc output in
the order they appear, file Found is open first, then diagnostic output is redirected to -
the same file. The following command has the same effect: : o '

 Search /NULL/ =.c 2 Found > Dev:StdErr

However, if the filename and pseudo-filename specifications are simply reversed,
the result is quite different; .

Search /NULL/ ~.¢&¢ 2 Dewv:Stdout > Found

This command redirects diagnostic output to the previous standard cutput (probably
the active window), then redirects output to file Found.

Redirecting input and output

Table 3-11
Pseudo-flenames
Dev:Console Always refers 10 the current console device. The console is the default source of
* input (that is, entered text) and the defaislt destination of output (that is, the active
window). ' 7
Dev:Null Null device. If you read from Dev:Null, it immediately returns end-of-file. If you
write to Dev:Null, output is thrown away. : : '
Dev:StdIn Default input stream. '
Dev:StdOut Default output stream:.
-Dev:StdErr . Default diagnostic output stream.

77

Pseudo-filenames are especially useful in a cor_nmand file when you want to do
something like sending standard ocutput to the diagnostic output. Here are some
examples:

Ech¢ "An error message." >> Dev:StdErr
Echo "HELP !"™ >> Dev:Console

Dev:Null is useful in command files when you want to throw away diagnostic output.
For example:
Eject 1 Zz Dev:Null

This command ejects the disk in drive 1; if no disk is in drive 1, the command file
continues to run silently. (Note that you would also need to set {Exit} to 0—see
“Variables” earlier in this chapter.)

Defining your own menu commands

The AddMenu and DeleteMenu commands are for adding 2nd deleting menu iterns.
" The' AddMénu command takes three parameters: the menu name, the jtemn name,
and the command text. For example, '

AddMenu Find 'Top of Window/U' 'Find + "{Active}"!'

This command adds a *Top of Window” item to the I-‘:.nd menu, with the keyboard
equivalent Command-U. When you select the menu item, the corresponding
commands are executed. (The Top of Wmdow item moves the insertion pon.nt to the
top of the acnve wmdow)

Invoking 2 user- -defined men item is the same as entering the command fext from 2
window--~variable substitution and command substitution are performed normally.
Note, however, that the text of the menu command is processed twice—once when
the AddMenu command itself is executed, and again whenever the menu item is
executed. This means that you have to be especially careful in your use of quotes. The
mysteries of quoting are explained earlier in this chapter in “Quoting Special
Characters,” together with further AddMenu examples. You should also pay
particuiar attention to the section “How Comemands Are Interpreted.” For further
informaticn, and more examples, see the AddMenu command in Chapter 9.

Sample command files

The following examples use most of the Shell's features to dlustrate how you can
extend the MPW Shell with your own commaznds.

78 Chapter 3 : Using the Command Language

f\

“AddMenuAsGroup”

The folldwing coﬁunand file adds an extra feature to the AddMenu comraand:

AddMenuAsGroup - AddMenu, grouping user defined meny items:
.

AddMenuAsGroup [menuName [itemName [command 111

: '

AddMenulAsGroup duplicates the functionality of the AddMeny
4 command, a2dding a disabled divider before the first user-
defined menu items in the File, Edit, and Find menus.

' .

Unalias

Set Exit 0

Set CaseSensitive 0 : i -

If ({#} == 3) AND ("{1}" =~ /File/ OR "{11" =~ /Edit/ d

CR "{1}" =~ /Find/) -

If "AddMenu "{1}"" ma wn # If this is the first addition
in {1} . '
AddMenu "{1}" " (-m nn 4 add the group divider

End i : :

End

AddMenu {"Parameters"}

When adding menu iteﬁls. to the predefined menus, it's nice to add a disabled dotted

line item to separate the new meny items from the original ones. The command file

.. above automatically adds the separator before the first new item in the File, Edit, and

Find menus, the only predefined menus that can be modified by using AddMenu. If
you put this script in a file named AddMenuAsGroup, the following alias will override
the built-in AddMenu command:

Alias AddMenu AddMenuAsGroup

IICCI!

The following command file extends the C command by making it possible to
compile 2 number of specified files:

CC - Compile a list of files with the C compiler
#

CC loptions..] [file.]

L

¥ Note that the options and the files may be intermixed, and that
all options apply to all the files. The individual C commands

are echoed to diagnostic ocutput as they are executed.

Sample command files

79

4

Unalias

Set Exit 0

Set CaseSensitive 0
Set opticns ""

Set files "™

Set ‘exitStatus 0

Loop _
Break If (#} == 0 _
I£ "{1}"® =~ /-[diosu}/ #options with a
parameter)
Set options "{options} '{1}'"
Set optiocns "{options} '{2}'"
Shift 2
Else If "{1}" =~ /==/ #other options
" Set options "{options} '{1l}'" :
Shift 1 :
" EBlse
Set files "[files} *'{1}'"
Shift 1
End
End
For i in {files} . :
C {options} "{i}" || Set exitStatus 1
End

Exit (ekitStatus]

80 Chapter 3 : Using the Command Language

Advanced Editing

"Editing commands xx
Selections xx

Current selection x
Seiection by line number x
Position x ' :
"Extending a selection x
Pattern x

Pattern maiching (Using reguiar expressions) xx
Character expressions. x

“Wildcard” operators x

Repeated Instances of regular expressions x

Tagging regular expressions with the ® operator x
Matching a pattern at the beginning or end of a line x
Inserting invisible characters x

Note on forward and backward searches x

Some useful examples xx

Transforming DumpObj output x
Finding a whole word x '

This chapter describes the editing operations available s built-in commands,
including the use of regular expressions. These commands emble powerful find-
and-replace functions, and make it possible to automate editing operations by using
command files. '

Menu commands are described in Chapter 2, *Basic Editing.” For a full description
of the use of the command language, see Chapter 3, “Using the Command
~ language.”

Editing Commands

~ The command language contains editing commands that duplicate the functions of

many of the menu commands and provide additional capabilities. The editing
commands are listed in Table 4-1. (They're explained in detail in Chapter 9,
*Command Reference.™)

N

Table 4-1
Editing commands
Adiust [countl |-l spaces] selection (windouj Adjust lines in a selection.
Align {-c coundl selection [windoul Align text with first line of selection.
Clear fc coundl selection lwindowd ' Delete selected text.
Copy §-c count] selection (windoul ' Copy selected text to the Clipboard.
Cut [-c counfl selection (windouwl o Copy selected text to the Clipboard and
: ' then delete the selection.
Find [-c counsl selection (windoud Find and select text
Font fontnamg' Sfontsize (windoud ' Change the font and/or size.
Paste i-c couni selection {window] | | Replace selection with the contents of the
Clipboard.
Replace |-c counti selection replacement (windoul Replace selection with replacement.
Tab number lwindoul ' _ ~ Seta window’s tab value to number spaces
Target name Make a window the target window.

If no window parameter is specified, editing commands act on the target window.
The target window is the second window from the top. Therefore, to edit the active

window, yowll need to switch to another window for entering your commands. (The
Target command makes a window the target window; the Shell variables {Active} and
(Target! always contain the full pathnames of the current active and target windows.)

82 Chapter 4: Advanced Editing

2T,

./_‘“-\

Most editing commands take the following parameters:

-C court You can specify a repeat count with the -¢ option—count is the
number of times the command should be executed. Count may
also be the infinity character, oo (Option-5), which specifies
that the operation should be repeated as many times as

- possible. o

selection Most editing commands act on a selection, either the current
selection in the target window or another selection that you
specify. An implicit Find is first done to select the specified
text, and then the text is modified. ‘The selection synax is
defined in the next section.

window The optional window parameter lets you specify the .na.me of
the window to be affected by a command, without changing the
posilion of the affected window.

A command modifies the selection only if there were no syntactic errors in the
selection, and all regular expressions were matched. Commands run silently unless
an error oceurs.

__%
Selections - - ,

Selection is a parameter to editing commands, and tells the command what text to
select. A selection may be any of the following;:

® aline in a file (selected by line number)

2 2 pesition in a file

W a specific character pattern

B 4 selection that begins and ends with any of the above

As an exampi.e of the selection syntax, consider the definition of the Find command:
Find [-¢ coimﬂ selection [windbw]

Find tzkes a selection as an argument and selects the ugiJ:ﬁent text (or sets the
inseruon point). An actual command might take the form '
Find /shazam/

This command finds and selects the first instance of the string “shazam® that appears
after the current selection. (The slashes are used 10 enclose a pattern, a special case
of a selection, s explained below.) No count is specified, so the command is
executed once. No wiridow name is specified, so the command operates on the target
WANJOwW,

Selections

33

Table 4-2 shows all of the selection operators. They're fully explained in the sections

following the table.

Tabie 4-2
Selection operators -

Current selection:

§

Line numbered. selections:

n
In
in

Position (insertion point):

Aselection
selectioni
selectionin
selectiomgn

Current selection in the target window (§ is Option-6 on the
keyboard

Line number n _

Line number # lines after the end of the current selection
Line number 7 lines before the start of the current selection
G is Option-1)

Position before the first character of the file (+ is Option-8)
Position after the last character fo the file (= is Option-5)
Position before the first character of selection (A is Option-]>
Position after the last character of selection

"Position 7 characters after the end of selection

Position 7 characters before the beginning of selection

Pattern (characters to be matched):

/pattern/

\pattern\
Extended selection:
selectionl: selection2

Groupring
(selection)

Pattern (regular expression)—search forward (see “Pattern
Matching,” below)
Pattern—search backward

Both selections and everyr.hihg in between

Controls order of evaluation

A formal definition of selections can be found in Appendix B.

All of the operators group from left to right, and evaluation proceeds from left to
right. The selection operators are listed below in order of precedence:

84 Chapter 4: Advanced Editing

P

|

/ and \ Everything within slashes is taken as a regular expression, and
evaluated as explained below under “Pattern Matching.”

) Controls order of evaluation.

A . Indicates position.

'and] _ Indicates position (! = after; | = before).
: : - Joins two selections.

Some examples will illustrate why it's .important to pay artention to the precedence of

these operators:
A/begln/!l' means Lo '(A/begin/) 11
- rather than : A(/begin/!1) -

That is, the insertion pomt is loca!ed after the *b” of *begin” rather than
after the “n”™.

/begin/: / end/!'1 means the selection / be'gin/ :{/end/!1)
rather than the position {/begin/:/end/) 1

 That is, the character afier "end" is included in the selection, a5 shown in Figure 41

€ File Edit Find Format Windows
=—=—= D:MPW:Worksheet %t

Sendil

fird ‘bayins

MPW Shell - ICI[|

VAR

outStr: Str235;

______ Feom

NumTeString (num outStr;
TextFace ([1);
DrawString (outStr);'

- TextFoce ([Boid]):

| END |

PROCEDURE GetUolStuff: { gets information on the defa

Figure 4-1 .
A salection specification

Selections

85

Current selection (§)

The current selection character, § (Option-6), always indicates the current selection
in 2 window. If no window is specified, § indicates the current selection in the target
window. For example, consider the windows shown in Figure 4-2.

MPY $Eﬂ1
anple.d.o

~ Asm Sample.a

lemory . 1 Hemory.a.o
Link Mamory.a.o —o Memory —ot DFiL -oc DHOU 2
: ~-da ~sn Hain=lemory -rt DRAVR=12
Memory.a. o f HMemory.a
Asm Memory.d

Figure 4-2

Selactions In two windows
The command

Replace § dn

would replace the current selection in the target window with a single return (newline)
characier. (“on” is 2 special code for inserting a return—see “Inserting Invisible
Characters™ later in this chapter.)

"Note that the current selection is 2 dynamic quantity—it's determined by the last
subexpression evaluated, and thus represents the current state of a selection as it's
being calculated. For example, consider the command

Find /if/:§'1:6!1

Al various points in the evaluation of the search string */if/:§!1:§!1", the current
selection (§) has the following different values:

84 Chapter 4; Advanced Edifing

-

S

before calculation the pre-existing selection in the target window
after “/1i£/" “if”
after */if/:§11" all characters from “if* to (and including) the first

_ character after the “if*
after “/i£/:§11:8'1" all characters from "if” to (and including) the first
two characters afier the “if?

Selection by line number

If you give an unquoted number 2s 2 selection, it's taken to be 2 line number, This
may be an absolute line number, or 2 number of lines relative to the current
selection. For example, to select line 3 of a file, you'd use the command

Find 3

The exclamation mark and inverted exclamation mark (! and) specify 2 number of
lines after or before the current selection. The command

Find 13

selects a line that is 3 lines beyond the current selection. Note that the !n1notation

specifies a line relative to the end of the current selection (that is, n lines past the line
contzining §4); n specifies 2 line relative o the szart of the current selection (n
lines before the line conaining A.

Position

A position is a special case of a selection. Position means the location of the
insertion point only. The A character (Option-J} is used to convey position relative
to a selection. For example, consider the commands

Find 3

Find A3

Find 3A

The first Find command selects the entire third line in the target file. The Find A3

and Find 3A commands Pplace the insertion potnt at the beginning and at the end
of the third line. '

You can also use the ! and | operators to specify 2 position that's a given number of
characters from a selection: selectionin specifies a position 1 characters after
selection, and selection;n specifies a position 7 characters before selection.

Notice that this leads to two different uses of the ! and j operators, as in the following
example: ' :

Find !'4!'4

Selections

a7

The first “'4” indicates a selection that's 4 Jines beyond the current selection; the
second “!4” indicates the position that's 4 characters beyond the end of that
selection. ')

You can specify other positions in a file with the following special notation:
« (Option-8) Position preceding the first character in file

s (Option-5) Position following last character in file

Extending a selection
A colon is used to join two selections. For example:
Find /begin/:/end/

This command selects “begin”, “end”, and everything in between. (See Figure 4-1
above.) Compare this command with ' '

Find / begin-end/ . _
which looks for 2 begin-end pair on a single line.

Pattern

A pattern may be either a literal text pattern or a regular expression (defined in the
next section). You specify a pattem between the /.../ and \...\ delimiters. Forward
slashes indicate a search forward, and back slashes indicate a search backward. A
forward search begins at the end of the current selection and continues to the end of
the file. A backward search begins at the start of the current selection and continues
10 the beginning of the file. For example, the command

Find /myString/

searches forward for the literal expression “mystring”. (Recall that to specify case-
sensilive pattern matching, you need to set the Shell variable {CaseSensitive}, or
select the “Case Sensilive” menu item.)

88 Chapter 4: Advanced Edifing

“ Note: To locate the insertion point at the beginning of the target window, for
instance before executing a Find command, you can use the command
Find -« '

In fact, this command is so useful that you may want to add it as a2 menu
command—see the example under the AddMenu command in Chapter 9.

following the =~ and I~ o

pattem delimiters /.../ or __\.
A special set of metacharacters,

regular expressions (and in file

are listed in Table 4-3.

Table 4-3

rrences of a pattern), and in If and Evaluate expressions
perators. Regular expressions are always used within the

Regular éxprassion operators

Any character matches itself (unless it's one of the special
characters listed below) :

dc Defeat special meaning of following character (cis taken literally)
L Literalize enclosed characters

o Literzlize enclosed characters, except 3, {, and

? ~ Any single character (other than reum)

- Any string of 0 or more characters, not conuining a retum
[character. .| Any character in the list . - o
[=character..) Any character not in the list (= is Option-L on the keyboard)
regularExpr Regular expression 0 or more times ‘

regularExpr+ Regular expression 1 or more times '
reguiarExpra s, Regular expression 7 times (« is Option-\ ; » is Option-$hift-\)
regularExpren,» Regular expression 7 or more times

regular&pr«nz,n? Regular expression n 1'0 75 times

(regularExps Grouping :

(regularExpr®n Tagged regular expression (where 0 < < 9)

reguiarExpr regularExpr, regularExpr; followed by regularExpr,

* regularExpr Regular expression at beginning of line

reguiarExpo Regular expression at end of line _

Pattern matching (using regular expressions) 89

These characters are considered special in the following circumstances:

d : spedial everywhere except within single quotes (...

? m * + [« () special anywhere except within[...},"...", and ".."

® " special only after a right parenthesis,)

. special as first character of entire regular expression

= special as last character of entire regular expression

/N special if used to delimit a regular expression
Their precedence (from highest to lowest) is s follows:

(.

P om fr [] o« @

concatenation

- o0

A formal definition of regular expressions can be found in Appendix B. The rest of
this section describes the use of regular expressions for describing selections.

Character expressions

In the simplest case, regular expressions consist of literal characters enclosed in
slashes. For example,

/what the ?/

Notice one complication, however—if the literal character happens to be one of the
regular expression operators (such as *?), it will be spedially interpreted rather than
raken as a literal character. If you want to specify a literal character that happens to
have a special meaning within the context of regular expressions, you'll have to
precede it with the escape character, 9, or enclose it in quotes. d has the effect of
*|iteralizing” the character that follows- it. For example, to find the literal expression
given above, you would use one of the following commands:

Find /what the d?/
Find /what the '2'/
Find /'what the ?'/

You could also use the "..." form of quotes.

“Wildcard” operators

In addition o litera]l characters, regular expressions can include the operators ?, =
(Option-X), and [1, which are used as follows:

? any character other than return

e0 Chapter 4: Advanced Editing

P

= any string not containing return, including the nuil
' string (this is the same as %) - _

(characterList] any character in the character list (as defined below)

(- characterLiss any character not in the list

These operators are also used as wildcards in filename generation. (You can also use
the *, +, and «...» operators in filename generation—see “Filename Generation” in
Chapter 3.

A character list is an expression consisting of one or more characters enclosed in
square brackets ({...}). It matches any character found in the list. The case-sensitivity
of characters in the list is governed by the {CaseSensitive} variable (which you can set
or unset by toggling the Case Sensitive menu iiem). A list may consist of individual
characters or a range of characters, specified with the minus sign (-). For instance,
the following rwo commands are equivalent:

rind /{ABCDEF]/
Find /[A-F}/

You can also mix the two notations:
Find /{0-9A-F$]/ -

& Note: This command specifies any of the characters 0 through 9, A through F,
and $. To specify the] or - characters, place them at the beginning of the list or
literalize them with the escape character, 9. :

The negation symbol, — (Option-L), lets you specify any character 7ot in the list. For
example,

Find /[~A-2]/

This example. specifies all characters except the letters A through Z. (T o specify the =
character itself, place it anywhere in the list other than the beginning, or literalize it
by preceding it with the escape character, d.) :

Repeated instances of regular expressions

The asterisk character (") matches zero or more occurrences of the immediately
preceding regular expression. The plus sign (+) matches one or more occurrences of
an expression. For example, the command

Find /[0-9]+/
will find any string of one or more digits.

You can also specify an expression that occurs an explicit number of times with the
«r» nolation:

Pattern matching (using regular expressions)

21

regularExpre s regular expression 7 times

regularExpran,» regular expression at least 7 times

regularExprang, no» regular expression at least 7 times and at most 71, times

For exampie:
Replace -c = /' '«d,»/ ot

This command finds any string of 4 or more spaces, and replaces it with a tab.
(The -c = option specifies a repeat count of “infinity,” that is, it replaces all
occurrences of the selection to the end of the document.)

Tagging regular expressions with the ® operator

The ® (Option-R) operator tags a regular expression between parentheses. This
operator is useful with the Replace command, for example, in reformatting tables of
data. Consider a table with two columns of numbers separated by spaces or tabs:

123 456
123 456
123 456
123 456
etc. ‘

The following Replace command switches the order of the two columns:
Replace —¢ = /([0-9]+)®1[dt]+({0-9]+)®2/ '®2 @1

Translated into English, this expression mezans

[0-97+ Match one or more characters in the set *0” to *9%,
{(0-9]1+)®1 remember that selection (the expression enclosed in
| parentheses) as ®1;
[1+ next, match at least one space or tab;
((0-91+)®2 then match one or more characters in the set *0* to “9” and

remember it as ®2;

'®2 B finaily, replace the whole matched string with what was
remembered as ®2, a space, and what was remembered as ®1.

Note: The quotes are stripped off, as explained under *"Quoting
Special Characters™ in Chapter 3. The ® operator itself can only
be disabled with the escape character, d.

After this sequence is executed, the table would look like this:

@2 Chapter 4: Advanced Editing

456 123
456 123
456 123
456 123
et

Matching a pattern at the beginning ot end of @ line

In the context of regular expressions, the « metacharacter (Option-8) means that the
subsequent expression must be matched at the beginning of a line. For example, the
regular expression : . .

/emain/ _ . _

will match a line that begins with "main” but not a line that begins with “space main”.

The beginning of a line is either the first character after a return or the first character

of the file. ' : _

Likewise, the e metacharacter means that the previous expression must be matched
“at the end of a line. The regular expression :

/maince/ S .

will match a line that ends with *main” but not a line that ends with "main space”.

The end of a line is either the last character of a line prior to the Return, or the end of

the file. ' '

Notice that * and = have another meaning within selections. Within a pattern, they
“indicate the beginning and end of a /fne. Within a selection, they indicate the
beginnning and end of the file.

inserting invisible characters

You can use the Shell escape character, 9, to insert the following special characters in '
text: . ’

dn Return
at Tab
af Form feed

& Note: The "Show Invisibles” menu item shows the invisible space, tab, and
return characters in a file.

For more information on the escape character, see “Quoting Special Characters” in
Chapter 3.°

- Paftern matching (using regular expressions)'

93

Note on torward and backward searches

Forward and backward searches aren’t always completely symmetrical. For example,
consider the conunand

Find /2*/

This command finds zero or more occurrences of any character other than 2 Return.
The first time you execute this command, if the current selection is not a1 the end of a
line, some range of characters will be selected. However, in subsequent invocations,
the selection will hang at the end of the line—only an insertion point will be left at the
end of the line. This is because the * metacharacter matches zero occurrences and -
the search starts with the character following the current selection—in this case, the
insertion point-preceding a return. A backward search of the form

Find \7*\

will never hang at the beginning of a line. This is because a backward search begins
with the first character to the left of the current selection and so has the effect of
jumping over a return after encountering it.

Some useful examples

This section shows some exampies of complex use of regular expressions.

Transforming DumpObj output

The DumpObj command, described in Chapter 9, formats the contents of an object
file. This example shows how to transform a DumpOb; listing, such as the following,
back into valid assembly code.

Q00000: 4EBA 06FB 'N.LL JSR *+306FA ; 6004282A
000004: 4EBA O04EA NLL LY JSR *+504EC ; 60042620
&0CO008: 3B7C 0014 FCC4 ';i...."' MOVE . W #30014,SFCCE (AS)

CQO00E: 268D 0010 ‘eam. .t MOVEA.L SCOL0{AS) A3

tC001z: 2653) ‘£S5 MOVEA.L (A3}, A3

000014: 0CSB 000C L S CMPI.W #50000, (A2) +

300618: 6600 0008 b S BNE *+5000A 7 600421352
00001C: 3AlB it MOVE.W {A3) +, D5

J0001E: €600 0010 L PR BNE *+50012 ; 60042160
ek,

You could position the insertion point at the beginning of the code, and use the
following Replace command:

%4 - Chapter 4: Advanced Edifing

Replace -c ‘s /7«41»/ “0tdt" # delete everything up to the instruction

However, the previous command works only because DumpObj happens to place the
instruction at column 42. The following example, by defining some Shell variables,
works regardless of the exact column layout:

Set hex "{0-9A-Fl«4,6»" ¥ 4 to 6 characters in the set 0-9 and A-F
Set space "{ dtl+" # 1 or more spaces or tabs
Set chars "od'?+dd'" # 1 or more of any character between]

single quotes

Replace =-c == /{hexl:({{ space} {hex}) «1; 3»{space} {chars} {spacel}/ “gtot"

Finding a whole word

The following example illustrates how you could find an exact match for 2 C identifier
that you had previously defined in the variable {ident).

Set tokensep “[—|a—zA-2_0—9]" # a token separator is any character g
not in the set a-z, A-Z, , or 0-9

Set CaseSensitive 1 # set to "true"—the case of each
) # character must match

The following Find command is not quite right, because it selects not only the
matched identifier, but also the token separator on each side of the identifier:
Find / {tokénse_p} {ident } {tokensep}/

The following Find command selects only the matched identifier. It accomplishes

this by. adding 1 to the starting position of the selection (Aselection!), and using that
as the starting point for a new selection that extends to the beginning of the next token
separator: '

Find A/{tokensep!} (ident} {tokensep}/!1:A/{tokensep}/

Some useful examples 95

Chapter 5

Editing Resources With ResEdit

About ResEdil xx
Uses x
Extensibility x
Using ResEdit xx

Working with files x
Working within a file x
Working within a resource type x -
Editing individual resources x
'CURS' resources x
'DITL resources x
'FONT resources x
TCN#' resources x

Creating a resource templaie xx

The chapter describes ResEdit, a stand-alone application for editing resources.

% Note: As in Inside Macintosh, resource types are shown within single quotes;
for example, 'STR ' (that is, STRspace). The quotes are not part of the name.

W
e e e —————=

About ResEdit

ResEdit is an interactive, graphically based application for manipulating the various
resources in 2 Macintosh application. It lets you create and edit all standard resource

types except 'CODE!, and copy and paste all resource types (including ‘CODE").
ResEdit actually includes 2. number of different resource editors: there is a general
resource editor, for editing any resource in hex and ASCII format, and there are
several individual resource editors for specific types of resources. You can also
create your own resource editors to use with ResEdit. =

Uses

ResEdit is especially useful for creating and changing graphic resources such as
dialogs and icons. For example, you can use ResEdit to put together a quick.
prototype of a user interface and try out different formats and presentations of
resources. You can also use ResEdit for translating resources into a foreign language
without having to recompile the program. You can use ResEdit to modify a
program’s resources at any stage in the process of program development.

Once you have created or modified a resource with ResEdit, you can use the Resource
Decompiler, DeRez, to convert the resource to 2 textual representation that can be
processed by the Resource Compiler, Rez. You can then add comments to this text
file or otherwise modify it with the Shell editor. (Rez and DeRez are fully described in
the next chapter.) : '

Extensibility

A key feature of ResEdit is its extensibility. Because it can't anticipate the format of all
the different types of resources that you might use, ResEdit has been designed so that
you can teach it 1o recognize and parse new resource types.

About ResEdit

97

There are two ways that you can extend ResEdit to handle new types:

- @ You can create templates for your own resource types. ResEdit lets you edit most
resource types by filling in the fields of a dialog box—this is the way you edit
'BNDL' and 'FREF" resources, for example. The layout of these dialog boxes is
determined from a template in ResEdit's resource file, and you can add templates
to edit new resource types. Resource templates are described later in this chapter.

¥ You czn also program your own special-purpose resource picker and/or editor-
and then add it to ResEdit The resource picker is the code that displays all the
resources of one type in the resource type window. The editor is the code that
displays and allows you to edit a particular resource. These pieces of code are
separate from the main code of ResEdit. A set of Pascal routines, called ResEd, is (
available for this purpose—see MPW Reference for information, '

Using ResEdit - '

From the MPW Shell, ﬁrou can stant ResEdit by entering the command

ResEdit

(This assumes, of course, that ResEdit is in the Applications folder, or elsewhere in)
the search path defined by the {Commands} variable.) From the Finder, you can just
select and open the ResEdit icon. ResEdit displays a window that lists the files and
folders for each disk volume currently mounted (Figure 5-1),

98 Chapter & Editing Rescurces With ResEdit

& File Edit

D Apps _ ,
D copyright memo -
B DeskTop '
{QOmore status rpts
{OMPW

CIMPW doc.

D Screen 0

D Screen 1

O Screen 2
{03 System Folder

Figure 5-1
A disk volume window

Working with files

To list the resource types in a file, select and open the filename from the list. (You
can select a name by clicking on it or by typing one or more characters of the name.)

When 2 directory window is the active window, the File menu commands act as
follows: '

New Creates a new file,

Open Opens the selected file or folder (this is the same as double-
clicking on the name).

Close Closes the volume window (this is the same as clicking the close
box). If it's a 3.5-inch disk, the disk is ejected.

Get Info Displays file information and allows you © change it. For
example:

Using ResEdit

99

£ Info for file MPLW Shell =
SPMIMPW Shell T

Tupe [APPL ~_ Creator |MPS
[Jtocked [Jinvisible [XIBundle []system
[(JOnDesk [JBozo [JBusy [(J Changed

[CJCached [JShared X Inited
[J Always switch launch

[File Busy [JFile Lock [JFile Protect
Created |6/25/86 5:00:00 PM
Modified |7/16/86 8:46:51 PM
Resource fork size = 1563'@7 bytes

Rmbn Fawls ai=me = 11 hasdoaa

Transfer . Allows you to iransfer to an application other than the
application that launched ResEdit. (This is an alternative to the
Quit command.) :

Quit Quits from ResEdit and returns to the MPW Shell (or Finder).

Warning

You can edit any flle shown in the window. Inciuding the System file and
Reskdit itself. However, It's dangerous to edit a file that's curently In use. Edit ¢
copy cf the flle instead. (For sxample, edit the System file on a non-boot
volume.)

ResEdit will recognize a new disk when it's inserted, 2nd also handles multiple drives.
Note that you can also use ResEdit to copy or delete files:

® To delete a file, select the file and choose Clear from the Edit rnénu.

® To copy a resource file, you must select all of its resources and copy them. Then
paste them into a new file. (File attributes are not automatically copied by this
operation—you must set them via the Get Info command.) ResEdit cannot copy 2
data fork.

100 Chapter 5: Editing Resources With ResEdit

Working within a file

When you open a file, 2 window displays a list of all the resource types in that file
(Figure 5-2). While this window is the active window, you can create new rescurces,
copy or delete existing resources, and paste resources from other files.

& Note: The resources are displayed by a resource picker. The general resource
picker displays the resources by type, name, and ID number; there are also
special resource pickers for some resource types (for example, the 'ICON
resource picker displays the icons graphicaily). ' o

& File Edit

Figure 5-2
A file window

When a file window is the active window, the File menu commands have the following
effects:

- New Creates a new resource in the open file.

Open Opens 2 window displaying all resources of the resource type
selected. (Select the resource type by clicking on it or by typing
its first character.) :

Using ResEdit 107

Open General

Close

Revert

Quit
When a file window
following effects:

Cut

Copy

Paste.

Note: If you hold down the Option key while opening a resource
type, the resource window will open with the general resource
picker. '

Opens the general resource picker.

Closes the file window and asks if you want to save the changes
you have made. ' : '

Note: If you've made changes, you should not reboot before
closing.

Changes the résource file back to the version that was last saved
to disk. _ ' '

Quits from ResEdit.

is the active window, the Edit menu commands have the

* Removes all résources of the resource types selected, placing

them in the ResEdit scrap.

Copies all resources of the resource types selected into the
ResEdit scrap.

Copies the resources from the ResEdit scrap into the file

- window’s resource type list.

Clear -

Dupilicate

Removes all resources of the resource type selected, without
placing them in the ResEdit scrap.

Creates duplicates of all resources of the resource types selected,
and assigns a unique resource [D number to each new resource.

Working within a resource type

Opening a resource type produces a window that lists each resource of that type in the
file (Figure 5-3). This list will take different forms, depending on the particular
resource picker; if you hold down the Option key during the open, the general
resource picker is invoked.

102 Chapter

5: tdifing Rescurces With ResEdit

€ File Edit

HD

Workshop

~ MacProgram L r
Z ICN#'s from MacProgram

Figure 5-3
A resoyrceltype window

When a resource type window is the active window, the File menu commands have
the following effects: '

New Creates a new fresource and opens its editor.

Open | Opens the appropriate editor for the resource you selected.

Open as... Allows you to open an editor template of a different type.

Open General - Opens the general (hex) resource editor. '

Close Closes the resource type window.

Rever ' Changes the file back to what it was before opening the resource
type window.

Using Reskdit

103

Gert Info Displays resource information and allows you to éhangé it. For
example:
S[T=== Info for ICN¥ 129 from MPL Shell]
Type: ICN# : Size: 256
Name:
10 129 - Owner type
gwner 10: | - DRUR K
_ — WOEF
Attributes: N
[J System Heap ' []Locked [l Preload
(] Purgeable [Protected .

When a rescurce type window is the active window,- the Edit menu commands have
the foilowing effects:

Undo

Cut

Copy

Paste

Clear

Duplicate

Undoes the most recent editing command. Unde may or may
not be selectable, depending on the specific editor in use.

Removes the resources that are selected, placing them in the
ResEdit scrap.

Copies all the resources that are selected into the ResEdit scrap.

Copies the resources from the ResEdit scrap into the resource
type window.

Removes the resources that are selected, without placing them in
the ResEdit scrap. '

Creates a duplicate of the selected resources and assigns a
unique resource ID number to each new resource,

104 Chapter & Editing Resources Wihh ResEdit

Editing individual resources

To open an editor for a particular resource, either double-click on the resource or
select it and choose Open from the File menu. One or more auxiliary menus may
appear, depending on the type of resource you're editing. Some editors, such as the
'DITL' editor, allow you o open additional editors for the elements within the
resource. All the editors use File and Edit menus similar to those described above,
but operate on individual resources or individual elements of a resource.

If you hold down the Option key while opening a resource, the general data editor
is invoked. This editor allows you to edit the resource as hexadecimal or ASCII data.
If you hold down the Shift and the Option keys hile opening, ResEdit shows you a list
of all editors and tempilates. . :

Cautlon

individual edifors may not be approprate for all resource types—inappreprate
editors may cause systemn erors to occur. : : L

The menus for some of the editors are discussed below. The use of the editors not
discussed here should be apparent when you run them.

& Note: The gérieral data editor will not edit resources larger than 16K bytes;
however, you can move larger resources with the Cut, Copy, Paste, and Clear
commands as described above.

"CURS' (Cursor) resources

For '‘CURS' resources, the editor displays three images of the cursor (Figure 5-4). You
can manipulate all three images with the mouse. -

Using ReskEdit

105

& File Edit Cursor

i ®

System Folder
System
AL Cursors from System
b &0 Cursor !D = 4 from System =
BaRE RBEEES
ER _ENGON TR T £
 _EEESNNEE UEIEETEEEE NN .
| @ sENeNEENEN | DEENSECADGNSED =
B NRENNERE REEEERUEEENEER -
B SEERSVNESEY | BEOSNSMEGINSENEN | ®
u NESUNNNENS | DEHECNGNNEEDBAEERG | ©
N AENSUNENG | DEDEAEREESERANEN | @
= ENENENN | PEODGEEENSEYMANS | &
] SENBGN | EENNEECENGEENEAN | @
5 EnmEN BSSEDBENZERTEN | B
- HENEE BEEEGESENRN AN H
a T SBESNEENYNEN e

Figure 5-4 '
Eatting "CURS' resources

The left image shows how the cursor will appear. The middle image is the mask for the
cursor, which affects how the cursor appears on various backgrounds. The right
image shows a gray picture of the cursor with a single point in black—this point is the
cursor’'s het spot.

The Cursor menu contains the following commands:

Try Cursor Lets you try out the cursor by having it become the cursor in use.
(Restore Arrow restores the standard arrow cursor.)
Data ~>Mask Copies the cursor image to the mask editing area,

DITL' (Dialog ltem List) resources

For 'DITL' resources, the editor displays an image of the item list as your program
would display it in a dialog or alert box. When you select an item, a size box appears
in the lower-right corner of its enclosing rectangle so that you can change the size of
the rectangle. You can move an itemn by dragging it with the mouse.

If you open ah itern within the dialog box, the editor associated with the item is
invoked; for an 'ICON', for exampie, the icon editor is invoked. If you hold down the
Option key while opening, the general data editor is invoked.

106 Chapter &: Editing Rescurces With Restdlt

The DITL menu contains the following commands:

Bring to Front Allows you to change the order of items in the item list Bring to
: Front cayses the selected item to become the last (highest
numbered) item in the list. The actral number of the item is
- shown by the 'DITM' editor.

Send to Back Like Bring to Front, except that it makes the selected item the
first item in the list—~that is, item number 1.
Grid Aligns the item on an invisible 8-pixel by 8-pixel grid. If you

change the item location while Grid is on, the location will be
adiusted such that the upper-left comer lies on the. nearest grid
point above and to the left of the location you gave it. If you
change the size, it will be made a multiple of 8 pixels in both
dimensions.

Use RSRC Rect Restores the enclosing rectangle to the rectangle size stored in
. the underlying resource. Note that this works on 'ICON', PICT,
and 'CNTL' itemns only,; the other items have no underlying
resources.

Use full window Adjusts the window size s0 that all items in the item list are visible
in the window.

‘FONT' resources

For "FONT resources, the editor window is divided into three panels: a sample text
panel, a character selection panel and a character edxung panel. These are shown in
Figure 5-5.

Using Reskdit

107

Fonts 1rom System

Chicagol2
The quick
brown fox
> _ - : jumps over
the lazy dog.
' uamn
]]
Al BE
5 a8
AEEEEE k
[1]
SR N 0y
(1]
) iR HaNas
)
@ R B
Figure 5-5

FONT sditor windo

The sample text panel, at the upper right, displays a sample of text in the font
being edited. (You can change this text by dicking in the text panel and using normal
Macintosh editing techniques.)

The character selection panel is below the text panel. You can select a character to
edit by typing it (using the Shift and Option keys if necessary), or by clicking on it in
the row of three characters shown. (Click on the right character in the row to move
upward through the ASCII range; click on the left character to move downward.) The
character you select is boxed in the center of the row with its ASCII value shown below
it {in decimal).

The character editing panel on the left side of the window shows an enlargement of
the selected character. You edit it, like FarBits in MacPaint, by clicking bits on and
off. The black triangles at the bottom of the character editing panel set the left and
right bounds (that is, the character width). The three triangles at the left of the panel
control the ascent, baseline, and descent.

Caution

Changing the ascent or descent of a character changes the ascent or descent
for the entire font,

108 Chepter §: Editing Resources With ResEdlt

.'/—\‘

- r

Any changes you make in the character editing panel are reflected in the text panel
and the tharacter selection panel. Remember that you cannot save the changes until
you close the file. .

You can also change the name of 2 font. The font name is stored as.the name of the
resource of that font family with size 0. This resource does’ 6t Mow up in the normal
display of all fonts in a file. To display it, hold down the Option key while you open
the FONT type from the file window. You will see a. generic list of fonts. Select the font
with the name you wish to change and choose Get Info. -

‘iC_:N#' (lcon List) resources

For 'ICN#' resources, the editor displays two panels in the window (Figure 5-6). The
upper panel is used to edit the icon. It confains an enlargement of the icon on the left
and an enlargement of the icon'’s mask on the right. The lower panel shows, from left
to right, how the icon will lock unselected, selected, and open on both a white and a
gray background. It also shows how the icon will appear in the Finder'’s small icon

view.

& File. Edit lcn#

ICN#'E_ from F;int_t_er

[D) T Ee==—==== ItN*'s ID = 133 from Finder =5
g @ - 'i"'-",'
_ : . a
; JOEA
0 .-n‘ -_..
i ‘n (™
" : "
I~ o s e
CI " o "
0 ICN# '-' ll=..====llll '-!“
LAYO ' " s ans
MENU .'_n '.“llnl'nl EEE .
RFS# "a_ ' +H agaEmay

Figure 5-6
ICN# Window

Using ReskEdit

109

To insuall 2 new icon for your application when you already have an old one in the
Finder's deskiop file, follow these steps:

1. Open the file called DeskTop.

. 2. Open type 'BNDL' and find the bundle that belongs to your application. (This is
the one that has your owner name in it.) ‘Look through the bundle and mark down
the type and resource ID of all resources bundled together by the bundle {that is,
the 'ICN#'s. and 'FREF's).

3. Go back to the DeskTop window and remove these resources along with your
'BNDL' and signature resource (the resource whose type is your application's
signature).

4. Now close the DeskTop wmdow save changes, and quit ResEdit. Your new icon
will be installed if you have the proper 'BNDL', 'FREF, and 'ICN# resource
numberings.

Note: To see how 'BNDL' 'FREF, and 'ICN#' resources are interrelated, use
ResEdit to look at those resources m an existing application such as t.he MPW
Shell.

Alternatively, you can rebuild the DeskTop file by holding down the Option and
Command keys when entering the Finder. (This method is fastér and easier, but you
will lose your Finder Get Info comments; you will also lose folder names on a non-
HFS volume)

Creating a resource template

You can customize ResEdit by creating new templates for-your own resource types.
The generic way of editing a resource is to fill in the fields of a dialog box—for
example, this is the way you edit 'FREF', 'BNDL!, and 'STR#' resources. The layout of
these dialog boxes is set by a template in ResEdit’s resource file. The template
specifies the format of the resource and also specifies what labels should be put
beside the editText items in the dialog box that's used for editing the resource. You
can find these templates by opening the ResEdit file and then opening the type
window for “TMPL' resources. For exampie, if you open the template for "WIND!
resources (this is the "TMPL' with name “WIND"), you'll see the template shown in
Figure 5-7.

110 Chapter 5. Editing Rescurces With Reskdlt

: TMPLs from ResEdit P _
T™E % TMPL "WINDB" !D = 1 from HesEdit

TN LR L L]

3 :: Label [boundsRect
d{™ Type |RECT

™ N

R T™ Label lproclﬂ
o Type [DWRD

ok ko

‘Figure 5-7

Window template data

'The window template, then, consists of the following:
1. A RECT (4 words) specifying the boundary of the wmdow :

2. A word that is the procID for the window (DWRD tells ResEdit to d.lsplay the word
in decimal as opposed to hex).

3. A Boolean indicating whether or not :he window is visible (BOOL is 2 bytes in the
resource but is displayed as a radio button in the dialog window used for editing).

4. Another Boolean indicating whether or not the window has a close box.

5. A long word that is the reference value (refCon) for the window {DLNG indicates
that it should be displayed in the editor as a decimal number).

6. A Pascal string (PSTR), the title of the window.

You can look through the other templates and compare them with the structure of
those resources to get a feel for how you might define your own resource template.
(These templates are equivalent to the resource type declarations contzined in the
{RIncludes} directory—refer also to the DeRez command in Chapter 9.)

These are the types you have to choose from for your editable data fields:
DBYT, DWRD, DLNG decimai byte, word, long word

Creating a resource fermplate

N1

HBYT, HWRD, HLNG
HEXD

PSTR

LSTR

WSTR

ESTR, OSTR

CSTR
ECST, OCST

BOOL
BBIT
TNAM
CHAR
RECT

Hnnn

hex byte, word, long word

hex dump of remaining bytes in resource

. a Pascal string (length byte followed by the characters)

tong string (length long followed by the characters)

"same as LSTR, but a word rather than a long word

Pascal string padded to even or odd length (needed for
DITL resources)

a C string

even-padded C string, or odd-padded C string (padded
with nulls) -

Boglean

binary bit

" type name (4 characters, like OSType and ResType)

a single character
an eight-byte rectangle

3-digit hex number (where nnn < $900); displays nnn
bytes in hex format.

ResEdit will do the appropriate type checking for you when you put the editing dialog

window away.

The template mechanism is flexible enough to describe a repeating sequence of
items within a resource, as in 'STR#', 'DITL', and 'MENU' resources. You can also
have repeating sequences within repeating sequences, as in 'BNDL' resources. To
terminate a repeating sequence, put the appropnate code in the template as follows:

LSTZ

LSTE List Zero-List End. Terminated by a 0 byte (as in 'MENU's).

ZCNT

LSTC

LSTE Zero Count/List Count—{ist End Terminated by a zero-based count
that starts the sequence (as in 'DITL' resources).

OCNT

LSTC

LSTE - One Count/List Count-List End. Terminated by a one-based count

that starts the sequence (as in 'STR#' resources).

112 Chapter 5: Editing Resources With ResEdit

LSTB

ISTE Ends at the end of the resource {no example exists in the g_iven-
tempiates). i

The “list-begin” code begins the repeating sequence of items, and the LSTE code is
the end. Labels for these codes are usually set 1o the string ******". Both of these
codes are required. '

To create your own template, follow these steps:

1. Open the ResEdit file window.

2. Open the 'TMPL' type window.

3. Choose New from the File menu.

4. Select the list separator ("°""").

5

. Choose New from the File menu. You may now begin entering the label fype pairs
that define the template. Before closing the template editing window, ¢hoose Get
Info from the File menu and set the name of the template to the four-character
name of your resource type.

6. Close the ResEdit file window and save changes.

The next time you try to edit or create a resource of this new type, you'll get the dialog
box in the format you have specified.

Warning

. Changing resource templates (and hence resource type descriptions) ¢an
cause system crashes if you open clder versions of a resource with a new
template.

Creating a resource template

113

Y

Chapter 6

Resource Compiler and
Deco_mpiler

About the Resource Compiler and Decompiler xx

Resource Decompiler x
Standard type declaration files x
Using Rez and DeRez x

structure of @ resource descrplion flie XX
Sample resource description file x o

Resource Description _stcshmonis xx

Syntax notation X
Special terms x
Inciude — include resources from another file x
Syntax x
Resource attributes. x
Read — read data as a resource X
Syntax x
Description x
Data — specify raw data X
Syntax x
Description x
Type — declare resource type X
Syntax x
Description x
Data-type specifications x
Numeric types X
Boolean type X

Character type X
String type X
Point and rectangle types x
Fill and align types x
Fill specification x
Align specification x
Array type X
Switch type x
Sample type statement X
: An aside: symbol definitions x
Resource — specify resource daa x
Syntax X
Description :x
Data statements X
Switch data x
Array data x)
Sample resource definition x
_ Symbolic names X
Preprocessor directives xx
Variable definitions x
Include directives x
If-Then-Else processing x
. Rescurce descriplion syntax xx

Numbers and literals x
Expressions x
Variables x
Strings x

Escape characters X

Resource Compiler and Decompiler

L)

In the Macintosh Programmer's Workshop, you can build a resource graphicaily with
ResEdir, or in text form with the Resource Compiler. This chapter explains the use of
the Resource Compiler (Rez) and Resource Decompiler (DeRez). The command line
syntax for Rez and DeRez is explained in Chapter 9. General information on resource
files is given in the "Resource Manager” chapter of Mside Macintosh.

About the Resource Compiler and Decompiler

The Resource Compiler, Rez, compiles 2 text file (or files) called a resource
description file, and produces 2 resource file as output. The Resource Decompiler,
DeRez, decompiles an existing resource, producing a new resource description file
that can be understood by Rez. Figure 6-1 illustrates the complementary relationship
berween Rez and DeRez :

e . Resource Compiler
resqurce {Rez)
fila

resource
Resource Decompiler description
[{DeRez))—"’ file
: (TEXT)

Figure &-1
Rez and DeRez

The Resource Compiler can combine resources or resource descriptions from a
number of files into a single resource file, The Resource Compiler also supports
preprocessor directives that allow you to substitute macros, include other files, and
use if-then-else constructs. (See “Preprocessor Directives” later in this chapter.)

16 Chopter 6: Resource Compller and Decompller

rma

Resource Decompiler

The DeRez command creates a textual representation of a resource file based on
resource type declarations identical to those used by Rez. (If you don't specify any
type declarations, the output of DeRez is in the form of raw dau staternents.} The
output of DeRez is a resource description file that may be used as input to Rez. This

file can be edited in the MPW Shell, allowing you to add comments, translate
resource data to a foreign language, or specify conditional resource compilation
using the if-then-else structures of the preprocessor. You can also compare resources
by using the MPW- Compare command to compare resource description files.

& Note: MPW Pascal also includes 2 sample tool, ResEqual, which directly
' compares ‘resource files.: :

standard type declaration files

Three text files, Types.r, SysTypes.r, and MPWTypes.r, contain resource
declarations for standard resource types. These files are located in the {RIncludes}
directory, which is automatically searched by Rez and DeRez (that is, you can specify
2 file in {RIncludes} by its simple filename). These files contain definitions for the

following types:

Types.c Type declarations for the most common Macintosh
resource types CALRT, 'DITL!, '"MENU', and so on)
SysTypes.r Type declarations for 'DRVR', 'FOND', 'FONT",'FWID", 'INTL',
: and 'NFMT :

MPWTypes.r Type declarations for the MPW driver type DRVW'

Using Rez and DeRez

Rez and DeRez are prirriaﬁly used to create and modify resource files. Figure 6-2
illustrates the process of creating a resource file.

About the Resource Complier and Decompiter 17

@ell aditor or Deﬁaa

Rescurce othar
description resource
(.1} files filas

TEXT

‘| Resource Compiier
(Rez)

Resource Editor Resource
(ReskEdit) fila

Figure -2
Creafing a resource file

Rez can also form an integral part of the process of building a program. For instance,
when puting together a desk accessory or driver, you'd use Rez 1o combine the
Linker's output with other resources to create an executable program file. (See
Chapter 7 for derails.} '

Structure of a resource description file

The resource description file consists of resource type declarations (which can be
included from another file) followed by resource data for the declared types. Note
that the Resource Compiler has no built-in resource types—you need to define your
own types, or include the appropriate “.r” files.

118 Chapter 4 Resource Compiller and Decomplier

,/1 ~,

4 resurce description file may contain of any number of statements, where a
statement is any of the tolowing: -

include include resources from another file.

read - Read data fork of a file and include it as a resource.

data Specify raw data. |

type Type declaration—declare resource type descriptions for

subsequent resource slaiements.

resource Data specification—specify data fora resource type declared in
a previous type siatement.

_Each of these statements is described in the sections that follow.

A type declaration provides the patiern for any associated resource data
specifications by indicating data types, alignment, size and placement of strings,
and so on. You can intersperse type declarations and dat in the resource '
description file as long as the declaration for a given resource precedes any
cesource statements that refer to it. An error is returned if data (that is, a
resource statement) is given for a type that has not been previously defined.
Whether a type was declared in a resource description file or'in 2n include file, you
can redeclare it by providing 2 new declaration later in 2 resource description file.

A resource description file can also include comments and preprocessor directives:

» Comments can be included anywhere where white space is allowed in a resource
description file, within the comment delimiters /% and ¢/,

m Preprocessor directives substitute macro definitions and include files and
provide if-then-else processing before other Rez processing takes place. The
syntax of the preprocessor is very similar to the C-language preprocessor.

Sample resource description file _

An easy way to learn about the resource description format is to decompile some
existing resources. For example, the following command decompiles only the
~WIND' resources in the Sample application, according to the the type declaration in
{Rincludes}Types.1. '

DeRez Sample -only WIND Types.r > DeRez.Cut

After executing this command, DeRez.Out would contain the following:

structure of a resource description file

e

resource 'WIND' (128, "Sample Window") ¢
{64, 60, 314, 460},
documentProc,
visible,
noGoAway,
0x0,
"Sample Window™ .

}b:

Note that this statement is identical to the resource description in the file Sample.r,
which was originally used to build the resource. This resource data corresponds to
the following type declaration, contained in Types.r:

type 'WIND' {

rect; ' " /* boundsRect */
integer documentProc, dBoxProc, plainDBox, /* procID */
altDBoxProc, noGrowDogProc, '
zoomProc=8, rDocProc=16;
byte invisible, visible; /* wisible*/
£i11 byte: ' '
byte noGoAway, goAway; . /* gohway */
fill byte; -
unsigned hex longint; ' _ /* refCon */
*/

pstring Untitled = "Untitled":; /* title
b: o _ : .
type and resource statements are explained in detail in the following reference
section. .

Resource description statements

This section describes the syntax and use of the five types of resource description
statements: include, read, data, type, and resocurce.

Syniax notation
The syntax notation in this chapter follows the conventions given in the Preface.
Additionally, the following conventions are used:

8 Words that are part of the resource description language are shown in courier to
distinguish them from other text. The Resource Compiler is not sensitive to the
case of these words.

120 Chapter é6: Resource Compller and Decompliler

o

® Punctuation characters such as commas (,), semicolons (;), and quotation
i-arks (' and ") are to be written as shown. If one of the syntax notation characters
(for example, [or 1) must be written as a literal, it is shown enclosed by curly
quotes ('..."); for example,
bltstrzng [’ length']’
In this case, the brackets would be typed literally—they do no: mean that the '
enclosed element is optional.

m Spaces between syntax elements, constants, and punctuation are optionai—they-
are shown for readability only.

Tokens in resource description statements may be separated by spaces, tabs, retms,
or comments.

Special ferms

The following terms represent 2 minimal subset of the nonterminal symbols used to
describe the syntax of commands in the resource ‘description language:

Term 7 Definition
resource-type long-expression
resource-name string
resource-iD: word-expression
ID-range ID(: ID)

< Note: Expression is defined later in this chapter under "Expressions.”
A full syntax definition can be found at the end of this dmpter, and in Appendix D.

Include — include resources from another file

The include statement lets you read resources from an existing file and include all
or some of them.

Syntax

Inélude statements can have the following forms:
include file [resource-type ['(resource-name | D] ;

Read the resource of type resource-type with the specified resource name or
resource 1D in file. If the resource name or ID is omitted, read all resources of the
type resource-type in file. If resource-type is omitted, read all the resources in

file.

® include fle not resource-type ;

Resource Description Statements i2!

Read all resources not of the type resource-type in file.
B include flle resource-typel as resource-typel :

Read all resources of type resource-typel and include them as resources of
resource-typel.

w incliude file resource-typel ‘(' resource-name | ID'}’
as resource-ppe2 ‘(" ID [, resource-name) [, atributes... ') ;

Read the resource of type resource-ypel with the specified name or ID in file,
and indude it as a resource of resource-type2 with the specified ID. You can
optionally specify 2 resource name and resource attributes. (Resource attributes
are defined below.) ’

Some examples follow:
include "otherfile”; /* include all resources from the file */
include "otherfile™ 'CODE'; /* read only the CCDE rescurces */

include "otherfile™ 'CODE' {128); /* read only CCDE resource 128 */

Resource aitributes

You can specify attributes as a numeric expression (see the “Resource Manager”
chapter of Inside Macintosh), or you can set them individually by specifying one of
- the keywords from any of the following pairs:

Default Alternative Meaning

appheap - sysheap Specifies whether the resource is to be loaded
into the application heap or the system heap.

nonpurgeable purgeable Purgeable resources can be automatically

_ C purged by the Memory Manager,
unlocked locked Locked resources cannot be moved by the
' Memory Manager.

unpretected protected Protected resources cannot be modified by
the Resource Manager.

nonpreload preload Preloaded resources are placed in the heap as

: ' soon as the Resource Manager opens the

resource file,

unchanged changed Tells the Resource Manager whether a

resource has been changed. Rez does not
aliow you to set this bit, but DeRez will display
it if it is set.

122 Chapter 6: Resource Compiller and Decomplier

Bits 0 and 7 of the resource attributes are reserved for use by the Resource Manager
and cannot be set by Rez, but are displayed by DeRez.

You can list more than one atiribute by separating the keywords with a comma (,).

Read ~— read data as a resource

The read statement lets you read a file's data fork as a resource.

Syntax o
read resource-type ' (" ID|, resource-name] {, attributes) 'y’ flle ;

Description

Reads the data fork from file and writes it as 2 resource with the type resource-bpe
and the resource ID ID, with the optional resource name resource-name and
optional resource attributes (as defined in the preceding section). For example,

read 'STR ' (=789, "Test String", SysHeap, PreLoad) "Teat8";

Data — specify raw data

Data statements let you specify raw data as a sequence of bits, without any
formatting. :

Syntax

cata resource-type ' D, resource-namel] |, anribuges... 19" '{’
data-sinng
A

Description

Reads the data found in data-string and wriles it as a resource with the type resource-
rype and the ID ID. You can optionally specify a resource name, resource attributes,
~or both.

Resource Description Stctements

123

for example,

data 'PICT' (128) |
S"4F35FFB8730000000"
$TFF234F35FF750000™
Vi
% Note: When DeRez generates a resource description, it uses the data statement
to represent any resource type that doesn’t have a corresponding type
declaration or cannot be disassembled for some other reason.

Type — declare resource type

A type declaration provides a template that defines the structure of the resource data
for a single resource type or for individual resources, If more than one type
declaration is given for a resource type, the last one read before the data definition is
the one that's used—this lets you override declarations from include files or previous
resource description files. '

Syntax
type resource-type ‘(" D-range)’] '(°

type-specification...
G

Description

Causes any subsequent resource statement for the type resource-type 10 use the
declaration {iype-specification...}. The optional ID-range specification causes the .
declaration to apply only to a given rescurce ID or range of IDs. '

124 Chapter é: Resouice Compller and Decompiler

g ~,

S

Type-specification is one of the following:

bitstring([#n]

byte

integer

longint :

boclean _ data-types: Data-type statements

declare :

char : a field of the given datz type. They can

string also associate symbolic names or

pstring . ¢onstant values with the datatype.
_ cstring

point

‘rect

fill Zero fill

align Zero fill to nibble, byte, word, or long word boundary

switch Control construct (case statement) .

. array Array data specnﬁcauon—zeto or more instances of
data-types :

These types can be used singly or together in a type statement. Each of these type
specifiers is described in the following sections.

< Note: Several of these types require ‘additional fields-—the exact syniax is given
in the following sections. ' '

You can also declare a resource type that uses another resource’s type declaration,
by using the following variant of the type statement:

type resource-typel ' (" ID-range)’ | as resource-type2 i

Data-type spec:flcmlons

Data-type specifications can take three forms, as shown in the following example:

type 'HAMP' { /% declare a resource of type 'XAaMP ¢t */
byte: . :
byte off=0, on=1;
byte = 2;

b

B The first byte statement declares a byte field; the actual data is supplied in a
subsequent resource slatement

Resource Description Staternents

125

o0

The second byte statement is identical to the first, except that the twao symbolic
names “off* and *on" are associated with the values 0 and 1. These symbolic
names could by used in the resource data.

The third byte statement declares a byte field whose value is always 2. In this case,
no corresponding statement would appear in the resource data.

Note: Numeric expressions and strings can appear in type statements; they are
defined later in this chapter under "Expressions.”

Numeric types. The numeric types (bitstring, byte, integer, longint) are
fully specified as follows:

[unsigned] [radix] numeric-type | =expr i symbol-definition... 1;

The unsigned prefix signals DeRez that the number should be displayed without a

sign—that the high-order bit may be used for data and the value of the integer

cannot be negative. The unsigned prefix is ignored by Rez but is needed by
DeRez 1o correctly represent a decompiled number. Rez uses a sign if it is specified
in the data. Precede 2 signed negative constant with a minus sign (-); $FFFFFF8S
and -$7B are equivalent in value.

Radixis one of the following string constants:

nex decimal occtal binary literal
You can supply numeric data as decimal, octal, hexadecimal, or literal data.

Numeric-type is one of the following:

pitstring' [length]’ Declare 3 bitstring of length bits (maximum 32).

bvte _ Declare a byte (8-bir) field. This is the same as
bitstring([8].

in.teger Integer {16-bit) field. This is the same as
bitatring(16]. '

longint Long integer (32-bit) field. This is the same as
bitstring(32].

Rez uses integer arithmetic and stores numeric values as integer numbers. Rez
ranslates booleans, bytes, integers, and longints to bitstring equivalents. All
computations are done in 32 bits and wuncated.

An error is generated if a value won't fit in the number of bits defined for the type.
The valid ranges for values of byte, integer, and longint constants are as
follows:

Type Maximum Minimum

126 Chapter & Resource Compller and Decompiler

byte 255 -128
integer 65535 ~32768
longint 4294967295 ~2147483648

Boolean type. A boolean 15 a single bit with two possible states: O (or.-false)andl
{or true). (true and false are global predefined identifiers.) Boolean values are
declared as follows:

boclean [constant | symbolic-value.. 1;
Type boolean declares 2 1-bit field; this is equivalent to

unsigned bitstring(l] _ _ _
Note that this type is not the samie as a boolean variable s defined by Pascal.

Charcctor type. Characters are declared .as follows:

char [symbolic-value... |; _ .
Type char declares an 8—bft field (this is the same as writing stxing[1]).
- An example follows: ‘

type 'SYMB')
char dollar = "3",percent = "y";
".

i

resource 'SYMB' (128) {.
dollaxr . |
)

String type. String data types are specified as follows:
string-ype [' U length'1'l { symbolic-value... 1;
String-type is one of the following:

[hex] string Plain string (no length indicator or termination character-is:
generated). The optional hex prefix tells DeRez to display it
as a hex-string. String(n) contains n characters andis n
_bytes long. Type char is shorthand for string(1].

pstring Pascal string (a leading byte containing the length
information is generated), aligned to a word boundary.
pstring (=) contains 7 characters-and is n+1 bytes long.
pstring has a built-in maximum length of 255 characiers,
the highest value the length byte can hold. If the string is too
long to fit the field, a warning is given.

Resource Description Statements

127

C string (a trailing null byte is generated), Cstring(n]
contains n-1 characters and is # bytes long. A cstring of
length 1 can be assigned only the value ", because
cstring (1] has room only for the terminating oull,

(9]
[0
t
"
)i
-]
e}

Each may be followed by an optional length indicator in brackets ((n]). Length is an
expression indicating the string length in bytes. Length is a positive number in the
range 1 < length < 2147483647 for string and cstring, and in the range
1<length<?55 for pstring.

** Note: You cannot assign the value of 2 literal 10 a string-type.

If no length indicator is given, 2 pstring or cstring stores the number of
characters in the corresponding data definition. If 2 length indicator is given, the
data may be truncated on the right or padded on the right. The padding characters
for ail string types are nulls. if the data contains more characters than the length
indicator provides for, the string is truncated and 2 warning message is given.

warning

A null byte within a csting Is @ termination Indicator and may contuse DeRez
and C programs. However, the full string. including the explictt hull and any
text that follows It, wit be stored by Rez as Input.

Point and rectangie types. Because points and rectangles appear so frequently in
resource files, they have their own simplified syntax:

point | point-constant | symbolic-value. .. };
rect [rect-constant | symbolic-vaiue... |;

where
point-constant = ‘{'x-integer-expr, y-integer-expr ‘}’
and ' ' '
rect-constant = '(’integer-expr, integer-expr, integer-expr, integer-expy }’

These type-statements declare a point (two 16-bit signed integers) or a rectangle
(four 16-bit signed integers). The integers in a rectangle definition speafy the
rectangle’s top-left and bottom-right points, respectively.

128 Chapter 6: Resource Compiler and Decompiler

Bl
E y
!

Fill and Align types

The resource created by a resouzce definition has no implicit alignment. It's
tceated as a bit stream, and integers and strings can start at any bit. The £111 and
align type specifiers are two ways of padding fields so that they beginon a boundary
that corresponds 0 the field type. align is automatic and £4111 is explicit. Fill and
alignment generate zero-filled fields. '

Flll specification. The £il1 statement causes Rez to add the specified number of bits
10 the data stream. The fill is always 0. The form of the statement is

£111 fill-size 1 length']’] ;

‘where fill-size is one of the following strings:

bit nibble byte word long

These declare 2 fill of 1, 4, 8, 16, or 32 bits (optionally multiplied by the length
modifier). Length is an expression < 2147483647 :

The following £il1l statements are equivalent:

£111 word([2]1: '

fill longy

£i1l bit(32]:

The full form of a type statement specifying a fill might be as follows:

‘type 'XRES' {data-type specifications; £ill biv(2];};

% Note: Rez supplies zeros as specified by £ill and align statements. DeRez
does not supply a2ny values for £111 or align statements; it just skips the
specified number of bits, or until datz is aligned as specified.

Align specification. Alignmcnt causes Rez to add fill bits of zerc _value until the data
is aligned at the specified boundary. An alignment statement takes the following
form:

align align-size:
where align-size is one of the following strings:

nibbkle byte word long

~ alignment pads with zeros untl data is aligned on 2 4-, 8, 16-, or 32-bit boundary.

Thus alignment affects all data from the point where it is specified untl the next
align statement

Resource Description Siatemnents

129

Array type _
An array is dedlared as follows:
| wide) array [armay-name | '['length'l'] ‘(" array-ifst‘}’;

The array-iist, a list of type specifications, is repeated zero or more times. The wide
aption outputs the array data in a wide display format {in DeRez)—the elements that
make up the array-list are separated by 2 comma and space instead of a comma,
return, and tab. Either array-name or {length] may be specified. Array-name is an
identifier.

If the array is named, then a preceding statement must refer to that array in a
constant expression with the $$countof(drray-name) function; otherwise DeRez
will be unable to decompile resources of this type. For exainple,

type 'STR¥#' { /* define a string list resource */
integer = $$Countof (StringArray):
array StringArray |
p3tring;
b
b

The $Scountef function retsrns the number of array elements (in this case, the
-number of strings) from the resource data.

If [Iengrh.] is specified, there must be exactly length elements.

Switch type

‘The switch statement specifies a number of case statements for a given field or
fields in the resocurce. The format is as follows:

switch ‘{’ case-statement... '}’';
where a case-statement has the following form:
case case-name : | case-body ; |...

Case-name is a sting. Case-body may contain any number of type specifications
and must include a singie constant den_:laration per case, in the f_ollowing form:

kay data-bpe = constant

Which case applies is based on the key value, For example,

type 'DITL’ {/* dialog item list declaration from Types.r */
... bype specifications. ..
switch | /* one of the following */

130 Chapter & Resource Compiler and Decompiler

(:h;g. :

case Button:

booclean enabled, disabled;

key bitstring{7] = 4; . . /* key value */
pstring;

case CheckBox::

boolean enabled, disabled:;

key bitstring(7] = 5; /* key value */
pstring;

...etcetera. ..

}:
}:

Sample type statement

The following sample type statement is the standard declaration for a "WIND'
rescurce, taken from the Types.s file:

type 'WIND'(
rect; " /* boundsRect */
integer _documentProc, dBoxProc, plainDBox, /* procil =/
altDBoxProc, noGrowDocProc, '
zoomProc=8, rDocProc=16;
byte invisible, visible; /* visible */
£1ll byte; ‘
byte noGoAway, goAway; /* has close box*/
fill byte;
unsigned hex longint; /* refCon */
pstring Untitled = "Untitled";) /* title */

i
Vi

The - ype declaration consists of header informaticn followed by a series of
statements, each terminated by a semicolon (;). The header of the sample window
declaration is

type 'WIND'

The header begins with the type keyword followed by the name of the resource type
being declared—in this case, a window. You may specify a standard Macintosh
resource type, as shown in the "Resource Manager" chapter of inside Maciniosh | or
you may declare a resource type specific to your application.

Resource Dascription Statements

The left brace {{) intreduces the body of the declaration. The declaration continues
for as many lines as necessary until a matching right brace (}) is encountered. You
can write more than one statement on a line, and a statement may be on more than
one'line (like the integer statement above). Each statement represents a field in the
resource daia. Recall that comments may appear anywhere where white spice may
appear in the resource description file; comments begin with /* and end with */ as
in C.

An aside: symbol deflnitions. Symboli¢ names for data-type fields simplify the
reading and writing of resource definitions. Symbol definitions have the form

name = value [, name = value ...

For numeric data, the “= value” part of the statement can be omitted. If 2 sequence
of values consists of consecutive numbers, the explicit assignment can be left cut—if
value is omitted, it's assumed to be one greater than the previous value, (The value is
assumed 10.be zero if it's the first value in the list) This is true for bitstrings (:md theu'
derivatives, byte, integer, and longint). For example,

integer documentProc, dBoxProc¢, plainDBox,
altDBoxProc, noGrowDocProc,
zoomProc=8, rDocProc=16;

In this example, the symbolic names documentProc, dBoxProc, plainDBox,
altDBoxProc, and noGrowDocProc are automatically assigned the numeric values 0,
1, 2, 3, and 4.

Memory is the only lim.it to the number of symbolic values that can be declaréd for a
single field. There is also no limit to the number of names you can assign to a given
value, for example, '

integer deocumentProc=0, dBoxProc=l, plainDBox=2, altDBoxProc=3,
. jDocProcmls, ' .

Document=0, Dialeog=l, DlalogNoShadow=2, ModelessDialog=3,

DeskAccesscry=16; s ‘ :

Resource — specity resource data

Rescurce statements specify actual resources, based on previous type
declarations.

Syntax

resource resource-type '{’ IDI, resource-name| {, attribwuges])’ {’
[data-statement | , data-statement }...]
g

132 Chapter 4: Resource Compiler and Decomplier

.,

Description

Specifies the data for a resource of type resource-type and ID ID. The latest type
declaration declared for resource-pype is used to parse the data specification. Datd-

statements specify the actual data; data-statements appropriate to each resource
type are defined in the next section.

The resource definition causes an actual resource be generaied. A resource
statement can appear anywhere in the resource description file, or even in a separai¢
file specified on the command line or as an #include file, as long as it comes after
the relevant type declaration.

Data statemnents

The body of the data specification contains one data statement for each declaration
in the corresponding type declaration. The base type must match the declaration.

Resource Description Siaternents

133

Base Type Instance Types

string string, cstring, pstring, char

bitstring boolean, byte, integer, longint, bitstring
rect ' " rect

pceint point

Switch data. Switch data statements are specified by using the following format:
switch-name data-body
For example, the following could be specified for the DITL! type given earlier:

CheckBox { enabled, "Check here" }

Array data. Array data statements have the following format:
1" [array-element | ; array-element)... '}

where an array-element consists of any number of data statements separated by
commas.

For example, the following data might be given for the 'STR# resource defined
eariier:

resource 'STR#' (280) ¢
~{ "this®;
“iar;
IVaIf;
"test n

Somple resource definition

This section describes a sample resource description file for a window. (See the
“Window Manager” chapter of Mmside Mactniosh for information about resources in
windows.)

Here, again, is the type declaration given above under “Sample Type Statement™

134 Chapter é: Resource Compiter and Decomplier

N

T

AT,

“ype "WIND'{
rect; /* boundsRect =~/
integer documentProc, dBoxProg, plainDBox, /* procID */
altDBoxProc, noGrowloecProc,
zoomProc=8, rDocPreoc=16;

byte invisible, visible; /* visible */

fill byte; :) :

byte noGoAway, dJoAway; /* has close box */
£i1l byte; _

unsigned hex longint; /* refCon */

pstring Untitled = "Untitled": : /* title =*/
be : ‘

Here is a typical example of the window data corresponding to this declaration:

resource 'WIND' (128,"My window",appheap,preload} ¢ /* Status report window */
{40,80,120;300}, /* Bounding rectangle */
documentProc, /* documentProc etc.. */
Visible, /* Visible or Inviiible =/
goAway, /* GoAway or NoGoAway */
0, . . . /* Reference value RefCon */
"Status Report” . /* Title */

i

This data definition declares a resource of type "WIND' using whatever type

declaration was previously specified for "WIND'. The resource ID is 128; the resource
name is “My window”. Because the resource name is represented by the Resource
Manager as a Pstring, it should not be contain more than 255 characters. The
resource name may contain any character including the null character ($00). The
resource will be placed in the application heap when loaded, and it will be loaded
when the resource file is opened.

The first statement in the window type declaration declares a bounding rectangle for
the window: ' :

rect;

The rectangle is described by two points: ‘the upper-left comer and the lower-right
corner. The points of a rectangle are separated by commas as follows:- :

{top, left, bottom, right)
An example of data for these coordinates is
140,80,120,300}

Symbolic names. Symbolic names may be associated with particular values of a
numerc type. Notice that 2 symbolic name is given for the data in the second, third,
and fourth fields of the window declaration. For example,

Resocurce Description Statements 135

_nteger documentProc=0, dBoxProc=1, plainDBox=2,
altDBoxProc=3, noGrowDocProc=4,)
zoomProc=8, rDocProc=16; /* windowTIype =/

This statement specifies a signed 16-bit integer field with symbolic names associated
with the values 0 to 4 and 16. The values 0 through 4 need not be indicated in this

case; if no values are given, symbolic names are automatically given values starting at
zero, as explained previously.

In the sample window declaration, we gave the values true (1) and false (@) to
two different byte variables. For clarity, we used those symbolic names in the
window’s resource data; that is,

visible,
goAway,
instead of their equivalents

TRUE,
TRUE,

or

1,
1,

Preprocessor directives

Preprocessor directives substitute macro definitions and include files and provide if-
then-else processing before other Rez processing takes place. This section describes
the preprocessor directives.

The syntax of the preprocessor is very similar to the C-language preprocessor. Each
of the preprocessor statements must be expressed on a single line, beginning on 2
new line and rerminated by a Return character. Jdentifiers (used in macro names)-
may be letters (A-Z, a-2), digits (0-9), or the underscore character (_). Identifiers
may not start with a digit. Identifiers are not case sensitive. An identifier may be any
length.

Variable Definitions
The #define and #undef directives let you assign values to identifiers:

#define macro data
#undef macm

136 Chapter é: Resource Compller and Decompller

The #def ine directive causes any occurrence of the identifier macro is to be
replaced with the text data. A macro can be extended over several lines by ending
the line with the backslash character (\), which functions as the Rez escape character.
For example,

#define poem "I wander \ -
thro\' each \
charter\'d street™

(Quotation marks within strings must also be escaped.)

$undef removes the previously defined identifier macro. Macro definitions can

also be removed with-the -undef option on the Rez command line.

The following predefined macros are provided:
Variable Value |

true 1
false _ 0

inciude directives

The #include directive reads a wext file:

#include flle _

Include the text file flle. The maximum nesting is to 10 levels.

= For example,

#include $$Shell (“HPW") "MyProject:MyTypes.z"

Note that the #include preprocessor directive (which includes 2 file) is different
from the previously described include statement, which copies resources from
another f{ile. _ -

If-Then-Else processing
The following directives provide conditional processing:

$if expression
[$#2lif expression]
#endif

% Note: expression is defined later in this chapter; with the #if and #elif
directives, expression may also include the following expression:

defined ' ('identifier)’

Preprocessor directives

137

The following may aiso be used in place of #if:

#ifdef macro
#ifndef macro

For example,
#define Thai

Resource 'STR ! {199y |

$ifdef English
"Hallo™

$#elif defined (French)
"Beonjour®

$elif defined (Thai)
rSawati"®

#elif (Japanese)
"Konnichiwa®™

#endif

b

Resource description syntax

This section describes the details of the resource description syntax. For a complete '
summary definition, see Appendix D. :

Numbers and literals
All arithmetic is performed as 32-bit signed arithmetic. The basic constants are

Decimal mm.. Signed decimal constant between 4294967295 and
: -2147483648.
Hex 0xhhh... Signed hexadecimal constant between OX7FFFFFET
‘ and 0X80000000.
Shhh. .. Alternate form for hexadecimal constants.
Octal ¢000... Signed octal constant between 017777777777

and 02000000C000.

Binary 0Bbbb... Signed binary constant between
OB11111111111111111111111111111111 and
0B 10000000000000000000000000000000.

138 Chapter & Rasource Compller and Decomplier

Literal ‘gaaa’ A literal can contain one to four characters.
Characters are printable ASCII characters or
escape characters (defined below). If there are
fewer than four characters in the literal, then
the characters to the left Chigh bits) are assumed
to be $00. Characters that are not in the printable
character set, and are not the characters \' and \\
(which have special meanings), can be escaped
according to the character escape rules. (See
i *Strings” later in this section.)
Literals and numbers are treated in the same way by the Resource Compiler. A lteral
is a value within single quotation marks; for instance, *A" is a number with the value
45, on the other hand, "A" is the character A expressed as a string. Both are
represented in memory by the bitstring 01000001. (Note, however, that "A" is not a
- valid number and 'A" is not a valid string.) The following numeric expressions are
all equivalent:

_IBI -
66
|A!+1

Literals are padded with nulls on the left side 5o that the literal 'ABC' is stored as
shown in Figure 6-3

*ABC' = 300 A B C

Figure 6-3
Padding of Uterals

Expressions

An expression can consist of simply a number or literal, Expressmns can also
include numeric variables and the system function:

$$countof ' army-ndme N

Expressions can include the expression operators listed in Table 6-1. Table 6-1 lists
the operators in order of precedence with highest precedence first—groupings
indicate equal precedence. Evaluation is always left to right when the priority is the
same.

Variables are defined following the table.

Resource description syntax

139

Tabie &-1
Resource Description File Expression Cperators

Opeigtor - Meaning
1. { expr) Parentheses can be used in the normal manner to force precedence in
expression calculation. :
2. -expr Arithmetic (two’s complement) negation of expr.
~expr Bitwise (one's complement). negation of expr.
' expr Logical negation of expr.
3. eprl* egpre - Multiplication.
exprl [/ expr2 Division.
exprl % expr2 Remainder from dividing exprl by expr2.
4, exprl+ expr2 Addition.
exprl - expr2 Subtraction.
5. exprl << expr? Shift left—shift expr! left by expr2 bits.
expri>> exprZ Shift right—shift exprl! right by expr2 bits.
6. exprl> expr2 Greater than. '
exprl >= exprl Greater than or equal.
exprl < expr2 Lass than.
exprl <= gxpr2 Less than or equal
T, exprl= =expr2 Equal
exprl = expr2 Not equal.
8. exprli expr2 Birwise AND.
Y. exprl © expr2 Bitwise XOR,
10, exprl | expr2 Birwise OR.
11. exprlss expr? Logical AND.
12, exprl || expr2 Logical OR.
The logical operators !, » >= < <= == = && | | evaluate to 1 (true) or 0
(false). '
Variables

There are some Resource Compiler varables that contain commonly used values.
All Resource Compiler variables start with $5 followed by an alphanumeric

wdentifier.

140

Chapter 6. Resource Compiler and Decompller

The following variables have string values (typical values are given in parentheses):

$SVersion

$3Date

$$Time

$55hell (" strExpr")

Version number of the Rescurce Compiler.
Cvio W '

Current date. Useful for putting timestamps into
the resource file. The format is generated through
the ROM call IUDateString. (*Thursday, Febmary
20, 1986"

Current time. Useful for timestamping the
resource file. The format is generated through the
ROM call IUTime_St.ring. ("7:50:54 AM™)

Current value of the exported Shell variable
{strExpn. Note that the curly braces must be
omitted, and the double quotes must be present.

$5Resource (" fllename”, 'tjpe';lD { “resourceName")

Reads the resource ' fype’ with the [D D or the
name "resourceName" from the resource file
* filename”, and returns 2 string.

The following variables have numeric values:

$SHour * Current hour. Range 0-23.

$SMinute Current minute. Rz_in_ge 0-59.

sSecond Current second. Range 0-39.

SSYeér Current year.

SMonth Current month. Range 1-12.

$5Day Current day. Range 1-31. _

$SWeekday Current day of the week. Range 1-7 (that is,
Sunday - Saturday).

Strings

There are two basic types of strings.

Text string "a..”

The string can contain any printable character
except ‘ " 'and ‘\'. These and other characters
can be created through escape sequences. (See
Table 6-3.) The string "™ is a valid string of
length 0.

. Resource description syntax

141

Hex string $“hh..." Spaces and tabs inside a hexadecimal string are
ignored. There must be an even number of
hexadecimal digits. The string $"" is a valid
hexadecimal string of length 0.

Any two strings (hexadecimal or text) will be concatenated if they are placed next to
each other with only white space in between. (In this case, returns and comments are
considered as white space.)

Figure 6-4 shows a Pascal string declared as
pstring [10};

whose data definition is

"Hello"™;

$05 | H) | " . o | %00 |%00] 300 {$00{ %00

. Figure 6-4
Internal representation of a Pascal sting

I the input file, string data is surrounded by double quotation marks (). You can
continue 2 string on the next line; the semicolon (;) terminates the siring data. A
side effect of string continuation is that 2 sequence of two quotation marks ("*) is
simply ignored. For example,

IIHellO “"Out "
"there.";

is the same string as
"Hello out there.“;

To place a quotation mark in a string, precede the quotation mark with a backslash
. '

Escape characters

The backslash character (\) is provided as an escape character to allow you to insert
nonpriniable characters in a string. For example, to include a Return character in a
suing, use the escape sequence

\r

Valid escape sequences are given in Table 6-3.

142 Chapter & Resource Compiler and Daecompiler

Table 4-2 ’

Resource Compller escape seguenc

Escape sequence Name Hex valiue Printable equivaient

\E tab $09 none

\D backspace $08 none

N\ return $0D none

\n newline soD none

\E form feed $0C none
(\v vertical tab $0B none
A2 rubout $7F none

A\ ~ backslash $sC A

! single quote 33A !

A . doubie quote 322 "

& Note: On the Macintosh, newline is identical to retum.

You can also use octal, hexadecimal, decimal, and binary escape sequences
specify characters that do not have predefined escape equivalents. The forms are as

follows:
Base " Form Number of digits Example
2 \0Bbbbbbbbb 8 \(B01000001
8 \ooo 3 \101
10 \0Dddd 3 \ODO6S
16 \Oxhh 2 \0X41
16 \S$hh 2 \541

_ Some examples are

\ \NOTT : ' /* 3 octal digits */
\OxEFF S /* ‘0%’ plus 2 hex digits */
\SF1\SF2\SF3 /* 'S plus 2 hex digits
04099 7/* '0d’ plus 3 decimal digits */

% Note to C programmers: An octal escape code consists of exactly three digits:
for instance, to place an octal escape code with a value of 7 in the middle of an
alphabetic string, write AB\007CD, not AB\TCD.

Rescurce description syntax

143

- Chapter 7

Putting Together an
Application, MPW Tool, or
Desk Accessory

Contents

Overview of the Build Process xx
The Structure of a Macinfosh Appllcation xx

Unking xx

What to link with x

Linking multilingual programs x
File Types and Creators xx

Putting Together an MPW Tool xx.

Pum'ng Together a Desk Accessory or Driver xx

Linking a desk accessory or driver x
The desk accessory resource file x

Using Make xx

Format of 2 makeFile x
Dependency rules x
" Double-f dependency rules x
Default rules x
Built-in default rules x
Directory dependency rules x
Variables in makefiles x '
Shell variables x
Defining varables within a makefile x
Built-in Make variables x
Quoting in makefiles x
Comments in makefiles x
Executing Make's output x
Debugging makefiles x
An example x

146 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

TN

More About Linkihg xx

Linker functions x

Segmentation x

" Segments with special ueatment x

Setting resource attributes x .

Controlling the numbering of code resources x

Resolving symbol definitions x .
Multiple external symbol definitions x
Unresolved external symbols. x

Linker location map x

Optimizing your links x

tibrary Construction xx

Using Lib to build a specialized library x
Removing unreferenced modules x
Guidelines for choosing files for a speaa.hzed hbrary X

Chapter 7: Putting Together an Application. MPW Tool, or Desk Accessory

147

Overview of the build process

This chapter describes the mechanics of building a program——the steps involved are
nearly the same for applications, MPW tools, desk accessories, and drivers, All
programmers should read the opening sections of this chapter, which expiain the
entire build process for an application, the standard case. Later sections explain
what's different about building an MPW tool, desk accessory, or driver.

Building a progrém consists of the following steps:
1. Create source files and compile them. Each source file is compiled or assembled
to produce a corresponding object file. (For information on writing programs in

Pascal, C, or assembly language, and including the proper interface or include
files, see the appropriate MPW language manual.)

2. Create additional resources with ResEdit or Rez If your program requires any
additional resources (other than code resources), you can create them by using
the resource editor (ResEdit) or Resource Compiler (Rez). See Chapters 5 and 6
-for detailed information.

3. Create the final executable file with Link. The object files are linked together,
along with any needed library routines, into either a new resource file or an
existing one (replacing the 'CODE', 'DRVR', or other executable resources).

Note: For building a desk accessory or driver in Pascal or C, an additional step is
required—run Rez to create the final 'DRVR' resource. For details, see “Putting
Together a Desk Accessory or Driver,” later in this chapter.

Figure 7-1 illustrates the compiete process.

148 Chapter 7; Putting Together an Application, MPW Tool, or Desk Accessory

o

Q Shell editor J

ér_npilér or Aséembla

executable
code resources

APPL, MPST....

resource
file
=,MSIC

{Duplicate)

Ovenview of the build process

149

Figure 7-1
Building a program

For example, the following series of commands compile, “Rez,” and link the sample
Pascal application Sample.p:

Pascal Sample.p

Rez Sample.r -o Sample

Link Sample.p.o 4
"{Libraries}"Interface.o g
"{Libraries}"Runtime.c d
"{PLibraries}"Paslib.o 4
-0 Sample

This process is usually automated by using the Make tool. (See the sample makefiles
in the Examples folders, and the “Using Make™ section later in this chapter.)

The structure of a Macintosh application

Macintosh files have two forks: a resource fork and a data fork. ‘The resource fork
contains a number of resources, The data fork may contain anything the application
puts there. On the Macintosh, a program is a file whose resource fork contains code -
resources (CODE' or other executable resources), and in most cases additional
resources containing strings, dialogs, menus, and the like. The code resources for
appiications and tools must contain a main program Or an execution starting point.
Desk accessories and drivers, by contrast, don't require a main program, but '
coniain collections of routines that are called individually when the desk accessory or
driver is used.

The simplest possibie application has two resources in the rescurce fork and nothing
in the data fork. The first resource is 2 '"CODE' resource with ID = 0. (The Linker
creates this resource, which contains the jump table and information about the
application’s use of parameter and global space.) The second resource is a 'CODE'
resource with ID = 1, which contains the application’s code segment. For more
information, see the “Segment Loader” chapter of instde Macintosh.

150 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

.”».\\

l\\

Linking
This section describes how to link an application, MPW tool, desk accessory, or
driver.

< Note: For more information about Linker functions, see “More About Linking”
“in this chapter. The Link command itself is described in Chapter 9. The MPW
object-file format is described in Appendix H.

The Linker links object files into an application, MPW tool, desk accessory, driver,
or other executable resource. The Linker’s output is an executable object file. The
Linker links together the compiled or assembied object files, along with any needed
library routines, into either an existing resource file (replacing the 'CODE', 'DRVR',
or other executable resources) or a new one (Figure 7-2). :

Object (.0} - Libraries
filos 0
'08J” ‘0BJ '

N/

$

Code
rasources
APPLor
MPST

Figure 7-2
Linking

The Linker resolves all symbolic references, and also controls final program
segmentation. A related tool, Lib, provides facilities for modifying and combining
object files (libraries).

Linking

151

~ The Linker's default action is to link an application (type APPL, creator 1272727,
placing the output segments into 'CODE' resources. You can set a file's type and
creator with Link’s -t and -c options. (See *File Types and Creators” below.)

What fo link with

Applications, tools, and desk accessories should be linked with. the libraries listed in
Table 7-1. It's wise to link new programs with all of the libraries that might be needed.
If unnecessary files are specified, the Linker will display wamnings indicating that they
can be removed from your build instructions. ' '

Table 7-1
Fiies to ink with

Inside Macintosh interfaces
{Librarieslinterface.o

Runtime support. Link with one of the following:

{Libraries}Runtime.o if no pixt of the program is written in C
{CLibrarieslCRuntime.o if dny part of the program is written in C

Pascal braries
{PLibraries}PasLib.o Pascal language library
{PLibraries}SANELib.o SANE numerics library

C libraries
{CLibrariesjCInterface.o Macintosh interface for C
{CLibraries}CSANELib.o SANE numerics library
{CLibraries}Math.o math functions - -
{CLibraries}StdCLib.o Standard C Library

Specialized libraries. You may also call routines in the following libraries:
{LibrariesjObijLib.o object-oriented programming (Pascal and Assembler)
{Libraries}ToolLibs.o routines for MPW tools

Desk accessories
{Libraries}DRVRRuntime. o driver runtime library

For details about linking tools and desk accessories, refer to “Linking a Tool” and
“Linking a Desk Accessory or Driver” later in this chapter.

152 Chapter 7: Putting Together an Application. MPW Toaol, or Desk Accessory

/-‘-\.

—

SN

Ll

Linkmg multilinguat programs
When you link programs that use libraries from more than one language, the Linker -

-may detect several duplicate entry points. Normally it doesn’t matter which of the

duplicate copies of a particular routine get linked with your program. (You can use
the Linker’s -w option to suppress the duplicate definitions warnings.) .

However, programs written party in C and partly in assembly language or Pascal
require special precautions. When you link C code with other languages, link with the
file CRuntime.o and not with Runtime.o. If execution is expected o begin with the C
function main (), no special action is necessary. However, if your main program is
written in assembly language or Pascal, but part of your program is written in C, the
object file containing your main program must appear before CRuntime.o in the list
of object files passed to the Linker.

File types and creators

When you execute a command, the Shell determines how to run it based on its file
type. Files of type APPL are considered applications and are run as if launched from
the Finder. Files of type MPST are considered MPW tools and are run within the Shell
environment. Files of type TEXT are taken to be command files and are interpreted
by the Shell. An attempt to run a file of any other type produces an error message
Table 7-2 summarizes file types and creators.

Table 7-2

File types-and creators

Type of Proﬁrarn ' Type Creator
Application _ - APPL ' any
MPW tool - MPST : ‘MPS§ '
. Desk accessory DFIL | DMOV
Command file TEXT any

% Note: Each applicauon has its own unique creator (or signature)——see the
“Finder Interface” cthter of Mmside Macintosh.

You can set a file’s type and creator with the -t and - options to Link, Rez, or SetFile,

Putting together an MPW fool

153

Putting together an MPW tool

Typically, when a program is run on the Macintosh, it takes over the screen, puts up
its own- menus, and replaces the previcus program. Programs with this behavior
(such as MacPaint or MacWrite) are called applications. All of the programs
previously available on the Macintosh, except for desk accessories, fall into this
category.

The Shell also provides an environment for a new type of program called an MPW
tool. Tools are similar to desk accessories in many aspects of their behavior, When a
tool is run from the Shell, it does not replace the Shell nor erase the screen, but
instead runs within the Shell environment and has access to the facilities provided by
the Shell, The Assembler, the Compilers, Link, Make, and so on are all toois in the
MPW system.

For a description of the facilities available to an MPW tool, see Appendix F, 'Writing
an MPW Tool.”

Linking a tool

Linking an MPW tool is the same as linking an application, except that the file type
must be set to MPST and the creator to 'MFS ' (MPSspace):

Link -t MPST =-c "MPS "

Sample tools zre provided in the Examples folders for each of the MPW languages—
refer to the sample makefiles for examples of the commands used to build a tool.
Nole that the sample tools are linked with the files Stubs.a or Stubs.c— these files
contain -dummy library routines that are used to override standard library routines
that aren’t used by MPW tools, thus reducing the ool’s code size.

% Note: As a matter of convenience, tools are usually kept in the {MPW}Tools
folder. This allows you to invoke the tool by using its simple name instead of its
full pathname. {MPWITools is one of the directories that the Shell automaticaily
searches when a command name is given with a partial pathname. (The Shell
variable {Commands} contains a comma-separated list of directories to be
searched; you can easily modify it to include additional directories.)

Putting io&eiher a desk accessory or driver

A desk accessory is 2 'DRVR' resource whose resource name begins with a null
character ($00), and that resides in the System file. To make it convenient o wrile a
desk accessory or driver in Pascal or C, MPW provides the following:

154 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

P

8 The library DRVRRuntime.o, which contains the glue for the driver rourines open,
Drime, status, control, and close.

® The resource type 'DRVW", declared in :RIncludes:MPWTypes.r. The 'DRVW"
fesource is a special case of 2 'DRVR' resource, and contains constants that point
to the addresses of the driver routines in DRVRRuntime.o. ‘

For information on writing a desk accessory using the DRVW' resource and
DRVRRuntime routines, see Appendix G, “Writing a Desk Accessory or Other Driver
Resource.” The remainder of this section describes how to put together a desk
accessory and install it. :

Putting together a desk iccessory or driver requires two steps:

“1. Link your driver code with the DRVRRuntime library and with any other libraries
= - you need. The object code is linked into 2 code resouce of type DRVW', an
intermediate form of the standard 'DRVR' resource.

" 2. Use the Resource Compiler, Rez, to create the final driver file. That is, you'll need
to compile the linked 'DRVW" resource into a standard "TDRVR' resource, using the
'DRVW" type declared in :Rincludes:MPWTypes.r, together with any other
resources your desk accessory may require,

~ You'll then need to install your desk accessory in the System file by using the
Font/DA Mover. :

Figure 7-3 iliustrates the process of building a desk accessory or other driver,

Putting together G desk accessory or driver 155

compiled ' DRVR-
driver code Runtime.o Iigrt:r‘i;s
type 'OBJ7Y] library _
(Linker)
DRVW MPWType.r | additionai
resource {for DRVW resources
declaration)

N_ v 4

Rasource Compilaer
{Rez)

'

driver file
DRVR
resource

(type DFIL)

Figure 7-3
Building a desk accessory with DRVRRunime

156 Chapter 7: Putling Together an Appillcation, MPW Tool. or Desk Accessory

-

% Note: Of course, it's still possible to create a desk accessory dlrect]y in
assembly language, without using DRVRRuntime.

Linking a desk accessory or driver
Linking a driver requires the following:

w The Linker's -rt option must be specified. The -rt option indicates the link of a desk
“accessory or driver and sets the resource type and ID. (The default, if no -rt option
is specified, is 1o output 'CODE' resources beginning with resource ID 0.)

. & When you link a desk acceésory or driver, the code must be it a single segment

(that is, no jump table is constructed). You can map code from several segments
into a single segment with the -8g or -sn options.

® Desk accessories written in Pascal or € must be linked with DRVRRuntime.o, which
should appear first in the list of object files.

For example, the following command links the sample desk accessory file
Memory.c.0, placing the output in the file Memory. (This output is the intermediate

* 'DRVW" resource, which must be converted into a 'DRVR' resource as explained in

the next section.)

Link -w d
-rt DRVW=(Q g
~sn Main=Memory o
"{Libraries}"DRVRRuntime.o # must appear first o
Memory.c.o d
"{Clerarles}"CRuntlme o 0
"{CLibraries}"CInterface.o 0o
~0 Memory.DRVW :

'I’hls command does the following:
m The -rt opnon sets the cutput resource type to 'DRVW' and the resource ID to 0

Note: ‘'This 1) must match the ID specified in the $$resource statement in the
Rez input file. Note also that any additional resources “owned” by the desk
accessory must observe a special numbering convention, as described in the
“Resource Manager” chapter of Inside Macintosh.

m The -sn option combines the segment Main into the segment Memory.

® The specified files are linked. The DRVRRuntime.¢ library must be. the first object
file in the link list. This ordering ensures that the main entry point in CRuntime.o
will be overridden by the DRVRRuntime.o entry point. (A Linker warning will call
atlention to this.) The main entry point in CRunume o cannot be used for desk
accessories.

Putting together a desk accessory or driver

157

Desk accessories must not call routines that use global variables, and therefore are
less likely to need routines from the Pascal, C, and specialized libraries listed in
Table 7-1. In a correct link, the Linker’s progress information will report “Size of
global data area: 0,” and “No data initialization.” If global data is somehow

- allocated, the link will succeed, but the desk accessory will not run correctly.

The desk accessory resource file

“The last step in the construction of 2 desk accessory or driver is to put together the
DRVR header with the linked code. The following example of a Resource Compiler
(Rez) input file shows how this is done: :

#include "Types.r®
#include "MPWTypes.r"

type 'DRVR' as 'DRVW';
#define DriverID 12 /* The number is irrelevant */

regsource ‘DRVR' (DriverID, "\0x00Memory", purgeable} |

dontNeedLock, /* OK to float around, not saving ProcPtrs */
needTime, - /* Yea, give us periodic Control calls */
dontNeedGoodbye, /* No special requirements */
noStatusEnable, :

ctlEnable, /* Desk accessories only do Contrel calls */
noWriteEnable,

noReadEnable,

5%60, /* Wake up every 5 seconds */

updateMask, /* This DA only handles update events */

0, /* This DA has no menu */

"Memory", /* This isn't used by the DA */

$Sresource ("Memory.DRVW", *DRVW', Q)
b '
The header information contains the dewils of the desk accessory’s event mask,
menu ID, and so on. (See the "Device Manager” chapter of Inside Macintosh and the
file MPWTypes.r for information about the format of a 'DRVR' resource.) The
$Sresource directive then appends the linked object code to the DRVR header
where it belongs.

If your desk accessory has any owned resources, such as 'STR#' or "WIND' resources,
you can add them to your desk accessory’s resource compiier input.

To build the desk accessory resource, use the Rez command to compile the resources
you have specified, and set the file type and creator for a Font/DA Mover document:

Rez -c DMQV -t DFIL Memory.r —¢ Memory

158 Chapter 7: Putting Together an Application, MPW Tool, or Desk Accessory

S

The file type DFIL indicates a document file for the Font/DA Mover; the creator
DMOV indicates a Font/DA Mover document (suitcase icon).

To install a desk accessory, use the Foat/DA Mover to place the desk accessory in the
System file. You can do this from MPW as follows:

“Font /DA Mover" Memory

After exiting the Font/DA Mover, you can execute the desk accessory by selecting its
name from the Apple menu. . : :

Using Make

The Make tool enables you to keep track of all of the components of a program and
their relationships 1o each other—then, when one component of 4 program is
updated, Make lets you automatically update all other parts of the program that
depend upon it. These updates may be such things as compiles, assemblies, links,
and resource compiles.

Make reads a makefile that describes the dependencies of the vatious components of
a program, and outputs commands on the basis of these dependencies. This section
describes how 1o write a2 makefile and use Make. (The Make command and
command-line options are described in Chapter 9.)

Format of a makefile

A makefile is a text file that describes dependency information for one or more target
filles. A target file is a file to be rebuilt; it depends ori one or more prerequisite files
which must exist or be up-to-date before the target can be rebuilt. For example, an
application would depend upon its source file or files, 2 number of library files, and
resource files. If any of a target’s prerequisite files are newer than the target, then the
target needs to be rebuiit. ' o :

A makefile can include dependency rules, variable deﬁnitio'n"s, and conunenté. '
Table 7-3 summarizes the syntax of a makefile, and the sections following the table go
into more detail, :

Using Make

159

Table 7-3 :
Makefille summary

targetFile... f | prerequisiteFile... 1
[ShellCommands... |

targetFile... ff [prevequisiteFile...)
SheilCommands...

Jsuffd F osuffix _
SheliCommands...

targetDirectory: ... f searchDirectory: ...

varigbleName = stringValue
comment

{namel

Lttt a

dReturn

Dependency rule, with or without build commands (f
is Option-F on the keyboard). This rule means that
targetFile depends upon prerequisiteFile. If any of the
prerequisites are newer than the target the subsequent
Shell commands are output.

Important: Build commands must begin with a space
or tab. : ' o

Dependency rule, requiring its own set of build
commands

Défa_ult rule (specifies suffix dependenciesj
Directory dependency rule (used with default rules)
Variable definition

Comrhent _

Variable reference

Quotes (as in the Shell)

Line continuation character

<% Note: Makefile input lines may not exceed 255 characters.

A makefile for the sample Pascal application (Sample) is shown below:

#%# Variable Definitions ###

Libs = “"(Libraries}"Interface.o o

"{Libraries}*Runtime.o @
"{PLibraries}"Paslib.o

Dependency Rules

Sample ff Sample.r
Rez Sample.r -o Sample
Sample ff Sample.p.o

Sample.r
Link Sample.p.o 0
{Libs} 4
-0 Sample

160 Chapter 7: Bullding a Program

¥ Sample depends on Sample.r

Sample depends on Sample.p.o 9

and Sample.r

SN

Sample.p.o f Sample.p
Pascal Sample.p a

Sample makefiles are contained in the Exampl@ folders for each of the MPW
languages (introduced in Chapter 1.

" Dependency rules

A dependency rule specifies the component (prerequisite) files of a given target file,
together with a list of the commands needed for building the target file. These

. commands will be written to standard output if any of the prerequisite files is newer

than the target file. The general form of a dependency rule is

targetFile ... £ | prerequisiteFile ...]
{ SheliCommands ... |

m The first line is called the dependency line. It consists of one or more target file
names, followed by the f (Option-F) character (meaning “is a function of"),
followed by a list of prerequisite files separated by blanks. Make looks at the
modification dates of the prerequisite files (and their prerequisites, if any) and
decides whether the target needs to be rebuilt.

w All subsequent lines that begin with a space or tab are build command lines. These

are Shell commands that wiil be output if the target needs updating. (When Make
writes these command lines to standard output, the initial space or tab is omitted.)

For example,

Sample.p.o f Sample.p
Pascal Sample.p
8 The first line in the example is a dependency rule for the Pascal object file
Sample.p.o. This rule states that Sample.p.o depends on the source file
-Sample.p.

s The second line is the associated build command line. If Sample.p is newer than
Sample.p.o, or if Sample.p.o doesn’t exist, the command Pascal Sample.p
is written to standard output. :

More than one ta:get file name can appear on the left-hand side of an f rule.” Each
target file on the left-hand side depends on all of the files listed on the right-hand

. side (and has the same build commands, if specified). If more than one target file is

specified, it's exactly as if a separate dependency rule had been given for that target.
The built-in Make variable {Targ} has the value of the current target.

You can also state multiple dependency lines for a single target—multiple
dependencies mean that the target depends on all of the prerequisite names that
appear on all of the lines. If no build commands are specified for a dependency line,
the build commands are taken from other dependency rules, or default rules, if
present.

Using Make

161

»,
o

Note: With the standard “single-f” form of the dependency rule, only one
sequence of build commands may be specified for any given target. Thus, on
dependency rule specifies a target’s build commands and additonal rules
sxmpiy specify additional dependencies.

Double-f dependency rules:

Double-f dependency rules are slightly different from the standard single-f rules.
Syntactically, a double-f dependency entry is the same as a single-f entry, except
that f.f is used in place of f. The difference is that each double -f rule requires its own
set of build commands. For example,

TargetFile §ff A B
build commands-1

TargetFile ff C D
buitld commands-2

If the target is out-of-date with respect to one or more dependency set, each of the
corresponding sets of build commands will be output. That is, if TargetFile is out-of-
date with respect to both A @nd C, then both sets of build commands are cutput. (In
single-f rules, only one set of build commands can be specified for any-one target)

Double-f rules are useful for separately building code and resources, as shown in the
makefile for Sample. (For more examples, see the sample makefile at the end of this
section.)

Default rules

Default rules express dependendes between pairs of files whose names are the same
but whose suffixes differ. They have the following form:

Isuffxll f .suffx2
ShellCommands ...

(Note that the period must be present for a default rule to be recognized. The period
is taken as part of the suffix.)

The power of default rules is that many specific dependencies and build commands
can be expressed by a single rule. Make has built-in default rules for assemblies and
for C and Pascal Compilers. You need to specify only the dependencies not covered
by default rules.

Default rules are applied only when no build commands have been given for a
particular target. You can override the built-in default rules by placing your own
versions of the default rules in the makefile. You can augment the default rules for a
particular file by additional dependency rules, as long as these dependency rules do
not include build comrnands.

162 Chapter 7: Building a Program

PN

el
» 3

./_\\'

.Defaull ruies of the form

[suffx

“specify dependencies between files with any name and files with the same name

foliowed by the given sutﬁx

- «» Note: Default rules of this form slow down Make processing, because the empty

lefi-hand side of the rule causes it to match against all filenames.

Bullt-in default rules A compiled or assembled object file is dependent on s
source file—this dependency is typically handled by the built-in default rules.
(Additional dependencies may result from other units that you use or refer to in your

~ file~—these may be include files, C header files, or Pascal USES ﬁles)

The data fork of Make contains the following built-in default rules:
.a.o f .a

(Asm} {ACptions} {DepDir}{Default}.a -o (TargDir}{Default}.a.o

.C.o f .e _ R _
{C} {COptions} {DepDir]){Default}.c -o {TargDir}{Default}.c.o

.pP.o f o.p : :
‘{Pascal} {POptions} {DepDir}{Default}.p -o¢ {TargDir}{Default}.p.o

{Asm}, {Pascall, and {C} are built-in Make variables. Their initial values are

{Asm} Asm
{Pascal} Pascal
{ci C

{AOptions], (POptions}, and {COptions} are initially null; you can customize the
default-rule build commands by defining these variables in the makefile. (For
instance, you might want to specify the location of your include files by adding 2
-i pathname option).

You can redefine these variables—-variable definitions can be overndden in your
makefile, on the command line (with Make's -d option), or by an exported Shell
variable. See *Variables in Makefiles” below for information.

{DepDirt and {TargDir} are built-in Make variables that allow default rules 1o work in
the same or different director_ies:

{DepDir} The directory component of the prerequisite name

{TargDis} The directory component of the target name

Using Make

163

& Note: {DepDir} and {TargDir} have values only when used in the build
commands of default rules for which directory dependency rules were applied.
In all other cases these variables evaluate to the null string so that they won't
interfere with the normal behavior of default rules. Directory dependency rules

are explained in the following section.

{default} is another built-in variable; its value is the common part of the filenames
matched by a default rule (defined dynamically when Make applies the default rule). -

& Note: When expanding the built-in variables {Targ}, {NewerDeps}, (TargDir},
{DepDir}, and {Defaultt in build commands, Make automatically quotes their
values, if necessary, because they will represent filenames or parts of filenames.
Don’t quote them yourseif. '

Directory Dependency Rules Normally, defauit rules work only within a single
_ directory. Directory dependency rules allow default rules to be applied across '
directories. Just as default rules imply changing 2 filename suffix between a target
filename and a prerequisite filename, directory dependency rules imply changing
the directory prefix of the filenames. Directory dependency rules have the form

targetDirectory: ... f searchDirectory: ...

Directory dependencies are identified by dependency names that end in colons
(that is, directory names). For example,

ObjFiles: f SrcFiles:

The above rule, together with the standard default rules, would mean, for example,
that ObjFiles:name.c.o depends upon SrcFiles:name.c. No build commands may
be given for a directory dependency rule. More than one directory name may
appear on either side of the rule. The current directory can be specified by a single
colon () on either side of a directory dependency rule. '

Directory dependency rules are applied only during the processing of default rules. If
Make is applying a default rule and encounters 2 target name with a directory.
component, Make checks for a directory dependency rule for that directory. If one
exists, Make tries prerequisite filenames with the directory prefixes given on the
right-hand side of the rule. ‘The names are tried in the order that they appear in the
rule. :

i64 Chapter 7: Building a Program

e

% Note: 1f default rules are meant to be applied from a directory A: to a directory
B: and also within A: (that is, from A: 10 A:), then A: should appear on both the
teft and right sides of the directory dependency rule. For example,

A: § A: B: -

Variables in makefiles

You can use exporied Shell variables and built-in Make variables within makefilés.
You can also define variables within a makefile or on the Make command line. -

" Shell variables

Make automatically defines expored Shell variables before it reads the makefile, so
you can use Shell variables in dependency lines and build commands,

 If Make doesn’t recognize a variable reference in a build command line, it is left

unchanged, so that it can be processed later by the Shel} (Umdenuﬁcd vanables in
dependency lines are reported as errors.).

_Cauﬂon

Exported Shell varabies override Make variables with the same names. An oﬂempt

~ to redefine a Shell variable in the makefile resulls in warming message.

Defining variables within a makefile
Variable definitions are makefile entries of the form
variableName = stringVaIue

Subseguent appearances of {vaﬂableName! will be replaced by stﬂngValue. One
common use of variables is to parameterize the directory portion of filenames so that”
you can easily adapt a makefile to different directory setups.

% Note: Make variables in build command lines are not expanded until Make
generates the build commands—because command generation follows all
dependency rule processing, there’s no requirement that variable deﬁmuons
appear before their references in build command lines.

You can define a variable on the command line with Make’s -d option; this overrides
any definition within the makefile,

Using Make

165

Built-in Make veriables

The following built-in Make variables have values that are dynamically assigned as
Make generates the build commands: ' :

{Targl The complete filename of the target on the lefi-hand side of the
dependency rule whose build commands are being processed.

{NewerDepst A list of the names of all of the target's direct pferequisius that
were newer than the target; that is, the files that caused the
target to be out-of-date.

These built-in variables can be used only in build command lines, because the? have
no value when dependency lines are processed.

When default rules are applied, the following variables are also defined:

{Default} - The common part of the filenames maiched .by a default rule.
[TargDir} - The directory component of the target name.
{DepDir} The directory cofnponent of the prerequisite name.

& Note: When expanding the built-in variables {Targl, {NewerDeps}, {TargDir},
{DepDir}, and {Defauli} in build commands, Make automatically quotes their
values, if necessary, because they will represent filenames or parts of filenames.
Don't quote them yourself. '

Quoting in makefiles

The Make command supports several of the Shell's quoting conventions. Quoted
items can appear in dependency lines, variable definition lines, and build
command lines. The following quoting characters are used:

a Quotes the subsequent character; that is, the 8 is removed and
the subsequent character is taken to be a literal character
(except when dReturn is used at the end of a line as a
continuation character).

L Quotes the enclosed string. The single quotes are removed.

A Quotes the enclosed string, but {...} variable references are
expanded, and the escape character d is processed. The
double quotes are removed. '

GQuotes are processed as follows:

m In dependency lines and in the name part of variable definitions, quotes literalize
the quoted characters (useful for file or variable names).

On the right-hand side of variable definitions, quoted items are passed through
“25 is,” so that the quoting will take effect when the variable is expanded.

166 Chapter 7: Building a Program

P

T

~ @ In build command lines, quoted items are passed through as-is, sG that the

quoting will take effect when the build commands are executed by the Shell.

Line continuation character

Like Shell commands, dependency and variable definition lines can be continued
over more than one line with dReturn. dReturn causes the 9, any blanks preceding
the d, the retum, and zny leading blanks on the next line to be replaced with a single
space. Comments at the ends of such continued lines do not cémment out the
continuation character. '

Comments in makefiles

The number sign (#) indicates a comment. Everything from the # to the end .of the
line is ignored. Comments always end at the next return, even if the return is
preceded by a a. .

Comments may appear in dependency lines, variable definitions, and build
command lines, or on lines by themselves. Comments in build command lines are
passed through to standard output where they are processed as comments by the
Shell. . . : ‘

Executing Make’s output

Make generates a set of commands, which must be executed separately to perform
the actual updates. You can automatically execute Make's command output by calling
Make from a Shell command file. The simplest form of such a command file consists
of the two commands: ' o '

Make {"Parameters™} > MakeQut
MakeCut

The first command executes Make, using the parameters passed to the command file.
(See the description of the {"Parameters"} variable in Chapter 3.) Output (that is,
build commands) is redirected to the file MakeOut. The second line of the command
file exécutes MakeQut, o

Debugging makefiles

When Make doesn't seem to be doing what you expect, the next step is to debug your
makefile. The following procedures are helpful in debugging makefiles:

Using Make

167

1. Use Make's -¥ option to generate verbose output. This output tells you which files
don’t exist, which files are up-to-date, which files need rebuilding, and why they
are out-of-date. It also points out which files don’t have build rules and, thus, are
assumed to be artificial targets (targets that are abstract and not really built— see,
for example, Note 8 in the Make example that follows this section).

2. Use Make’s -8 option to show the structure of your target’s dependency relations.
This option displays the complete structure of dependencies, including those
generated by default rules. A target (or subtarget) that doesn't appear or that has
no prerequisites may indicate a typographical error in the dependency line for
that target (or in the line for one of the targets that depend on it). A target that
appears at the wrong level in the dependency graph indicates an error in your
dependency specification.

3. Use the -u option to find unreachable targets. These may be parts of your target
dependencies that did not get connected due to a bad or mistyped rule.

‘Problems due to command generation before execution

' Make generales commands that must be separately executed to perform the actual
updates. Because Make must determine what build commands 1o generate before any
targets are actually built, the possibility of *phase errors” is introduced; that is,
unexpected behavior may occur when generated commands alter the assumptions
that Make used to determine whether targets were out-of-date. (You're not likely to
experience these problems unless you have build commands that do things such as
deleting files that Make thinks are already up-to-date.)

Problems with different specifications for the same file

You'll experience problems with Make if you use different pathname specifications
for the same file (that is, pathnames with different degrees of volume and directory
qualification). Make uses the name strings exactly as encountered in dependency
lines, so different name strings will result in different entries. (This is done for the
sake of performance-—no calls are made to the file system, except to inquire about
the date of targets that are supposed to be built) If there is more than one name
specification for the same file, each name results in a different Make target, and the
resulting dependency relations will be wrong,

‘Problems with defauit rutes

An error message may appear saying that no rules were available to build something
that should have been covered by a default rule. This situation may result from any
one of the following problems:

168 Chapter 7: Building a Program

.
]

s The default rule may not have matched against anything, and was thus not
applied; for example, the default rule

-p.o f .p
cannot be applied if the .p file does not exist either in the f'xle system or in the
makefile dependency specification.

= There may be a typographical error in the filename, so that the default rule could
not be applied. You should be able to delect such errors by inspecting the output
of Make’s -8 and -v options. :

® There may be a typographical error in a default rule that was given in the makefile,
in which case you may notseeanydependenc:esgenemtedbymemlewhenyou
use the -s option on the Make comma.nd line.

An example
This section lists the makefile used to build the Mike tool itself. A series of

. explanatory notes follows the listing,

BEE4EERFFERFEEF44444 Varlables FEREEINRARAARER AN

Usihg Make 169

TeolDir = {Boot}ToolUnits: : #SEE NOTE (1)
‘MakeUses = {TooliDir}MacInterfaces,p.o . ¥SEE NOTE (2)d
{TcolDir }MemMgr.p.o '
{ToolDir)}SymMgr.p.o
{ToclDiriUtilities.p.o
{ToelDir)IOInterfaces.p.o
{ToolDir)iCursorcCtl.p.c
{ToelDir}ErrMgr.p.o
{PInterfaces)IntEnv.p
{PInterfaces}MemTypas.p
{PInterfaces}QuickDraw.p
. {PInterfaces}OSIntf.p
MakeChjs = 'Make.p.o
{ToolDir}Stubs.a.o
{TeolDir}CallProc.a.o
{ToolDir}Utilities.p.o
{ToolDir}Utilities.a.o
{ToolDir}I0Interfaces.p.o
{ToolDir}I0Interfaces.a.o
 {ToolDir}MemMgr.p.o
{Tooldir}MemMgr.a.o
{Toolbhir}SymMgr.p.o
{ToolDir}SymMgr.a.o
{ToolDir}CurserCtl.p.c
{ToolDirjCursorCtl.a.o
{ToolDir}ErrMgr.p.o
{ToclDiriMacInt.a.o

QW o w Qs

(- TRV PR T - WO V- PR R P - VI VR U E - TR - T

{ToolDir}MacInterfaces.p.o
Libs = {Libraries}Runtime.o

@ Q)

{PLibraries}PasLib.o
{Libraries}Interface.o

LinkQpts = -w # no warnings (duplicétes due te Stuks.a.o
: #SEL NOTE (3}

SourcefFiles = Make.p d
DefaultRules a
Makefile

##E44##4484 Defaultr Rule Customizations #F#¥48444444
POptions = -i ({Boot}TecolUnits: #SEE NOTE (4)

$#¥444 44444444 ¥ Dependency Rules #¥%sssdsdiddddassd

MakeX ff {MakeObis} {Libs} $#SEE NOTE (S)
Link {LinkOpts} -p -b -o MakeX é
-t MPST -c "MPS " a

170 Chapter 7: Building a Program

{MakeObjs} {Liks} 2LinkMsgs

MakeX ff defaultRule;
Duplicate -d defaultRules MakeX -y

MakeX §f {MakeObis} {Libs} defaultRules
SetFile MakeX -m - —d . #set last-mod and creator dates
Yake.p.o i# {MaxeUses} #SEE NOTE (&)
Delete MakeLoad -i #delete Make's Load/Dump file if out-of-date
Make.p.o ff Make.p
Save Make.p 2Dev:Null || Set Status 0 #save source before compile if chanced
Make.p.o ff) {MakeUses} #will be augmented by default rules
{Tochir}MacInterfaces.p.o f _ IPInterfaces}MemTypes.p #SEE NOTE (T)ad
: : {PInterfaces}QuickDraw.p 4
{PInterfaces}OSIntf.p]
{PInterfaces}ToolIntf.p ¢

{PInterfaées)PasLibIntf.p

{ToolDir}MemMgr.p.o §f : : {ToolDir)Utilities.p.o d
(ToolDir}MacInterfaces.p.o o
{PInterféces}MemType;.p

{To0llir)SymMgr.p.o f {ToolDir)MemMgr.p.o : 3
(PInterfaces)Memmypes.p
{ToolDir}Utilities.p.o f ' {PInterfacés}MemTypes.p

{ToolZir}IQInterfaces.p.o f) {ToolDirlUtilities.p.o a
: (ToolDir}MacInterfaces.p.o 2
(PInterfaces}MemTypes.p

Jackug COf)) #SEE NOTE (8)
Duplicate -y = -MakeSrc: #backup to Sony '

Restore i
Duplicate -y MakeSrg:m ‘ ¥restore from Sony

Listings f {SourceFiles} $SEE NOTE (9)
?rint -h -r -!s ,85 -s B8 -b =Rhf helvetica ~hs 12 {NewerDeps}

Echo “Last listings made “Date " >Listings

Notes on Make's makefile

(1) The expored Shell variable {Boot}, used in the definition of (ToolDir), is
automatically defined by Make when invoked.

Using Make 171

(2)

)

@

()

6)

172

Several variables—{MakeUses}, {(MakeObjs}, {Libs}, and {SourceFiles}—are used
for lists of filenames. This is a convenience because the lists are used in several
places later in the makefile; it also helps to reduce errors. '

The (LinkOpts} variable is used o specify Linker options (and is used only once).
This usage is handy because the definition in the makefile functions as a default
that can be overridden from the command line with the -d option, as in

Make -d LinkOpts="-w -1 >Map™
The {POptions} definition gives a value to one of the variables used in the default
rules, customizing it for this particular makefile.

The three sets of ff rules for MakeX handle (a) the Make link, (b) the copying of
the default rules w0 Make's data fork, and (¢) the setting of the creation and
modification dates. The link will take place only if the Make objects or libraries
change. The default rules will be copied only if the rules have changed. And the
setting of the dates will take place if either of the first two rules was activated.
(Note that the third rule has the union of the dependency relations of the first
wo.) ' :

The three sets of ff rules for Make.p.o control the compilation of the main
source for Make, with some interesting side effects. The Make source uses the
Pascal Compiler's $LOAD option, which creates a symbol table for the USES that
can be loaded much faster than the USES are normally processed. The first of the
ff rules is used to delete this load file (MakeLoad) if it has been invalidated by a
change in the USES files. This rule is interesting in that it deletes rather than
builds something. The second of the ff rules saves the Make source before it is
compiled, only if the source file has changed. The last of the ff rules does the
actual compile. Note that this fast rule has no explicit build commands, so it wilk
be augmented by the built-in default rules, which will add 2 dependency relation
(on the source file Make.p), and will supply the actual build commands for the
compile,

The dependency rules for Maclnterfaces, MemMgr, SymMgr, Utilities, and
[OInterfaces describe dependencies between various utility units used by Make.
Several dependencies on library interface files are given. Dependencies among
the utility units themselves are described by indicating a dependency on the
object files of the lower-level {predecessor) units. These dependencies could
have been expressed as dependencies on the source files of the lower-level units
(because it is the source files that are read in a USES list). However, expressing
these dependencies on the object files has the nice property of ensuring that the
fower-level units have been successfully compiled before the higher-level units
are built,

Chapter 7: Building a Program

N

(8) The Backup, Restore, and Listirigs targets are additional roots (top-level targets)
in Make's makefile, and thus represent other things that can be built besides Make
itself. (The Make program is represented by the MakeX target—MakeX standing
for experimental version of Make.) Note that the Backup and Restore targets do
not actually get built by their build rules; thus they are *artificial targets® and will
always generate build commands if they are specified on the Make command
line. Note also that they do not have any dependency relations, - '

(9) The build rules for the Listings target demonstrates the use of the {NewerDeps}
variable. The prerequisite of Listings is a list of the Make source files. The first
build command prints the {NewerDeps} files. {NewerDeps} contains the names
of the prerequisites that are newer than the target, that is, the source files that
have changed since the Echo command last wrote the date into the Listings file.
The last line of the build rules simply writes the current date into a file called
Listings, which is the name of our target—this action results in a file that
remembers when listings were last made. (The fact that the date is written into the
file is unnecessary but convenient; the Echo itself is enough to change the file's
last-modified date.) : '

Note: There are several implicit builds that will be generated as needed by the default
rules.: For example, the {MakeObis} variable includes several assembly-language
object files. Because {MakeObijs} appeirs as a prerequisite of the link step, these
assemblies will be generated, if necessary, before the link. y

More about linking o |

This section supplements the information given under the description of the Link
command in Chapter 9 and earlier in. this chapter under “Linking.” ‘This section may
be of interest afier you're familiar with the major MPW tools and are ready to
optimize your programs or build procedures.

Linker functions

After a source file has been assembled or compiled into an object file, it containg
® Object code (relocatable machine language). '

& Symbolic (named) references to all identifiers whose locations were not known at
compile time. (These include references 1o routines from separate compilations
and libraries, and references to global variables.)

The Linker performs the following functions:

® Sorts code and data modules into segments, by segment name. (Within 2
segment, modules are placed in the order in which they occur in the input files.)
The -sg and -sn options allow you to change segmentation at link time,

More About Linking

173

Note: A module is a contiguous region -of memory that contains code or static
data. A module is the smallest unit of memory that is included or removed by the
Linker. A segment is a named collection of modules. '

® Omits unused (“dead”) code and data modules from the output file. (These
modules can be listed with the Linker's -uf option, and deleted from libraries with
the Lib command’s -df option.) '

® Provides (together with the Segment Loader) a jump table zrchitecturé that
supports relocation of code and data at run time. (See the “Segment Loader”
chapter of Mnside Macintosh for more information about the jump table.)

® Constructs jump-table entries only when needed; that is, only when a symbol is
referenced across segments. This means the jump table will be minimum size.

m Edits instructions to use the tost efficient addressing mode. A5-relative {ump
table) addressing is used across segments, and PC-relative addressing is used
within a segment

m Provides (with the data- initialization interpreter) support for relocation of data
references at run time. (The data initialization interpreter is the module
_DATAINIT in the libraries Runtime.o and CRuntime.o.)

@ Generates a cross-reference listing of link-time (object-level) names (-x option).
m Generates a location map for debugging or performance analysis (-1 option).
The Linker copies linked code segments into code resources in the resource fork of

the output file. By default, these resources are given the same names as the
corresponding segment names. :

% Note: If Linker errors or a user interrupt cause the output file to be invalid, then
the Linker sets the file’s modification date to *zero” (Jan. 1, 1904, 12:00 a.m.).
This action guarantees that the Make command will recognize that the file needs
to be relinked, and that the MPW Shell will not run the file.

Segmentation

Segmenting a program makes it possible for unused parts of a program to be
unioaded and purged from memory, thus freeing up memory space. You specify the
beginning of a segment by placing a directive in your program’s source file—see the
appropriate MPW language reference manual for information. Each segment is
linked into a code resource. ‘

174 Chapter 7: Building a Program

N

% Note. For a desk accessory or driver, the code must be in a single segment, and
no jump table is constructed. Segmentation applies only to applications and
MPW tools. :

The Linker sorts object code into load segments by name, allowing you to organize
your source code for clarity and understanding, You can specify the same segment
name more than once—ihe Linker collects code for a given segment name from all of
the Linker input files and places it into a single segment in the output file.

Caution

Segment names are case sensitive. For example, “Seg1” and *SEG1” are not
equivalent names. If you aren’t sure about the cases used, you can use the
BumpOty command with the -n (names) option,

By default, resources created by the Linker are given resource names identical to the
corresponding segment names. Link provides options for combining and renaming
segments at link time (-sg and -sn). If you don't specify a segment name before the
first routine in your file, the main segment name (*Main™) is assumed there, :
Normally, you should give the main segmenti the name Main.

By default, segmenis are limited to 32760 bytes. This limit ensures compatibility with
all versions of the Macintosh ROM. Larger segmenis are allowed with the Linker’s -ss
option. : '
% Note: Object code is placed in a segment in the order that it's encountered in
the input file. For segments larger than 32K, the order is important because PC-
- relative offsets are limited to 32K by 68000 instructioris.

For more information about segmentation, see the “Segment Loader” chapter of
inside Macintosh, :

Ségments with special treaiment

When linking a main program, the Linker creates two segments that don’ appear in .
the input object files: : :
® The jump table (CODE resource, 1ID=0), which is unnamed.

® The global data area (no're.source), which is named %GlobalData and appears
oniy in the link map file (described below). You can't change the name
%GlobalData at link time.

There are also two segments that have special conventions:

The segment that contains the main program entry point ('CODE' resource,
D=1}, usually named Main.

More About Linking

175

5 A segment named %ASInit, which contains the initial values for the global data
area and code that moves these initial values to the global data area. Applications
should unload: this segment to avoid memory fragmentation. This can be done by
calling UnloadSeg with the address of entry point _DATAINIT as its parameter;
for example, - . : : :

UnloadSeqg (& _DATAINIT)

In C and Pascal, this call should be the first statement in the application. In
assembly language the call 1o UnloadSeg should foliow the call to _Datalnit.

Setting resource attributes -

Resources have atributes that control when and how r.héy are loaded. The default
resource attribute values set by the Linker are shown in this table:

'‘CODE' resource Resource atiributes
" hex decitmal
0 (umpTable) $20 32 resPurgeable
1 {"Main") : 334 52 resPurgeable+resLocked+resPreLoad
others $20 32 resPurgeable

* Note: For linking MPW tools (programs with output file type MPST and output
file creator 'MPS$ ", all segments default to resPurgeable. Make sure that you do
not set the resLocked bit for a tool.

The Linker option -ra sets the resource attributes. Some useful resource attribute
values are

$20 32 resPurgeable
$10 16 resLocked

$08 8 resProtected
504 4 resPreLoad

For more information about resource attributes, see the “Resource Manager” chapter
of Inside Macintosh.

The Linker also sets the resChanged auribute (when a changed resource is in
memory, and needs to be updated in the file). The Linker does not check or enforce
settings for the other resource attribute bits, with one exception: The Linker does not
support the “system heap” attribute,

$40 64 resSysHeap (for drivers, and so on)

and forces it (o zero.

176 Chapter 7: 8uilding a Program

—

% Note: If you need the resSysHeap bit to be set, you'll have to process the file
after the link is completed, using either Rez or ResEdit. For exampile, to set this
bit for a 'DRVR' resource with TD=14 and the name ".printer”, you could use the
following command in a Rez input file: '

include "Link.Qut™ 'DRVR' (14} as 'DRVRY (14, ".priﬁter",sysheap) ;

Controlling the numbering of code resources

Normally, you don't need to worry about which segments are given which resource
numbers. However, you may want to control the assignment of resource numbers to
Oplimize program load time, to implement a specialized code manager, or to match
the numbering produced by another linker.

The Linker creates and numbers code resources based on the order in which it
encounters the segment names in the command-line parameters and the input
object files. If you can't easily predict the order in which the names appear in the
object files, you may want to force the ordering with command-line options that
contain dummy segment-mapping directives. For example, the following sequence
of Linker options forces Main to come first, followed by Init, Body, and Term:

Link =-sn dummyl=Main # must contain the main code module 3
4 or entry point 9
-sn %AS5Init=Init 3
~sn dummy3=Body 9
-3sn dummy4=Term 3
etc. :

The “old” segment names may be either “dummy” names (which don't appear in the
object files) or actual mappings, such as the mapping of the %A5Init code into the
segment Init.)

‘Resolving symbol definitions

This section describes how the Linker resolves references to symbols. For 2 more
detailed discussion of local and external symbols, see Appendix H, “Object File
Format.”

Symbols.in object files are either local or external. A local module, entry point, or
segment can be referenced only from within the file where it is defined. An external
module, entry point, or segment can be referenced from different object files. An
entry point is a location (offset) within 2 module. (The module itself is treated as an
entry point with offset zero.) A reference is a location within one module that will
contzin the address of another module or entry. '

Maore About Linking

177

Muitiple extemnal symbol definitions

If the object files contain more than one definition for an external symbol, the first
definition is used, and all references are treated as references to the first definition.
This lets you selectively override entry points in libraries so that you can substitute
new versions of code. When subsequent definitions are encountered, a warning is
generaied. :

Unresolved external symbois

Occasionally, you may find that an external symbol is unresolved because a
reference was generated with case sensitivity set one way, whereas the definition was
generated with different ¢ase rules. When this happeris, you can avoid recompiling
by using the Linker option -ma (module alias). Whenever the Linker encounters an
unresolved symbol, it checks the list of module aliases in an attempt 1o resolve it

Linker location map

If you spedfy the Linker option -I, the Linker writes a locaﬂon map io standard
output. The map is produced in location ordering, that is, sorted by seghum,

segOffset .
The format is divided into the following fields:
name segName segNum,segOffset [@JTOffser] [#] E] { fileNum, defOffset |

For example,

seg Main 1

TEFROMSCRAP Main 1,422 2,12892
TETOSCRAP . Main 1,444 . _ 2,12946
%_3EGIN Main 1,46C - o 3,3398
% _INIT Main 1,46E 3,3420
e, .

size Main 7CA

seg %GlobalData C . o
#0001 ¥GlobalData 0,¢ L 3,2332

__PASHEAP %GlobalData 0,C 3,2886
2ASHEAP %GlobalData 0,30 : E 3,2892
QUICKLRAW sGlobalbata 0, FE E 46,4826
_SAGLBLs ‘sGlobalData 0,FE -k 4,4834
etc.

size %GlobalData 26C

178 Chapter 7: Building o Program

seg %A5Init 3

DATAINIT $¥ASInit 3,0 4,6338
_DatalInic %ASInit 3,0 ’ @32 E 14,6558
#0001 %AS5Init 3,cs8 # ’

size %AS5Init C8

m JTOffet is a hex number giving the distance from the memory location pomned to
by register A5 to the jump-table entry of the symbol.

8 The number sign (#) indicates a local symbol that is, not necessarily a unique
name.

The symbol “E” indicates an entry point in the immediately preceding module.

&8 FileNum-and defOffset are hex numbers giving the file number and offset within
the file where the symbol is defined. ’I'hey are included only if the -1f option is also
specified.

F:elds in the Linker hstmg are separated with one or more tabs. To align the output as
a table, set the output file’s tab setting to 10—this gives 20 characters for the name
field, and 10 characters for the other fields.

The map of static global variables is presented as a data segment named
%GlobalData. The offsets in this segment are positive—the zero byte is furthest below
A5, and the highest-offset byte is the byte immediately below AS. In order to
translate these positive offsets into negative offsets from A5 (as shown by the
debugger), you need to subtract the size of %GlobalData from the offset. -

~No map information is provided for the data initialization descriptors, which are
sppended to segment %ASInit.

Optimizing your links

Because of the complexity of the Linker's functions, the Link siep is often the longest
single step during incremental rebuilding of your program. The following steps can
substantally speed up the Linker's perfformance:

® Use a RAM cache. The Linker must open and close many object files (pamcularly
with the -bf option). Experience has shown that large links run up to four times
faster when you use a RAM cache of 64K or more. (Use the Control Panel desk
accessory to check your RAM cache settings—if you' change the setting, you must
restart the MPW Shell before the new setting takes effect) Dont use the RAM
“cache on machines with only 512K of memory.

® Use the Lib utility to combine input files. You can use the Lib command to reduce
the number of input files so that the -bf option is not needed. This can give a
10-15% improvement in link speed (and even more on a Macintosh XL with many
files). See “Library Construction” later in this chapter.

More About Linking

4,6374
_ASInit ‘%A51Init 3,c8 E - 4,658%8

179

a Eliminate unneeded files. You can eliminate unneeded input to the Linker by
heeding the warnings “File not needed for link,” and deleting the files that are so
identified. This means customizing your link lists, rather than relying on a generic
makefile for linking. '

m Eliminate unneeded references. You can also eliminate unneeded input by using
Lib to remove unreferenced modules. Experience has shown that producing a
specialized library file can increase Linker speed by as much as 40%. See “Library
Construction” below for information.

Library construction

The Lib tool enables library construction by allowing you to combine object code
from different filés and languages into a single object file. For example, you can
combine assembly-language code with C or Pascal. The Lib tool was used for this
‘purpose in constructing the libraries distributed with MPW.

The Lib tool and its options are described in Chapter 9.-This section explains some
aspects of using Lib.

Lib reorganizes the input files, placing the combined library file in the darta fork of
the output library file. By default, the library cutput file is given type 'OBJ ' and
creator 'MPS *. Lib’s output is logically equivalent to the concatenation of the input
files, except for its optional renaming, resegmentation, and deletion operations,
and the possibility of overriding an external name (as in Link). Lib doesn’t combine
modules into larger modules, nor does it resclve cross-module references. This
guarantees that the output of a link using the cutput of Lib is the same as a link using
the “raw” files produced by the Compilers and Assembler.

Object files that have been processed with Lib result in significantly faster links than
the “raw” object files produced by the Compilers and Assembler. The reasons for the
speed improvements are: ' o '

® Code and Data modules are separated into different sections, and Code modules
are further sorted by segment name. These actions improve the performance of
Link, which must sort input modules into output code resources.

& All of the named symbols in the object file are gathered into a single Dictionary
area at the start of the file. This makes the cutput file smaller and simplifies the
processing needed by Link to resolve references.

m When several object files are combined, multiple instances of a symbol definition
are replaced by a single definition. Again, this makes the output file smaller and
simplifies the processing by Link.

180 Chapter 7. Building a Program

Lib correctly handles file-relative scoping conventions, such as nested procedures in
Pascal, static functions in C, or ENTRY names in Assembly; that is, it never
confuses references to an external symbol with references to a local symbol of the.
same name, even if the two symbols are in two files combined with Lis, - '

Using Lib to build a specialized library

Each of the fan'guage libraries has files that you may or may not need to link with,
dépending on the functions your program calls. (See Appendix A, "Macintosh - _
Workshop Files.”) Once you determine which files are needed for linking 2 particular
program, you can greatly improve the performance of subsequent links by

. combining libraries into a single spedialized library file. In building a specialized
library, you can use Lib to '
® rename external modules (with the -mn option)
® change segmentation (with the -sg and -sn options)
® change the scope of a symbol from external to iocal (with the ~dn option)
® delete unneeded modules (with the -dm option) '

Lib’s renaming, resegmentation, and deletion operations give. you detailed control
over external names, the contents of library files, and the segmentation of object
code. To use these features, you may need to review some of the material in
Appendix H, “Object File Format,” in order to understand how modules and entry
points are represented in object files. The DumpObj command is also useful in
exploring the contents and structure of the library files provided with MPW.

Removing unreferenced modules

You can eliminate unneeded input to Link by using Lib to remove unreferenced
modules. You can determine the number of unreferenced modules from the Linker’s
progress information. (Use the -p option.) The Linker reports the total number of
symbols read, as well as the number of active symbols (that is, the symbols in the
output), and the number of visible symbols (that is, the symbols requiring jump-
table entries). For example,

155 active and 54 visible entries of 714 read.

The difference between the total read and the. nufnber of active symbols is the
number of unreferenced (and unneeded) symbols. Most of these unreferenced
symbols represent standard library functions which your panicular program doesn’t
require,

Unreferenced modules can be removed in three steps:

1. Use the Linker's -uf option to produce a file containing the unreferenced names,

Library construction

181

2. Use the -uf file produced by Link as the input to Lib, using the Lib option -df to
produce a specialized library that contains only the modules that your program
requires.,

3. Use the output of Lib as the input to subsequent links.

Guidelines for choosing files for a specialized library

The choice of which files to include in a specialized library file is largely dictated by
“stability” issues: Files that are unlikely to change for many builds are the best
candidates. “Stable” files include the library files provided by Apple for the ROM
interfaces and for language support. Files that are under development are best left as
single files. _ :

Should you find it necessary 1o change one of the component files of 2 specialized
library, you don't always need to immediately rebuild the specialized library. You
can simply include the newer version of the object file in the link list, before the
spedialized library file that contains the older version. You'll get some waming
messages about duplicate symbols, but all references will be correctly moved to the
first definition encountered by the Linker. Later, after the file is stable again, you can
rebuild the library. o : : '

182 Chapter 7: Building a Program

Chapter 8

Debugging With MacsBug

About chslug xx
Installing MacsBug xx

Theory of operation—a technical aslde xx .

“The Boot Process x

Memory Usage x

- MacsBug Exceptions x

Using MacsBug xx

The MacsBug command language xx
Numbers x '
Sturings x

Symbols x

Expressions x
Commands x

General commands xx
Memory commends xx
Brouk_ commands xx
A-trap commands xx
Heap zone commands xx
Dlsossambiof commdnds XX

MaesBug summary xx

This chapter describes the theory and operation of MacsBug, the Macintosh 68xxx
debugger. It also describes the syntax of cornmands accepted by MacsBug,

About MacsBug

MacsBug is a line-oriented, single-Macintosh debugger. It resides in RAM along with
the program being debugged. The capabilities of MacsBug include

dispiaying and setting memory and registers

disassembling memory

stepping and tracing through both RAM and ROM

monitoring system traps

displaying and checking the system and application heaps

MacsBug obtains control when certain 68000 exceptions occur. You can then
examine memory, trace through the program, or set up break conditions and
execute the program untl those conditions occur.

MacsBug works with the following hardware.configurations:
m 512K to 4 Mbytes of RAM

8 64K or 128K (Macintosh Plus) ROMs

a Motorola 68000 or 68020 processors

m Motorola 68881 floating-point coprocessor

< Note: MacsBug does not work on the Macintosh XL. Macintosh XL users shouild
use MacsBug XL, which is also provided.

Installing MacsBug

MacsBug is not a normal Macintosh application. Instead, MacsBug installs itself
once at boot time and remains active until shutdown. Installation occurs if the
following conditdons are met:

1. MacsBug exists and is named “"MacsBug”.
2. It is on a startup (bootable) disk.

182 Chapter 8: Debugging With MacsBug

3. Itis.in the current System Folder. (This is a requirement only on HFS volumes.)
The System Folder is, by definition, the folder that contains a system file named
System and a system file named Finder. :

MacsBug is shipped in the Debuggers folder; you must move it to the System Folder
to install it, '

After a successful instailation, the message "MacsBug installed” is displayed below
the “Welcome to Macintosh* message. The startup application (normally the
Finder) is then launched as usual

Once MacsBug is installed, the only way to remove it is to reboot. To prevent the
installation of MacsBug during a boot, hold the mouse button down while booting,
To permanently override the installztion of MacsBug, simply rename it or remove it
from the disk. : ' ‘

% Using HFS with the 64K ROM: 1f you have MacsBug on an HD-20 (HFS) Startup
disk on 2 machine with the original 64K ROM, there is a seeming conflict with the
above mouse-down command, because holding the mouse button down at boot.
also forces the Macintosh to boot from the floppy disk rather thin switch-
launching to. the HD-20. However, a skillful mouser can accomplish either
command simply by knowing that MacsBug is installed first, right after the.
“Welcome to Macintosh® hello message, and that the HFS code looks for a
mouse-down only after the “MacsBug installed” message.

Theory of operation—a technical aside

This section provides background information about how MacsBug works. Some of
this information is important if you are interested in implementing your own
Macintosh debugger; most other readers can skip this section.

The boot process

The state of the world when MacsBug is about to be loaded is fairly complete. The
interrupt system, Memory Manager, and ROM:based 1/0 drivers have already been
initialized by the ROM boot code. The boot code initializes the Event Manager, the
Font Manager, the Resource Manager, and the file system. (Although the Toolbox is
initialized at this point, MacsBug does not use the Toolbox.) The 'DSAT table is
loaded in and the string “Welcome To Macintosh,” contained therein, is displayed.

Next, the loading process of MacsBug takes place as follows: First the boot-blocks
code reserves some space (1024 bytes) for MacsBug's own global variables. Then this
code looks for the file specified in the boot blocks, as deseribed above. If the file is
not found, then the global space is deailocated and the boot process continues
normally without installing 2 debugger. ' S

Theory of operation—a technical aside

183

If MacsBug is found, the data fork (not the resource forkD) of the file is loaded onto
the current stac_k which is located immediately below the main screen buffer in
memory. '

% Historical note For reasons relating to the original Lisa Workshop, the first
block (512 bytes) of the MacsBug data fork is stripped off during this loading
process.

The boot code then JSRs to MacsBug itself. MacsBug begins its installation process by
checking to see if the mouse button is down. If it is, MacsBug aborts the installation
and lets the boot process continue without installing itself. If the button is not down,
MacsBug determines which kind of machine and microprocessor it is running on,
and configures iseif accordmgly

At the successful completion ‘of the installation, the message “MacsBug installed” is
posted below the “Welcome To Macintosh” screen. The boot process then continues
by loading ‘INIT resources from the System file.

*» Technical note The boot code locks for TNIT' resources 0-31 and JSRs to them.
These 'INIT' resources are used to set up the keyboard maps ('INIT's 0 and 1),
instafl patches (of type 'PTCH" to ROM code, and so on. 'INIT 31 extends the
system further by looking for any files of type INIT in the System Folder. This
facility allows you to install your own startup code without changing the System
file.

'Finally, the startup application is launched. The startup application is typically the
Finder, but can be set i0 any other application via the Finder’s “Set Startup” menu
item.

Memory usage

During installation, MacsBug obtains further memory from below the main screen
buffer for use as its own screen memory. (MacsBug obtains memory from the same
general area in RAM as do RAM disks and caching utilities, based on the location of
BufPtr, a Macintosh global variable.) MacsBug offers a full screen display with 40
lines saved. This display uses about 20K of memory.

The total RAM requirement of MacsBug is approximately as follows:

Global space 1K

Screen space 20K

Code space 24K

TOTAL: 45K

MacsBug may not work with some memory-intensive applications on a

Macintosh 512K. For example, using MacsBug and the MPW Pascal Compiler on a
Macintosh 512K severely limits the size of programs that may be compiled. Two
solutions are possible:

184 Chapter 8: Debugging With MacsBug

ST

S

—

1. Remove MacsBug to free up about 45K of RAM.

2. Add additional RAM via the Macintosh Plus Logic Board Upgrade or a compatible
third-party hardware upgrade to 1 MB or more of RAM. :

MacsBug exceptions

When instalied, MacsBug puts pointers 1o itself in many of the hardware exception
vectors in addresses $0000 0000 through $0000 00FF. It then remains dormant until
one of *its” exceptions occurs. The following is the list of exceptions to which
MacsBug responds; each is numbered one greater than the comesponding
Macintosh System Error number, o '

Exception # - Assignment

2 Bus Error (rarely seen on the Macintosh)

3 Address Error (not aligned to a word boundary)
4 Ilegal Instruction (bit pattern not recognized).
5 : Zero Divide '

6 CHK Instruction (array index out of bounds)

7 TRAPV Instruction (overflow) .

g Trace (used to single step in MacsBug) -

10 Line 1010 Emulator (the A-trap handler for all Toolbox traps)
11 Line 1111 Emulator (68xxx coprocessor trap interface)

28 Level 4 Interrupts '

29 Level 5 Interrupts

30 Level 6 Interrupts

3 Level 7 Interrupts :

47 Trap $F Instruction (used for setting programmer breaks)

68000 exception processing is described in the Motorola 68000 Programmer’s
Reference Manual o

Any time an A-Trap or other exception listed above occurs, MacsBug intercepts the
trap and can thus stop or display the current state of the machine. Single-stepping
through 68xxx instructions is possible because MacsBug can set the Trace bit in the
status register of the microprocessor. MacsBug saves the ROM-based A-trap handler
address in the long word immediately preceding its own A-trap handler routine.
Thus, if you need to access the real ROM A-trap handler when MacsBug is installed,
you can [ook at the long word before the address of the current handler,

Using MacsBug

185

~Using MacsBug

The simplest way to get into MacsBug is to generate an exception by pressing the
interrupt button. (The interrupt button is the rear button of the programmer's swilch
on the Macintosh, or the minus key on the numeric keypad on the Macintosh XL.)

To see the application screen while the debugger-is active, press the tilde/back quote
key (~/) in the upper-left corner of the keyboard. Ta restore the debugger’s display,
press any character key. Repeated presses toggle between the two screens, allowing
easy viewing of both the actual code (MacsBug screen) and the results {main screen). -

‘The best way to enter the debugger programmatically is to set 2 breakpoint in your
program by using the system trap called Debugger at the poini where you want
MacsBug to get control. There are two ways o use this trap. Calling trap $ASFF drops
into MacsBug and displays the message “USERBRK". It then does a normal
exception entry into MacsBug (unless you have toggled the DX command-—see
“Break Commands” below). ' '

If you want to display custom debugging information, declare and call the trap with
bit 10 set ($ABFF). When this latter trap is encountered, MacsBug assumes that the
top of the user’s stack has a pointer to a Pascal string, It prints out the string, displays
the message *USERBRK," and does a normal exception entry into MacsBug. As
$ABFF is a procedure call, MacsBug takes care of popping the string pointer off the
stack. - :

Here is 2 summary of how to declare and use this trap on a per language basis.
Assembly langucge:

Declaraticm:
_Debugger QPWORD SASFF ; predefined in the file ToolTraps.a
_ _Debugstr QPWCRD $ABFF ; not predef_ined - define yourselif
‘Example calls: ' ' '
a) _Debugge'r ; enters MacsBug and displays USERBRK
b) STRING PASCAL "; Asm directive to make sure to push a
; |Pascal string _
PEA #'Entered main locp!' ; push address of string on stack
_Debugstr : enters MacsBug and displays message
Pascal:
Declaratton:

PROCEDURE Debugger; INLINE SASFF;
PROCEDURE DebugStr(str: str2$3); INLINE S$ABFF;

Example calls:

186 Chapter 8: Debugging With MacsBug

SN

a) Jebugger; {enters MacsBug and displays USERBRX}
b} DebugStr('Entered main loop*) {Enters MacsBug and Displays message}
MPW C:

Declaration:

'pascal vold Debugger() extern OxA9FF;
pascal void DebugStr(aString} Str255 astring; extern OxABFF;

Example calls:
a) Oebugger() ;) /*enters MacsBug and . displays USERBRX*/
b} DebugStr{c2pstr("Enterad main loopn)) ; /*enters MaecsBug, displays message*/

When MacsBug gets control, it disassembles the instruction indicated by the
program counter and displays the contents of the registers, If the exception was
caused by a $ASFF or SABFF instruction, MacsBug displays the message
‘USERBRK”, advances the PC to the next instruction, and then disassembles the
instruction and displays the registers, It then displays the greater-than symbot (>) as
a.prompt, indicating that it is ready to accept a command. : '

% Note: There are two other w'a?s 10 enter MacsBug: by using 'FKEY' and 'INIT'

resources. With ResEdit, a skilled user can creale a custom resource of either type
whose sole function is described by two simple 68000 instructions:
SASFF $4E75 (_Debugger and RTS; that is, the sequence to enter MacsBug).

Warning

Another. way to genardfe an excapﬂon' that was popular In the pasf was fo
add g line such as :

DC.W SFECE ; generate a line 1111 exception

at the peint in your program where you wanted MacsBug to get control. (Any
value $FO00 through SFFFF could have been used.) This method should not be
used any more, as these instructions have been reserved by Motoroia for use In
their coprocaessar interface for the 68020 microprocessor. (For example. in the
future these “exceptions” could actually be MC 48881 floating-point:
instructionsl) .

The MacsBug command language

Commands consist of 2 one- or wo-character command name followed by a list of
ZefC or more parameters (depending on the command). A return character repeats
the last command entered, unless otherwise specified in the command description,

‘The MaesBug command language 187

parameters can be numbers, text literals, symbols, or simple expressions. All
parameters can be entered as expressions. Parameters are represented by
descriptive words and abbreviations such as gdadress, number, and expr.

MacsBug commands can be divided into five grdups: memory, break, A-Trap, heap
zone, and disassembly commands. . : . :

. Numbers

As is fitting for a debugger, all numbers are hex unless otherwise specified Decimal
numbers are preceded by a number sign (#). ‘Hexadecimal numbers can optionally
be preceded by a doilar sign (§). Numbers can be signed (+ or.-). A hex word (four-
hex characters) preceeded by a less-than symbol (<) is sign-extended t0 2 long
word. : ' ' o

Here are some numbers in different formats—the formats shown are the same as
those displayed by the CV (Convert) command, described later in this chapter.

Number Unsigned hex signed hex Decimal
SFF . ~ $O00DOOFF ~ $000000FF #255
37 $00000037 ' $00000037 . #55
-FF SFFFFFFO1 . -$000000FF o -#255
#100 : $00000064 T $00000064 #100
+10 $00000010 $00000010 #16
#32 $FFFFFFEQ -$00000020 #.100
<FFFA $FFFFFFFA -$00000006 #.6
- Strings

A text literal is a one- to four-character ASCII string bracketed by single quotes (') If
a string is longer than four characters, only the first four characters are used. When
used by MacsBug, text literals are right justified in a long word. Here are some
examples:

String . Stored as

A ' $00000041
‘Fred! $46726564
'1234° $31323334
Symbols

The following symbols are generally used to represent the 68xxx registers:

188 Chapter 8: Debugging With MacsBug

./_-“

RAQ, RAL,.,.RA7 the cbntents of address registers AO through A7
RDO, RD1,...RD7 the contents of data registers DO through D7
PC the contents of the program counter

SR the contents of the status register

%+ Note: In any expression where you want to use the value of one of the main
registers, use the Rxex form, as shown above. If you specify AQ for example, it will
- be interpreted as address A0, a valid hex address, not as register AO.

In addition, the following symbols are used for frequently referenced locations:
_ a period (*dot”) gives the last address referenced
TP “thePort"—the address of the current QuickDraw port

Expressions

. Expressions are formed by operators acting on numbers, text literals, and symbois.

The operators are

+ ~ ‘Addition (infix); assertion (prefix)

- ' _Subtraction (infix); negation (prefix)
@ or* Indirection operator (two different prefix operators
" with identical functionality) . ; : _
Note: The indirection operator uses the long integer at the location
pointed to by the operand.
& Address operator {prefix)

< -Add sign-extended number (infix); sign extension (prefix)

Expressions are evaluated from left 1o right. All operators ase of equal precedence.
There is no way to alter the order of evaluation. Here are some valid expressions:

RA7+4

3A700-@10C

TP+424

-RAQJ+RAL-'FRED '+@@4C50
RAS<FE34

(RAS<FE34 is the same as RAS+FFFFFE34—useful in looking at global variables.)

General commands

General commands

189

?

{(Help). Displays a short list of MacsBug ‘commands and their parameters.

DV
(Display Version). Displays the version, the date and time of creation, and
signature of MacsBug. For exampie,

MACSBUG 5.1B1 17-May-86. 00:05:10 <DKA>

RB
(Reboot). Reboots the system.

ES

(Exit to Shell). Invokes the trap ExitToShell, which causes the current shell to be
launched. (The *current shell” is usually the Finder but can be changed by editing the
Finder field of the boot blocks.) The cusrent shell must reside in the System Folder
and is logically distinct from the startup application.

% Technical note: ES may not work with applications that override important
system traps. This problem occurs because the application hezp gets initialized
promptly upon calling the trap ExitToShell; the initialization usually trashes any
system patches that were located there. However, there is 2 hook called
[AZNotify, called by InitApplZone, that you can use to resiore the world before
purging the otherwise necessary routines.

EA

{Exit té.Appllcoﬂon). Relaunches the application. This is a faster method than
calling ES and relaunching from the Finder.

m=m=====w

‘Memory commands

CV expr

(Convert). Displays expras unsigned hexadecimal, signed hexadecimal, signed
decimal, text, and binary.

DM { address | number]]
(Disptay Memory). Displays number bytes of memory starting at address.

190 Chapter 8: Debugging With MacsBug

S~

Number is rounded up to the nearest 16 bytes. If number is omitted, 16 bytes are
displayed. If address and number are both omitted, the next 16 bytes are displayed.
The dot symbol (.)is set to the address of the beginning of the last block displayed.

If number is set to certain four-character strings, memory is symbolically displayed
as a data structure that begins at address. The strings and the data structures they

.represent are

“IOPB’ Input/Output Parameter Block for File [/O
‘WIND' Window Record '
"TERC' TextEdit Record

(Refer 1o Inside Macintosh for a description of these data structures.)
You can usually terminate 2 DM command by pressing the Backspace key.

SM address expr...

(Set Memory). Places the specified values, expr..., into memory starting at address.
Thre size of each value depends on the “width” of each expression. The width of a
decimal or hexadecimal value is the smallest number of bytes that holds the specified
value (four-byte maximum). Text literals are from one 1o four bytes long; extra
characters are ignored. Indirect values are always four bytes long. The width of an
expression is equal to the width of the widest of its operands. The dot symbol (.) is
set to address. : '

DB [address]

(Display Byte). Displays a single byte of memory located at address. This
command automatically calls the convert routine as well, allowing you to see flags
easily. DB is useful for looking at the contents of memory-mapped IO registers.
(Using DM will read larger portions of memory; this can have undesired side effects
on the peripheral chips being examined.) '

SB address | expr]

(Set Byte). Places the value of expr into the byte located at address. If no expris
given, then it clears the byte to zero. Like DB, this command is useful for debugging

- memory-mapped /O registers.

Dn { expri

(Data Register). Displays or sets data register 7 If expris omitted, the register is
displayed. Otherwise, the register is set to expr

Memory commands

191

An [expr]

(Address Regisier). 'Displays or sets add:ess register n. If expr is omitted, the
register is displayed. Otherwise, the register is set to expr.

PC [exprl

{Program Counter). Displays or sets the program counter. If expr is omitted, the
program counter is displayed. Otherwise, the PC is set to expr.

SR [expr]

(Status Register). Displays or sets the status register. if expris omitted, the status
register is displayed. Otherwise the status register is set to expr.

TD

“Total Display). Displays all of the 68000 registers and the PC, and disassembles the
current instruction that is about to be executed upon stepping, tracing, or going.

RX

(Reglster Exchange). Toggles the dis_play mode so that the registers are or are not
dumped during a trace command. The disassembly of the PC instruction is not
affected. : :

CS [address! [address2]]

{Checksum). Checksums the bytes in the range address? through address2 and
saves that value. The checksum is an exclusive OR of the bytes in the range specified.
If address2 is omitted, CS checksums 16 bytes, starting at’ addressl. If address? and
address2 are both omitted, it calculates the checksum for the last range specified,
saves that value, and compares it to the previous checksum for that range. If the
checksum hasn’t changed, CS prints CHKSUM T; otherwise it prints CHKSUM F.

192 Chapter 8: Debugging With MacsBug

* Note: For checksumming memory in conjunction with A-traps, see the AS
command. For checksumming after every 68xxx instruction, see the S§
command.

(I

Break commands

BR [address | count]]

(Break). Sets a breakpoint at address. Count specifies the number of times that the
breakpoint should be executed before stopping the program. If count is omitted, the
program is stopped the first time the breakpoint is hit. If address is omitted, zll
breakpoints are displayed. You can set 2 maximum of 8 different breakpoints.

CI.[gddre&s]

(Clear). Clears the breakpoint at address. If address is omitted, all breakpoints are
cleared.

G | address] -

(Go). Executes instructions starting at addvess. If addbress is omitted, execution
begins at the address indicated by the program counter. Control does not return to
MacsBug until an exception occurs.

GT address

{Go Till). Sets a one-time breakpoint at address, then execules instructions starting at
the address indicated by the program counter. This breakpoint is automatically
cleared after it is hit. (GT address is equivalent 1o a BR address and G with the BR
being cleared afier it is hit for the first time.) :

T

{(Trace). Traces through one instruction. Traps are treated as single instructions.

Breck commands

193

If the next instruction to be executed is a JSR to a currently unloaded segment, you will
see the LoadSeg ($ASF0) trap instead of the JSR. Tracing through thart instruction will
not work normally. If you wish to trace through the LoadSeg trap, you need to set a
low-memory global at location $12D to a nonzero value. Do a SB 12D 1 to enable
tracing through the LoadSeg call. Next, Go (G). You will break at an RTS instruction.
Trace once (T) 1o see the absolute location that you are about 10 jump to. Trace again
and you will be at the first step of the routine that is now loaded intc memory. To turn
off tracing through LoadSeg calls, simply execute SB 12D to clear the LoadSeg low-
memory flag. '

S [number)

(Step). Steps through number instructions. If number is omitted, just one
instruction is executed. Traps are not considered to be single instructions.

88 address! | address2

(Step Spy). Calculates a checksum for the specified memory range, then does a Go;
it then checks the checksum before each 68xxx instruction is executed, and breaks
into MacsBug if the checksum does not match. If address2 is omitted, S5 checksums
the long word at address1. This feature is turned off by entering MacsBug via the
programmer’s switch or by S5 terminating when the checksum has changed.

Step Spy is very slow. Step Spy is nevertheless useful for detecting what routines are
stepping on a specific place in memory. If checking memory at every A-trap is
sufficient for your needs, use the AS command, described below. {The slow motion
capability of 53, however, can be useful in its own right to examine how the Finder
zooms windows, for example. Think of it as a tool to study graphics algorithms.)

ST address

{Step Til). Steps through instructions until address is encountered. Unlike Go Till,
this command does not set a breakpoint. Thus it can be used 10 step through, and
stop in, RCM. : :

MR [offset]

(Magic Refum}. When debugging, you generally trace through a program one
instruction at a time. MR lets you trace through to the end of a routine instead. When
you use MR, it replaces the return address that is gffSet bytes down in the stack with
the magic address within MacsBug; then it does a Go {described above). The RTS
that would have used that address returns to MacsBug instead of to the caller.
MacsBug restores the original return address, and then executes the RTS as if called
by the Trace command. The prompt is then displayed, ready (o trace the instruction
after the RTS.

194 Chapter 8: Debugging With MacsBug

MR functions according to this formula: 7
IF offset >= A6 THEN magic = offset + 4 ELSE magic = A7 + offset

The default offset is 0. This allows you to type MR RA6 when in nested subroutine
calls. The usual way to use this routine is to trace until just after a JSR (return address O
bytes down in the stack), and then do an MR. The rest of the routine is executed, and
control returns to MacsBug, This command isn't repeated when you press Retum: a
Trace command is executed instead. . S

- DX

(Debugger Exchange). Normally, if either the $ASFF or the SABFF Astrap (two
forms of the Debugger trap) is executed, program execution halts and the debugger is
activated. DX allows you 1o control whether or not program execution halts. Note
that the $ABFF trap will still print a string; thus with debugger entry disabled, an
effect similar to that of the AT command occurs—that is, the Macintosh screen
alternates between the debugger and the program. The default is to stop at Debugger
traps. : o ' _

A-trap commands

The A-Trap commands are used to monitor “1010 emulator” traps, used to call the
Macintosh ROM. These commands take up to six parameters (frapl, trap2, addressl,
address2, D1, and D2). These parameters indicate which traps and other conditions
should be monitored:

® 7rapl and trap2 specify the range of the traps. If only trap! is specified, the
command is invoked for trap1. If trapl and trap2 are specified, the command is

invoked for all traps in the range trgp? through trap2 The defaults are SA000 and
3AAQO. :

SAQ00 - $A0?F | ' Operating system traps

SAS00 - SA9FF . Toolbox traps

0 ~ S6F | Shortcut expressions for OS traps
870 and greater Interpreted as Toolbox traps

W Adddress] and address2 specify a range of memory addresses within which traps
should be monitored. The defaults are 0 and $FFFFFFFF. '

® D7and D2 specify the values of data register 0 within which traps should be
monitored. They are treated as unsigned numbers. The defaults are 0 and
SFFFFFFFF. o '

Thus, if no parameters are given, all traps are monitored.

A-frTap commands

165

A-trap commands allow two commands to take place simultaneously. The trick to

using the A-trap commands is to know that there are separate flags for tracing and

breaking, and that separate globals are used for storing the general trap rmge (GTR)

and the breaking trap range (BTR):

® Any A-trap command (AA, BA, AT, AB, AS, AH, AR) sets the tracing flag. In’
addition, any command except AS can supply a trap range, which is always stored
in the GTR vanable.

Executing an AB or BA also sets the breaking flag. It also saves the trap range you
supplied in both the GTR and BTR variables.

Previously any A-trap command would clear all flags, but now only AX clears all
flags. If you are a “casual® A-trap-user, execute AX before executing any A-trap
commands in order to avoid undesired breaks. However, for the real MacsBug power
user, combined A-trap commands can be very useful. .

An example of how you can use this is as follows. If you wish to.view (trace) all of the
file system traps called from your application but also want to break at the next Open
call that you make, you would type (and in this order:

>BA Open
>AA O 17 (shorthand for file system traps)

The AA command is entered second so that its range overwrites the GTR supplied by
the BA command. This way you can view (trace) the “wider” range of traps while
* breaking on the “smaller.” '

BA [trapl | trap2 | address1 | address2 | D1 [D2 11111}

(Break in Appilcation). Causes a2 break when the conditions specified by the
parameters are satisfied and the trap is being called from the application rather than
from the ROM. Address] and address2 are automically set to ApplZone and BufPtr.
Therefore you can use this command to get back to the application when in ROM.
Simply type BA and Go. MacsBug will be entered at the next trap called by code
located in the application heap. To brezk on ROM calls as well (or traps called from
the system heap or elsewhere), use AB, described below.

AA [prap? (trap2 | addvess1 | address2 { D1 [D2 111111

{Application A-trap Troce). Traces and displays each A-trap called from the
application heap withgut breaking if the conditions specified by the parameters are
satisfied. AA continues to display A-traps until you press the interrupt button. AA
allows you 1o monitor only the-traps that the application calls, and thus can be useful
for checking and measuring performance. To monitor all traps called, including
calis made from inside the ROM and traps called from the system heap, use the AT
command.

196 Chapter 8: Debugging With MacsBug

Pt

AB [trapl | irap2 | address1 (address2 | D1 { D2 111111

{A-frap Break). Causes a break when the conditions specified by the parameters are
satisfied. AB without any parameters will stop at the very next trap executed anywhere
by the Macintosh. To stop at the next trap called by the current application, use BA
instead. . :

AT [trap1 | trap2 | address1 | address2 [D1 [D2 111111

(A-trap Trace). Traces and displays each A-trap without breaking, when the
condition specified by the parameters is satisfied. AT continues to display all A-
Traps until you press the interrupt button. If you wish to just see the traps called by the

- current application, use AA instead.

For example, to see all QuickDraw calls displayed, regardiess of who calls them, you
could type

>AT A86C ASFE

(AH [trapl | irap2 | address1 | address2 { D1 [D2 111111

(A-trap Heap Zone Check). Checks the heap zone for consistency just before
executing each trap in the specified range. If an Inconsistency is found, it displays the
addresses of the two memory blocks in question, '

AR [trapl [trap2 [address? | address2 [Di (D2 111111

(A-trap Record), Whenever the parameter constraints are satisfied by an A-trap
call, information about the call is recorded. The trap name, PC, AC, DO, and the
time are always saved. If the cal] was for an OS trap, 32 bytes pointed at by A0 are
recorded; otherwise 32 bytes pointed at by A7 (the stack pointer) are saved. To
display the current saved information, type AR with no arguments.

This command is especially useful for tracking down crashes in the Macintosh ROM.
For example, the command _ .
>AR 0 1000 @2AA @114

records traps O through 1000 (all traps), from ApplZone ($2AA) through HeapEnd
(§114), so it will record the last trap call made from anywhere in the application heap
(the application’s code).

A-trap commands

197

AS addressi | address2]

(A-trap Spy). Calculates a checksum for the specified memory range, checks it
before each A-trap that is called, and breaks into MacsBug if the checksum does not
match. If address2 is not specified, AS checksums the long word at the given address.
Use S§ if you want the range of memory to be checked before every 68xxx instruction
rather than before every A-trap only. AS is turned off by AX.

AX
(A-trap Clear). Clears all A-trap" commands. -

W
Heap zone commands

The heap zone commands act upon the current heap zone. When MacsBug is started
up, the current heap zone is the application heap zone. You can set the current heap
zone by using the HX command. Several commands cause MacsBug to scramble the
heap zone. When MacsBug scrambles the heap zone, it rearranges all the relocatable
blocks. This is useful for finding illegally used pointers to relocatable data structures.

HX [address)

(Heap Exchange). Sets the current heap to address. If no address is given, then HX
loggles the current heap zone between the system heap zone and the application
heap zone. In any case, HX displays the resuiting current heap address.

HC

'(Heap Check). Checks the consistency of the current heap zone, and displays the
addresses of inconsistent memory blocks as well as the address of the current heap.

HS [trapl trap2}

(Heap Scramble). Scrambles the heap zone by moving relocatable blocks when
certain traps in the specified range are encountered. HS alorays scrambles the heap
zone as a result of NewPtr, NewHandle, and ReallocHandle calls. It scrambles the
heap zone as a result of SetHandleSize and SetPtrSize if the new length is greater than
the current length, HS is fastest if you set trgp1to $18 and frap2to $2D. The heap
zone is not scrambled as a result of traps other than those named above.

198 Chapter 8: Debugging With MacsBug

. “*\\:

ST

e

HD [mask}

(Heap Dump). Mask is optional. Whether or not mask is 'used, it displays each

block in the current heap zone in the following form: :
blockAddr bpe stze |flag MP_location] 1*] [reNum ID reshpel

w blockAddr points to the start of the. memory block.

" 4peis one of the following letters:

F free block
P - pointer
H . handie to a relocatable block

B size is the physical size of the block, including the contents, the header, and any
unused bytes at the end of the block.

® For handles (type H), flag is either blank if not purgeable or a P if purgeable. Then
MF_locationt is displayed, which is the address of the master pointer to the
relocatable block. ~ - '

® The asterisk (* Jmarks any locked object (nonrelocatable blocks and locked
relocatable blocks). S :

® For resource file blocks, three additional fields are displayed: the resource’s
reference number, ID number, and resousce type. If maskis omitted, the dump is
followed by a summary of the heap zone's blocks. It begins with the six characters
“HLP PF”, which represent the six values that follow them. These values are

L number of relocatble blocks in the heap zone (handles)
L number of relocatable blocks that are locked
P number of purgeable blocks in the heap zone
(space) space, in bytes, occupied by purgeabie blocks
P number of nonrelocatable biocks in the heap zone (potnzers)
¥ total amount of free space in the heap zone '

Here 15 a2 sample summary: _
HLe PF 0084 0004 0002 CO000079E 0017 000003B4

Note that block counts are single words, and values representing space in bytes are
long word quantities. If mask is used, the summary line displays the block counts of
specific types of blocks. Possible values for mask are

THY relocatable blocks ¢handles)
P nonrelocatable blocks (pointers)
e free blocks

'RT resource blocks

'XXXX' resource blocks of type XXXX!
If mask is used, the heap summary takes this form:
CNT ### <# of blocks of mask tye> <# bytes in those blocks>

Heap zone commands

199

You can prematurely terminate an HD command by pressing the Backspace key.
The dot address (.) is set to the last block of memory displayed by HD.

HT [mask)
(Heap Total). . Displays just the summary line from a heap zone dump. Mask works
just as it does with the HD command (described above).

SC

(Staek Crawl). Assumes that LINK / UNLK A6 has been religiously performed at the
beginning and end of each procedure or function. (The $D+ directive in Pascal, and

_the -g and -ga options in C force these instructions to be performed.) The cutput
format is as follows:

SF @<stack frame locattior> . <address of call to procedure>
For example, ' '

SF R0D633C . ProcName+3A

means that the currently executing procedure or function has its local stack frame at
$D633C and was called from ProcName+$3A (which is not the return address). If
the program counter is not in the ROM, SC may not work properly.

e ————— e ———— e
e e e e i

Disassembler commands

S$X

© (Symbol Exchange). Determines whether or not symbols are displayed. By default,
symbols are turned on. $X affects any command that takes an address. Using
symbols allows you to IL or BR on a procedure or function name. For example,

>IL ProcName+58

disassembles code starting at 58 bytes (hex) into the procedure called ProcName,
and

>BR ProcName+58

sets a breakpoint at the same location. (This also works for GT, ST, DM, and so on.)

When searching for symbols, MacsBug searches the current heap (set by the HX
command). The heap is searched by walking through memory and locking for locked
blocks of memory. Then, within locked blocks, MacsBug first looks for a LINK Ab
instruction followed by a matching UNLK A6 instruction. Then MacsBug looks for
either an RTS or a JMP (A(Q) instruction.

200 Chapter 8: Debugging With MacsBug

N

Immediately following one of these last two instructions should be an eight-character
symbol. This symbol must be exactly eight characters long; it should be padded with
Dlanks if it is less than eight characters. Some compilers set the high bit on the first
. character of the symbol, but MacsBug clears this bit. In addition, if the high bit of the
- second character is ser, MacsBug expects a 16-character name (used mainly for _
method names in MacApp-generated code.) To see all of the symbols that are valid
at any given moment, use the SD command (described next).

Turning symbols off is helpful for two reasons. First, every symbol lockup traverses
the current heap, and therefore may degrade the speed of the disassembly,

Secondly, if you prefer always seeing a dump of code in hex rather than symbols
“(useful when locking at ROM code, for example), uming off symbols will guarantee 2
hex dump of your code. This hex dump displays the main opcode word followed by
two extension words which may or may not apply to the particular instruction
disassembled. '

SD [address]

(Symbol Dump). Displays a list of the procedure names that can be found in the
current heap zone. The search criteria are based on looking in each block of memory
whose locked bit is set. In addition, a LINK A6 and its matching UNLK A6 must be
found, followed by either a JMP (A0) or an RTS. The eight-character debugging name
follows. Valid debug symbols must consist of ASCH characters in the range $20-$5F

. (space-underscore), inclusive. This command optionally allows you to specify 2
starting location for the symbol dump.

DH numéber

{Disassembie Hex). Disassembles the hex byte, word, or long word input. Typing
just one byte allows you [0 see the general class of instructions, as numberis left-
aligned in a long word padded to the right with zeros. (Typing DH 10, DH 20, and
DH 30, for example, shows by induction that these instruction groups are the
Move.B, Move. W, and Move.L classes, respectively.)

This command is useful as a poor man’s assembler. For example, if you wanted 10 use
the RESET instruction and could not remember what its opcode was, you could type
DH 4E71 a5 a first guess and DH would display NOP. Trying DH 4E70 as a second
guess would reveal the actual RESET instruction.

ID [address}

{Instructlon Disassernbie). Disassembles one lire at address. If address is omilted,
the next logical location is disassembled. ID sets the dot symbol (.) to the address.

Disassembiler commands

201

If the code has symbols compiled with it via the $D+ directive in Pascal or the -g
option in C, and symbols have been turned on with the SX command, each address
is automatically displayed as a routine name plus an offset.

IL [address | number)]

(Instruction Ust), Disassembles number lines starting at address. If number is
omitted, a screenful of lines (typically 16) is disassembled. If both number and
address are omitted, 2 screenful of lines is disassembled starting at the next logical
location. This command sets the dot symbol (.) to the address.

If the code has symbols compiled with it via the $D+ option in Pascal or the -g option
in C, and symbols have been tumned on with the SX command, each address is
automatically displayed as a routine name pius an offset

You can prematurely terminate an IL command by pressing the Backspace key.

F address coumda.tafmask]

(Find). Searches count bytes from address, looking for data, after maskmg the
target with mask As soon as a maich is found, the address and value are displayed,
and the dot symbol (.) is set to that .address. To search the next count bytes, simply
press Return. The size of the target is determined by the width of data; it is limited to
1, 2, or 4 bytes,

For example, to find a RESET instruction in a program loaded into a Macintosh Plus,
you could type

>F CBO0 EFFFF 4E70

where CBOO is the beginning of the zpplication heap, EFTFF represents the length of
the application heap (roughly), and 4E70 is the RESET instruction.

WH expr

(Where). Takes an expresswn which can be a symbolic name, and displays the
location of the first routine that it finds whose name matches the expression. ROM
symbol names are ten-character names, and RAM symbols are eight-character
names. ' :

If expr is less than $AAQQ, this command displays the address corresponding to the
trap with that Rumber. All of the following commented commands, for example,
give the same result: '

>WH EXITTOSHELL ; full name

>WH AS9F4 ; full trap word
>WH 1F4 ; shortcut
>WH 40F6D8 ; address of ExitToShell in the 128K ROM

202 Chapter 8: Debugging With MacsBug

o,

P

[

Namely,
Trap Word Address Name
ASF4 40F6D8 EXITTOSHELL

The shortcut method of inputting trap numbers interprets $0~$6F as OS traps, and all
other traps as Toolbox traps. ' '

If expris preceded by the address operator (&), then the expression is forced to be
valuated as an address. This feamre is useful for examining system patches whose
addresses are often less than SAA00, the defauit address boundary.

If expris greater than or equal to $AA0Q and less than RomBase, then the address is
interpreted as a user routine in RAM, and a symbolic location will be displayed if
possible. :

If expris in ROM then the trap whose code is dQsest r_.o'that address is displayed.
WH is useful for finding out where you were when an ermor occurred. If the address
expression is in RAM and the WH function reums “PRGM AT $5$5° you can then
use the command HD ‘*CODE’ to list the code segments. Then, by comparing the

locations of 'CODE' segments and the current PC, you can determine which segment
you are in. ' . .

- MacsBug summary S |

~General commands

? (Help)

DV (Display Version)
RB (Reboot)

ES . : (Exit to Shell)

EA (Exit to Application)

Summary

203

Memory commands.

CV expr (Convert)

DM | address [number]] (Display Memory)
SM address expr... - (Set Memory)
DB [address) (Display Byte)
-SB address | expr] " (Set Bytwe)

Dn [epr] . (Data Register)

An [epr] (Address Register)
PC [expr] (Program Counter)
SR [ewr] (Status Register)
D (Total Display)
RX _ (Register Exchange!
CS | addressl | address2]] (Checksum) '
Break commands

BR | address | count]) (Break)

CL [address) (Clear)

G [address) (Go)

GT address (Go TilD)

T (Trace)

S [number] (Step)

SS addressl | address2] (Step Spy)

ST address {Step TilD)

MR [offset] (Magic Return)
DX (Debugger Exchange)

A-frap commands

BA
AA
AB
AT
AH
AR
AS

AX

204

{ trapl | trap2 [addrl | adar2 1 D1 [D211]]1}
{ trapl | trap2 | addrl | addr2 | D1 [D21]]111]
{ trapi (trap2 | addr? [addr2 | D1 [D2 1111]]
[trapl (trap2 [addrl | addr2 | D1 [D2]1111]
[trap? [trap2 | addrl { addr2 | D1 [D2 1]111]
[trapl | trap2 | addrl (addr2 { D1 [D2 11111]
address] [address2 |

Chapter 8: Debugging With MacsBug

(Break in Application)
(Application A-Trap Trace)
(A-Trap Break)

(A-Trap Trace)

(A-Trap Heap Zone Check)
(A-Trap Record)

(A-Trap Spy)

(A-Trap Clear)

Heap zone commands

HX [address| : (Heap Exchange)
HC (Heap Check)
HS [trap? trap2) (Heap Scrambie)
HD [mask]) (Heap Dump)
HT [mask] (Heap Total)

sC (Stack Crawi)

Disassembler commands

$X

- 8D [address)
DH number
ID | address]

IL [address { numper] |
F address count data | mask |
WH axpr

(Symbol Exchange)
(Symbol Dump)
(Disassemble Hex)
(nstruction Disassemble)
(Instruction List)

(Find)

(Where)

Y

Chapter 9

Command Reference

This chapter is 2 command dictionary that describes each of the
Macintosh Workshop commands. Pay particular attention to the
“Command Prototype” section, which describes the basic behavior
of all commands.

e

AddMenu
Adjust
Alert

Alias

Align

Asm

Beep
Begin.. End
Break

C

Canon.

Catenate
Clear
Close

Compare

Confirm

Continue
Copy

Count
Cut
CviObj
Date

Delete

- DeleteMenu

DeRez

- Directory
BumpCode
Dumpdb}'

Duplicate

Cormmand Prototype xx

‘Add menu item xx

Adjust lines xx

Display an alent box xx _
Define or write command aliases xx
Align text to left margin xx |
68xxx Macro Assembler xx
Generate iones xx

Group commands xx

Break from For or Loop xx

C Compiler xx _
Canonical spelling tool xx
Concatenate files xx

Clear the selection xx

Close a2 window xx

Compare text files xx

Display cdnﬁrmau’on dizlog xx
Continue with next iteration of For or Loop xx
Copy selection to Clipboard xx
Count lines and characters xx

Copy selection to Clipboird and delete it xx

Write the date and time xx

Delete files and directories xx _
Delete user-defined menus and items xx
Resource Decompiler xx

Set or write the default directory xx
Write formatted code resources xx
Write formatted object file xx

Duplicate files and directories xx

Convert Lisa Workshop object files to MPW object files xx

Command Reference

207

Fcho Echo parameters xX
Eject Eject volumes xX
Entab Convert runs of spaces to tabs xx
Equal Compare files and directories xx
Erase Initialize volumes xx
Evaluate - Evaluate an expression xx
Execute Execute a command file in the current scope xx
Exit Exit from command file xx |
Export Make variables available to programs xx
FileDiv Divide a file into several smaller files xx
Files List files and directories xx
Find Find and select a text pattern xx
Font Set font characteristics’ xx
For... Repeat commands once per parameter xx
Help Display summary information xx .
... Conditdonal command execution Xxx
Lib Combine object files into a library file xx
Link - Link an application, 100}, or resource XX
Loop...End Repeat command list until Break xx
Make Build up-to-date version of a program' xx
MDSCvt Convert MDS Assembler source xx
Mount Mount volumes xx
Move Move files and directories xx
New Open a new window xx
NewFolder Create 2 directory xx
Open Open a window xx
Parameters Wrile paramelers XX
Pascal Pascal Compiler xx
PasMat Pascal program formatter (“pretty-printer”) xx

PasRef Pascal cross-referencer xx
208 Chapter 9; Command Reference

Paste
Print
Rename
Replace

-Request

Rez

RezDet

Save

Search

Set

SetFile
Shift

Tab
Target
TLACwvt
Unalias
Unmount
.Unset
Volumes

Windows

Repiace selection with contents of the Clipboard xx

Print text files xx _

Rename files and directories xx
Replace the selection xx

Request text from a dialog =
Resource Compiler xx

The resource detective xx

Sive windows xx

Search files for a panem xx

Define or write Sheil variables xx

Set file attributes xx

Renumber command-file parameters xx
Set 2 window’s tab value xx

Make 2 window the target window xx
Convert Lisa TLA Aséembler source xx
Remove aliases xx

Unmount volumes xx

Remove Shell variables xx

List mounted volumes xx

List windows xx

Commond Reference

209

Command prototype

The following command prototype illustrates the conventions that we've used 1o
describe MPW commands. Most commands behave roughiy as specified below!

Syntax Command [option... 1 [file...]

Note: Filenames, command names, and options are not sensitive to case. The
syntax notation itself is described in the Preface to this manual. : (

Description The first word of the command is the filename of the program o execute, or the name
of a predefined command. The subsequent words are passed as additional
parameters to the command (or recognized by the Shell in the case of I/O
redirection).

Most commands recognize two distinct types of parameters: options and filenames.
Options begin with a2 minus sign () 1o distinguish them from filenames. Although the
syntax descriptions list the- options first, options and files may appear in any order.
All of the options apply to the processing of all of the files, regardless of the ordering
of options and files. .

For comrmands that read and write text files, you may specify a file, a window, or a
selection within a window, as follows: '

name Named window or file.
§ The selection in the target window. (The target window is the second
window from the top.)
name.§ The selection in the named window.
Input Standard input is often processed if no filenames are specified.

Note: If a program is reading from standard input, you can press Command-Enter
(or Command-Shift-Return) to indicate EOF and terminate input. (See “Terminating
Input With Command-Enter” in Chapter 3).

Qutput Text processors usually write their output to standard output. The Assembler writes
listings to standard output. The Linker writes location maps to standard output.

210 Command prototype

Diagnostics

Status

Options

See also

Errors and warnings are written to diagnostic output. If no errors or warnings are
detected, most commands don’t write anything to diagnostic output. Assembier and
Compiler error messages have the format

#4# message

File "fllename” ; Line lnenumber

This format makes it possible to select and execute the text after “###”, because the
names “File” and “Line” have been defined as Shell commands— “File” is defined in
the Stastup file as an alias for the Target command, and “Line” is a short command
file that finds a line number.

Several teols write progress and summary information to diagnostic output if you
specify the -p option.

Status values are returned in the {Status} variable. A value of 0 ind.icatbs that no errors
occurred; anything else usually indicates an error. Typical values are

0 .Command succeeded
1 Incorrect options or parameters
2 Command failed; invalid input

Options specify some variation from the default command behavior. Options begin
with a minus sign () to distinguish them from files and other parameters.

Options form single words. in the command language. Some options require
additional parameters, which are separated from the option name with a blank. (An
option’s parameters also form a single word in the command language.)} If more than
one option parameter is required, the usual separators between them are commas
and equal signs—for example,

Asm -define &debug='on' ~pagesize 84,110

For those options that do have additional parameters, the option parameters are
never optional. :

Opiions may appear in any order. Al options are collected prior to processing files.

“Structure of 1 Command” in Chapter 3

Command prototype 211

Syntax .

Deséripiion

M—M

AddMenu — add menu item
AddMenu [menuName | itemName [command...11]

Associates a list of commands with the menu item itemName, in the menu _
menuName. If the menu menuName already exists, the new item is appended to the
bottom of that menu. If the menu menwuName doesn’t already exist, 2 new menu is
appended to the menu bar and the new item is appended to that menu. When the new
menu item is selected, its associated command list is executed just as though the

 command text had been selected and executed in the active window.

Note: The command text that you specify for an AddMenu item is executed -

twice-—once when you execute the AddMenu command itself, and again whenever

you subsequently select the new menu item. This means that you must be careful 10

quote items so that they are processed at the proper time. See the “Examples” section

below. ' '

You can also use AddMenu to display information for existing user-defined menus,

by omitting parameters: :

m If command is not specified, the command list associated with itemName is
writien to standard output. '

a If ftemName and command are both omitted, a list of all user-defined iterns for
menuName is wrilten to standard output.

s fno parameters are specified, a list of all user-defined itéms is written to scandard
(This output is in the form of AddMenu commands.)

You can define keyboard equivalents, character styles, and other features for your
new menu commands—i{temName can contain any of the metacharacters that are
used with the AppendMenu() procedure documented in the “Menu Manager”
chapter of Inside Macintash:

/char Assign the keyboard equivaleht Command-char.
‘char Place charto the left of the menu item.
An ILerﬁ has an icon, where 1 is the icon number (see Inside
' Macintosh).
(ftem is disabled (dimmed).
<style Item has a special character style: style can be any of the following:
B bold

input

Output

Diagnostics

_Stc:tus

Examples

italic

underline

outline

shadow _
Be sure 10 quote menu items containing these special characters. (See the “Examples”
section below.) ' : .

Note: Semicolons (;) cannot be used within an ftemName.

Menu items can't be zppended to the Windows, Format, or Apple menus.

oo

None.

If any of the 6pr.ional parameters is omitted, a list of user-defined menu items and
their associated commands is written to standard output.

Errors and warnings are written to diagnostic cutput,

AddMenu returns the following status values:

0 No errors

1 Syntax error.

2 Anitem can't be redefined
3 System error

AddMenu

Lists all user-defined menu items.

AddMenu Extras "TimeStamp/P" ‘'Echo “Date"'

Adds an “Extras® menu with a “TimeStamp” item, which writes the current time and
date to the active window. This item has the Command-key equivalent Command-P.

AddMenu File 'Format<B!' 'Erase 1°'

Adds a "Format” item to the File menu (see the Erase command), and makes the item
bold.

AddMenu Find Top 'Find = "{Active)}™!?

Adds the menu item “Top” to the Find meny, and defines it as the Find command
enclosed in single quotes—this command places the insertion point at the beginning
of the active window. :

Add Menu 213

See aiso

214

Note: The following attempt to do the same thing will not work

AddMenu Find Top "Find * (Activel™

"This command won't work because the {Active} variable will be expanded when the

menu is added. (It should be expanded when the menu item is executed) In the first
(correct) example, the single quotes defeat variable expansion when the AddMenu
command is executed; they are then stripped off before the item is actually added.
The double quotes remain, in case the pathname of the active window happetis (o
contzin any special characters.

You may want to add some or all of the following commands to your UserStartup file:

AddMenu Find *(-' b

AddMenu Find 'Top/6°' 'Find * "{Active}"'

AddMenu Find ‘Bottom/5’ 'Find = "{Active}"!'

AddMenu Find 'Clear to Bottom/8' 'Clear §:= "{Active}"'

These commands create several new items in the Find menu. The first is a disabled
separator that creates a new section at the bottom of the menu. The Top and Botom
items position the insertion point at the top and botiom of the active window. Clear to
Bottom clears everything from the beginning of the current selection (or insertion
point) to the end of the active window. All three menu items have Command-key
equivalents. '

DeleteMenu command

“Quoting Special Characters,” “How Commands Are Interpreted,” and “Defining
your own Menu Commands” in Chapter 3.

“Creating a Menu in Your Program” in the “Menu Manager” chapter of Inside
Macintosh : '

Add Menu

i

—

Syntax

Description

Input
Qutput
Di_'_égnosﬂ'c.s

Status
Options

Examples

- Adjust — adjust lines

Adjust [-c count] [- spéces] seiection { window]

Finds and selects the given selection, and shifts all lines within the selection 1o the
right by one tab, without changing the indentation.

If a count is specified, count instances of selection are affected. The -1 option lets vou
move lines by any number of spaces 1o the left or right.

If you specify the window parameter, the command operates on window. It's an
error 1o specify a window that doesn’t exist. If no window is specified, the command
operates on the target window (the second window from the top).

None.
None.
Errors are written 10 diagnostic output.

Adjust returns the following status values:

0 At least one instance of the selection was found
1 Syntax error

2 Anything else
-C count Repeat the select-and-adjust operation count times.
-1 spaces Every line within the selection will be shifted spaces spaces to the
: right. You can shift 2 selection left by specifying a negative value for
spaces.

Adjust -1 4 §
Shifts the lines containing the target selection to the right by four spaces.

Adjust -1 -8 /if/A:A/else/ -

Selects everything after the next “if” and before the following "else”, and shifis ail
lines within the selection to the left by eight spaces.

Adjust 215

See also Align command
“Selections” in Chapter 4

216 Adjust

Syntax

Description

- Input

P

Quitput
Diagnostics

Status

Examples

et

See also

1
|

Alert — d_isplay an alert box
Alert message

Displays an alert box containing the prompt message. The alert is displayed until its
OK buuon is clicked. If the message consists of more than one word, or contains any
specml characters, you'll need 1o quote it, as explamed in Cthter 3.

None.

None,

None.

“The Alert command normally returns the va]ue 0 The value 1 is returned if there were
any syntax errors, :

Alert "Please enter next disk to be searched."
Displays the following alert box, and waits for the user to click "OK” before returnin g

Please enter next disk to be searched.

R

Confirm and Request commands

Alert 217

M

Alias — define or write command aliases
“Syntax Alias [name [word...]]

Description © Name becomes an alias for the list of words. Subsequently, when name isusedasa
command name, word... will be substituted in its place.

If only name is specified, any alias definition associated with name is written to
standard output. If name and word are both omitted, a list of all aliases and their
values is written to standard output. (This output is in the form of Alias commands.)

Aliases are local to the command file in which they are defined. An initial list of
aliases is inherited from the enclosing command file. Inherited aliases may be

_ overridden locally. You can make an alias definition available to all command files
by placing the definition in the UserStartup file. '

You can remove aliases with the Unalias command.
input None,

Qutput When parameters are omitted, the Alias command writes aliases and their values (0
standard output.

Diggnostics Neone.
Status A siatus value of 0 is always returned.

Examples Alias CD Directory
' Creates an alias *CD" for the Directory command.

Alias Top 'Find '

Creates an alias “Top” for the command “Find +” (which places the insertion peint at
the beginning of a window). The command takes an optiona! window parameter, and
by default acts on the target window. The Top command could now be used as follows:

Top # find top of target window

218 Alias

T

See also

Top Sample.a # find top of window Sample.a
(equivalent to "Find +« Sample.a"}

The following example redefines an existing command:

Alias Save SaveMany

The built-in Save command dees not allow you to sa\}e a list of windows. To override
the buili-in Save command with your own version of the command, you could alias
Save to the command file SaveMany, which might contain the following:

SaveMany - Save a list of windows _####

.
SaveMany {window..]
Unalias # It's very important to Unalias Save!

Set Exit 0

For window in {"Parameters"}
Save "{window!}"

End

The Unalias command must be included—it removes the alias for Save, preventing
infinite recursion when Save is used later in the command file. To make this muld-
window save a permanent feature on your system, you could put the Alias command
in your UserStartup file, and put the SaveMany command file in the Tools directory.

Unalias command

“Command Aliases” in Chapter 3

Alias 219

Syntax

Description

" Input
Quitput
Diagnostics

Status

Options

Examples

See also

220 Align

Mw

Align — align text to left margin.
Align [<c count] selection [window}

All lines within each instance of the selection are positioned to the same distance
from the left margin as the first line in the selection.

If you specify the window parameter, the Align command will act on window. It's an
error to specify a window that doesn't exist. If no window is specified, the command
operates on the target window (the second window from the top).

None.

None.

Errors are written to diagnostic output.

Align returns the following status values:

0 At least one instance of the selection was found

1 Syntax error
2 Any other error

-C cotnt Repeat the select-and-align operation count times.

Align §

Same as the Align menu item; that is, aligns all lines in the default selection with the
first line of the selection.

align /Begin/:/End/

Selects everything from the next “Begin” through the following “End”, and aligns all
lines within the selection to the same margin position as the line that contains the
“Begin”,

Adjust comrmand

“Selections” in Chapter 4

Syntax

Description

input -

'Oufpuf

' Diagnostics

Status

Options

Asm — 68xxx Macro Assembler
Asm { oprion ...)| [flle ...)

Assembles the specified assembly-language source files. One or more filenames may
be specified. If no filenames are specified, standard input is assembled and the file
"a.0” is created. By convention, assembly-language source file names end in the
suffix *.a". Each file is assembled separately— assembling file name.a creates object

file name.a.o. The object file name can be changed with the -0 option.

See the MPW Assembler Reference manual for detils of the assembly language.

If no filenames are specified, standard input is assembled. (You can terminate input
by typing Command-Enter.) :) :

If either the -1 or -s option is specified, an assembler listing is generated. If standard
input is used for the source file, the listing is written to standard output. If the input is
taken from file namea, the listing is written to namea.lst. The listing file name can
be changed with the -lo option. ‘

Errors and warnings are written to diagnostic output. If the -p option is specified,
progress and summary information is also written to diagnostic output.

The following status values are returned to the Shell:

0 No errors detected in any of the files assembled
1 Parameter or option errors

2 . Errors detected

3 Execution terminated

Except for the -case on option, options may appear in any order.

-addrsize size Set address displays in the listing 1o size digits (values 4 to 8 are
allowed). The default is 5 digits. :

Asm 221

222

Asm

.blksize blocks Set the Assembler’s text file 1/O buffer size to blocks™512 bytes.
' Values 6 to 62 are allowed. Odd values are made even by reducing

the value by 1. The default value is 16 (8192 bytes) if the Assembler
determines it has the memory space for the [/O buffers, and 6 (3072
bytes) otherwise. This option permits optimization of /O
performance (transfer rate for text file input, lozd/dump files, and
listing output) as a function of the disk device being used. Note that
increasing the blocks value reduces the amount of memory
available for other Assembler structures (such as symbol tables).

-case on ' Distinguish between upper- and lowercase letters in non-macro

names (same as CASE ON). (Case is always ignored in macro

names.) If you intend to preserve the case of names declared by the

-define option, then the -case on option must precede the -define
option(s) in the command line.

-case objlect] Preserve the case of module, EXPORT, IMPORT, and ENTRY
names only in the generated object file. In all other respects, case
is ignored within the assembly, and the behavior is the same as the
preset CASE OFF situation.

-case off * Ignore the case of leners. All identifiers are case insensitive. This is
the preset mode of the Assembler, but it may be used in the
command line to reverse the effect of one of the other -case modes.

-c[heck] Syntax check only. No object file is generated.

-dlefinel namd=valuel [,namd=valuel 1...
Define the name as having the specified value. The value is a
decimal integer. If value is omitted, a value of 1 is assumed. This
option is equivalent 1o placing the directive
name EQU value

at the beginning of your source file. Note that in order to test
whether or not the name is defined, the &Type function should be
used. You can define more than one name by specifying multipie -d
‘options or multiple name=valuel parameters separated by
commas. For example,

Asm -d debugl, &debug="on'

7 AN

N

-d[eﬂnei &namd= {valuell [&namd=[valud] |...

Define the macro name as having the specified value The value is a
decimal integer or a string constant. If the "=val/ue” is omitted, the
decimal value 1 is assumed. If only the value is omitted, the null
string is assumed. -define is equivalent to declaring the name as a
global arithmetic symbol (GBLA for an integer value) or global
character macro symbol (GBLC for a string value) and placing one
of the following duecnves at the beginning of the source file:

_&name SETA value
&name SETC value

Note.that in order to test whether the name is defined, Lhe &Type
function should be used. You can define more than one macro
name by specifying muitiple -d options or multiple &name=valuel
parameters separated by commas.

-elrrlogl ﬁlename

f

Write all errors and warnings to the error log file with the specified
filename (same as ERRLOG filename).

Suppress page ejects (same as PRINT NOPAGE).

-font fontnamd, fontsize]

-h

Set. the listing font to fonmame (for example, Courier), and the size
10 fontsize ‘This option is meaningful only if the s or the -1 option is
used., The default listing font is Monaco 7. Note that listings will be
formatied correctly only if a monospaced font is used.

Suppress page headers (same as PRINT NOHDR).

A pathname ,pathnamel. ..

Search for include and load files in the specified directories.
Multiple -i options may be specified. At most 15 directories wili be

~ searched. The search order is as follows:

1. The include or load filename is used as specified. If a fuil
Dpathname is given, then no other searching is applied.

If the file wasn't found, and the pathname used to specify the [ile
was a parntial pathname (no colons in the name or a leading
colon), then the following directories are searched.

2. The directory containing the current input file.

3. The directories specified in -1 options, in the order listed. -
4. The directories specified in the Shell variable (Alncludes}.

-1 Geneérate full listing. If file name.a is assembled, the listing is
written (o name.a.lst.

-lo listingname ~ Pathname for the listing file and directory for the listing scratch file.
" If Ustingname ends with a colon (), it indicates a directory for the
listing file, whose name is then formed by the normal rules (that is,
inputFilename.a.lst). If listingname does not end with a colon, the
listing file is written to the file listingname. In this case, listings for
" multiple source files are appended to the listing file. In either case,
the directory implied by the listing name is used for the Assembler’s
listing scratch file. The -lo option is only meaningful if the -8 or
the -1 option is used.

-0 obfname Pathname for the generated object file. If obfname ends with a
" colon (), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, inputFilename.o). If
obmame does not end with a colon, the object file is written to the
file obfmame. (In this case, only one source file should be specified
to the Assembler.) '

-pagesize / [,ui Set the listing page size. (This option is only meaningful if the -s or -i
‘option is specified.) The /and w parameters are integers: [is the
page length (default = 75) and w is the page width (default = 126).
(These settings assume that Monaco 7 is being used with the MPW
Print command to the LaserWriter.)

-print mode [,mode)... _
Set a print option mode. Mode may be any one of the following
PRINT directive options:

[NOIGEN macro expansions
[(HOJPAGE - page ejects -
[NOIWARN warnings
"INOIMCALL macro calls

iNoloBT object code
[NOIDATA data

{NOIMDIR macro directives
[NOJHDR page headings
NOILITS literals

(NOISTAT progress information
[NOlsSTM symbol table display

See the MPW Assembler Reference manual for a discussion of these
PRINT settings. You.can specify more then one print option by
specifying multiple -print options or multiple mode parameters
separated by commas. For example,

224 Asm

.

Exampies

See also

P

Asm -print nowarn,noobj, nopage

Note that single-letter options are provided for some of the setrings:
-f (NOPAGE), -h (NOHDR), -p (STAT), and -w (NOWARN).

Write assembly progress information (module names, included,
loads, and dumps) and summary information (number of errors,
warnings, and compilation time) to the diagnostic output file. (This
option is the same as PRINT $TAT.) :

Set PRINT NOOBJ to generate a shortened form of the listing file. If
the -1 option is also specified, the rightmost option takes
precedence.

Display the assembly time and the number of lines to the diagnostic
file even'if progress information (-p) is not being displayed.

Suppress warning messages (same as PRINT NOWARN).

Suppress branch warning messages only.

Asm -w -1 Sample.a Memory.a -d Debug

Assembles Sample.a and Memory.a, producing cbject files Sample.a.o and
Memory.a.o. Suppresses wamings and define thé name "Debug" as having the
value 1. Two listing files are generated: Sample.2.Ist and Memory.a.lst (Sample.a
dud Memory.a are located in the AExamples directory.) '

MPW Assembler Reference

Syntax

Description

Input
Output
Diagnosfiés
Status

Examples

226 Beep

Beep — generate tones

Beep [note |, duration | level1]1]...

For each parameter, Beep produces the given note for the specified duration and
sound level on the Macintosh speaker. If no parameters are given, a simple beep is
produced.

Note is one of the following:

® A number indicating the count field for the square wave generator, as described in
the Summary of the "Sound Driver” chapter of Inside Maciniosh

mA string in the following format
[n] leter{# | B]

n is an optionzl number between -3 and 3 md.:mung the octaves below or above
middle C, followed by a lener indicating the note (A-G) and an optional sharp (#)
or flat (o) sign. :

The optional duration is given in sixtieths of a second. The default duration is 15
(one-quarter second).

The optional sound level is given as a number from 0 to 255. The default level is 128.
None.

None.

None.

A status value of 0 is always reumed.

Beep
Produce 2 simple beep on the speaker,

Beep 2C,20 '2C#,40' 2D, 60

Play the 3 notes specified: C, C sharp, and D, all two octaves above middle C, for
one-third, two-thirds, and one full second respectively. Notice that the second
parameter must be quoted; otherwise the sharp character (#) would indicate a
comment.

Synfax

Description

Input
Quiput
Diagnosfics

Status

Examples |

Begin...End — group commands

Begin
End

Groups commands for pipe specifications, conditional execution, and input/output
specifications. Carriage returns must appear at the end of each line as shown above,
or be replaced with semicolons (;). If the pipe symbol (|), conditional execution
operators (&& and | 1), or input/output specifications (<, >, >>, 2, 22} are used, the
operator must appear after the- End command, and applies to ali of the enclosed
commands. _

Note: Begin and End behave like left and right parentheses, Once the Begin
command has been executed, the Shell will not execute any of the subsequent
commands until it encounters the End command, so that input/output specifications
can be processed. . '

Neone.
None.
None.

The suatus value of the last command executed is returned. (If no commands appear
between Begin and End, 0 is rétumed.)

The following commands save the current variables, exports, aliases, and menus in
file SavedState.

Begin
Set
Export
alias
AddMenu
End > SavedState

Notice that the output specification following “End” applies to all of the commands
within the Begin...End control command. This command is identical to the
following:

(Set; Export; Alias; AddMenu) > SavedState

Begin...End 227

The commands Set, Export, Alias, and AddMenu write their output in the form of
commands; these commands can be executed to redefine variables, exports, aliases,
and menus. Therefore, after executing the 2bove commands, the command

SavedState
will restore all of these definitions.

Note: This technique is used in the Suspend command file to save state information.
(You might want to take a look at Suspend, which also saves the list of open windows
and the current directory.) The Resume file runs the file that Suspend creates,
restoring the various definitions, reopening the windows, and resetting the current
directory. -

228 Begin...End

ST

Syntax

Description

fnpui

Qutput

Diagnostics -

Status

Examples

See aiso

Break — break from For or Loop

Break [If expression]

If expression is nonzero, Break terminates execution of the immediately enclosing
For or Loop command. (Null strings are considered zero.) If the “If expression” is
omitted, the break is unconditional. (For 2 definition of expression, see the Evaluate
command in this chapter.) '

N ohe.
None.
Errors are written to diagnostic output.

The following status values are returned:

0 No errors detected
1 Break is found outside a For...End or Loop...End, or the parameters to Break are
incorrect

Set Exit ¢
For file in Startup UserStartup Suspend Resume Quit
EnTab "{file}"™ > temp
Break If {Status} != 0
Rename -y temp “{file}"
Print -h "{file}™
: Echo "{file}"™
End '
This For loop entabs and prints each of the special MPW command files; the Brezk
command terminates the loop if a2 nonzero status value is réturned. (See the For
command for an explanation of this example.)

For, Loop, and If commands

Evaluate command (for a description of expressions)

“Structured Commands” in Chapter 3

Brecak 229

Syntax

Description

Input

Quiput

Piagnostics

Status

Options

C — C Compiler
C [option ... 1 { file]

Compiles the specified C source file, Compiling file Name.c creates object file
Name.c.c. (By convention, C source file names end in a “.c” suffix.}" If no filenames
are specified, standard input is compiled and the object file “c.0” is created.

See the manual MPW C Reference for details of the C language definition.

If no filenames are specified, standard input is compiled. You can terminate input by
pressing Command-Enter.

If you specify the -e option, preprocessor cutput is written to standard output, and no
object file is produced. '

Errors and wamings are written to diagnostic output. If the -p option is specified,
progress and summary information is also written to the diagnostic output.

The following status values are returned:

0 Successful completion
1 Errors occurred

- Include comments with the preprocessor output. (By default,
comments are not written to the preprocessor outpul,)

-d name Define ntame to the preprocessor with the value 1. This is the same
a3 writing
#define name 1

at the beginning of the source file. (The -d option does not cverride
#define statements in the source file.)

-d name=string Define name to the preprocessor with the value string. This is the
same as wriling
#define mname string

235

8

-ga

at the beginning of the source file.

Do not compile the program. Instead, write the cutput of the

. preprocessor to standard output. This option is useful for debugging

preprocessor macros.

Generate stack frame pointers in A6 (that is, LINK A6,x ... UNLK

- Ab) for all functions. Insent the procedure name into the object

code that follows the procedure’s RT3 instruction. Use this option if
you plan to debug the program with MacsBug.

Generate stack frame pointers in A6 (that is, LINK A6,x ... UNLK
A6) for all functions.

-1 pathname |,pathname. ..

-0 obfname

Search for include files in the specified directories. Multiple -
optons may be specified. At most 15 directories will be searched.
The search order is as follows:

1. The include file name is used as specified. If a fiull pathname is
given, then no other searching is applied.

If the file wasn’t found, and the pathname used to specify the file
was a partial pathname (no colons in the name or a leading
colon), then the following directories are searched.

2. The directory containing the current input file.
3. The directories specified in -1 options, In the order listed.

4. The directories specified in the Shell varable (Cincludes}.

Pathname for the generated object file. If obfmame ends with a
colon (), it indicates a directory for the output file, whose name is
then formed by the normal rules (that is, nputFilename.o). If
obname does not end with a colon, the object file is written to the
file obfname.

Write progress information (include file names, function names,
and sizes) and summary information (number of errors and
warnings, code size, global data size, compilation time, and
compilation memory requirements) to diagnostic output.

C 23

232

-8 name

-u name

W

-x55

Optimize the code for speed, even if it's necessary 10 make the
object code larger. By default, the Compiler performs
optimizations that make the code both smaller and quicker—the -q

- option will perform further optimizations that may make the code

faster, but also larger. The -q option should be specified only for

" those parts of the program that are executed frequently—it's

counterproductive to specify -q on code that's rarely executed.

Allow the optimizer 1o assume that memory locations do not
change except by explicit stores—that is, the optirnizer is
guaranteed (1) that no memory locations are I/O registers that can
be changed by extema! hardware, and (2) that no memory
locations are shared with other processes that can change them
asynchronously with respect to the current pracess. This option
must be used with extreme caution in device drivers, operating
systems, and shared-memory environments, and when interrupts
are present. '

Name the object code segment (The default segment name is
“Main®) Because a segment may not exceed 32K bytes, large
programs require multiple segments with different names. This
option is overridden if the following statement appears in the
source code:

#define __ SEG__ name

Undefine the predefined preprocessor symbol name. This is the
same as writing '

- #undef name

at the beginning of the source file.

Suppress Compiler warning messages. (By default, warnings are
written to diagnostic output.)

Use MOVE #0,x instructions rather than CLR x instructions for
nonstack addresses. This option may be useful when writing device
drivers.

Make bit fields of types int, short, and char be signed. (The defauit
is for ail fields 1o be unsigned.} -

Examples
P
\
" Limitations
Availability
See aliso_
s
\..

-z6 Always allocaie 32 bits for enumerated data types, (o maintain
: compatibility with Standard C. The default is to allocate 8, 16, or 32
bits. '
Caution: This option is not compauble with the Macintash
interface hbranes

-z84 Enable language anachronisms. Warning messages are provided
when anachronisms are encountered, and the constructs are
- compiled. (See MPW C Reference for information.)

C -p Sample ..c
Compile Sample.c, producing the object file Sample.c.o. Write progress
information to diagnostic output. (Sample.c is found in the CExamples folder.).

1 MB of RAM is recommended; on a Macintosh 512K, even small C programs may
not. compile,

The C Compiler is available as part of a separate Appie product, Macintosh
Programmer's Workshop C.

" MPW C Reference

C 233

Syntax
Description
Input

Cutput

234 Canon

Canon — canonical spelling tool

Canon {s) [-a) [-cnl dicttonaryFile | inputFile ...)

Canon copies the specified files to standard output, replacing identifiers with the

canonical spellings 3:ven in dictionaryFile. If no files are specified, standard input s

processed.

DictioriaryFile is a text file that specifies the identifiers to be replaced and their new

(or canonical) spellings. Identifiefs are defined as a letter followed by any number of

letters or digits (underscore (_) is also considered a letter). Each line in the

dictionary contains either a pair of identifiers or a single identifier:

s If two identifiers appear, the first is the identifier to replace, and the second is its
canonical spelling. For example, the dictionary entry

NIL NULL # change NIL to NULL
changes each occurrence of NIL to NULL,

B A single identifier specifies both the identifier to match and its canonical
spelling---this feature is useful because the matching may be case insensitive or
restricted to a fixed number of characters. (See the “Options” section below.) For
example, the dictionary entry
true
changes all occurrences of “TRUE", *True”, “tRUE", and 50 on to “true”.

You can specify a left context for the first identifier on each line of the dictionary by

preceding it with a sequence of non-identifier characters. Replacement will then

occur only if the left context in the input file exactly matches the left context in the

dictionary: For exampie, if C structure component upperleft should be replaced wiih
topleft, the dictionary might include the following:

.upperleft topLeft
->upperLeft toplLeft

You can include comments in the dictionary file by using the # symbol—everything
from the # to the end of the line is ignored.

Note: The file Canon.Dict is a sample dictionary file that's included with MPW. (See
the “Examples” section below.)

Standard input is read if no files are specified.

The specified files are written to standard output with the identifiers replaced. (Words
in comment sections are also replaced.)

./—\

Diagnostics

Status

Options

Examples

Errors are written to diagnostic output.

The following status values are returned:

0 All files processed successfully
1 Error in command line
2 Other errors

-8 : Use case-sensitive matching. (Pattern matching is normally case
insensitive.) '
-a Causes the characters $, %, and @ to be considered letters (for

defining identifiers). This option is useful when processing
assembly-language source. '

<n Take only the first # characters as significant. (Nbrmally all
: characters in ideniifiers are significant.)

The file Canon.Dict, in the Tools folder, contains a list of all of the identifiers used in
the Standard C library and the /nside Macintosh C interfaces. This list was made
from the Library Index in the MPW C Reference manual. The entries in Canon Dict
look like the following: ‘

abbrevDate
ABCallType
abortEry
ABProtoType
abs

acos
activateEvt

The following command copies the file Source.c to the file Temp; identifiers whose
first eight characters match a dictionary entry are replaced with that entry.

Canon -¢ 8 " {MPW}"Tools:Cancn.Dict Scurce.c > Temp

The -c 8 option is useful when porting source from other systems where only eigh:
characters are significant.

Nate: The list of Pascal identifiers used in the Inside Macintosh interface is almost
identical to the list used in C. The dictionary Canon.Dict can also be used o port
Pascal programs from other systems, as long as you don't mind using the canonical
capitalizations for the various Standard C library identifiers.

Canon 235

Limitations The maximum line length in the dictionary file is 256 characters. Longer lines are
considered an error. : ' :

236 Canen

Syniax

Description

Input

Qutput
Diagnosiics

Status

Examples

Catenate — concatenate files
Catenate | file...]

Catenate reads the data fork of each file in sequence and writes it to standard output.‘If
no input file is given, Catenate reads from standard input. None of the input files may
be the same as the cutput file.

Standard input is proqés’sed.if no filenames are spedified,
All files arcl wrilten to standard output.

Errérs are written (o diagnostic cutput.

The following status values are returned:

0 All files were processed successfully

1 One or more files were not found
2 An error occurred in reading or writing

Catenate Makefile.a
Writes Makefile.a to the active window, immediately following the command.

Catenate Filel File2 > Combinedrfile
Concatenates the first two files and places the result in the third. If CombinedFile

~ doesn't exist, it will be created; if it exists, it will be overwritten.

Set selection "Catenate §° _
Capture the selection from the target window in the Shell variable {selection}.

Catenate >> [Worksheet])

Append all subsequently entered text.to the Worksheet window (until end-of-file is
indicated by pressing Command-Enter).

Catenate 237

Warnings Beware of commands such as

Catenate Filel File2 > Filel

This command will cause the original data in Filel to be lost. To append one file 1o
another, use the form

Catenate File2 >> Filel

See also Duplicate comrhand
*Redirecting input and Output® in Chapter 3

238 Catenate

Syntax

Description

. Input
Qutput
Diagnostics

“Status

Options

Examples

See also

Clear — clear the selection
Clear { ¢ count] selection [window

Findé selection and deletes its contents. The selection is not copied to the Clipboard.
(For 2 definition of selection, see Chapter 4.)

If window is _speciﬁéd, the Clear command acts on that window. It's 2n error to
specify a window that doesn't exist. If no window is specified, the command operates
on the target window (the second window from the top). '

None.
None.
Errors are written o diagnostic cutput.

Clear returns the following status values:

0 At least one instance of selection was found
1 Syntax error
2 - Anything else

< count Repeat count—Ffind and delete count instances of selection.

Clear §

Deletes the current selection. This is like the Clear command in the menu bar, except
that the action cccurs in the target window rather than the active window.

Clear /BEGIN/:/END/

Select everything from the next BEGIN through the following END, and delete the
selection.

Cut and Replace commands
“Selecuons” in Chapter 4 (see Appendix B for a summary)

Clear 239

Close — close a window
Syntax Close [-y | -n] [window)

Description Close window. If no window is specified, the target window is cosed. If changes 1o the
window haven't been saved, a dialog box requests confirmation of the Close. In
command files, you can use the -y or -n options to avoid this interaction.

Input None.
Qutput None.
Diagnostics Errors are written o diagnostic output.

Status Close returns the following status values:

0 No errors
1 Synuax error
2 Any other error

Options -y ' Answer "Yes" to the confirmation dialog, causing the contents of
window to be saved before dosing it ' :

a ~ Answer *No” to the confirmation dialog, causing window 1o be
closed without saving any changes.

Examples Close Instructicns.a

Close and save the window titled Instructions.a. If any changes had been made to the
file, the following dialog would appear:

240 Close

P

Save changes to
HO:MPW:AExamples:Instructions.a

e

You can bypass this dialog with the -y or -nt options.

Close

241

e e ————— e e

L

Compare — compare text files

Syntax Compare [option ... 1 flel file2]

Description Compares the lines of two text files and writes their differences to standard output.
Options are provided to compare a specific column range in each file (-¢), to ignore
blanks. (-b), and to ignore case (-I).

Both files are read and compared line-for-line. As soon as a mismatch is found, the
two mismatched lines are stored in two stacks, one for each file. Lines are then read
alternately (starting from the next input line in file2) until-a match is found to put the
files back in synchronization. If such 2 maich is found, Compare writes the
mismatched lines to standard output.
Files are considered resynchronized when a certain number of lines in the two stacks
exactly match. By default, the number of lines, called the grouping factor, is defined
by the formula
G = Trunc((2.0 * LoggM)) + 2.0
where G is the grouping factor and M is the number of lines saved in each stack so far.
This definition requires more lines 10 be the same after larger mismaiches. Using this
formula, the following table shows the grouping factor, G, as a function of the number
of mismatched lines:
M: Number of mismatched Hnes G: Grouping factor
1 tw 3 2
4 10 9 3
10 to 31 4
2 1w 9 5
100 to. 315 6
316 to 999 7
1000 to 3161 8
3162 to 9959 9
With the default dynamic grouping, the -g option sets the lower limit for & (which
must be at least 2, since the formula is always applied). The -s option lets you fix Gasa
static constant. A static G may be desirable under some circumstances, but may also
resynchronize the files at undesirable points, especially if G is too small. It's
recommended that you use the default (dynamic G first; if the results aren’t
satisfactory, try the static G option.
With either option, there’s a limit on the depth of the stacks; that is, to how far out of
synch the two files can get before they’re no longer worth comparing. For a dynamuc
G, the limit on the number of mismatched lines is 1000, but you can choose a lower
lirnit with the -d option. For the static G option, typical values for Gare 110 5, and the
stack depth should be between about 10 and 50 (the default limit is 25).
242 Compare

TN

ST

N

Input

Qutput

Diagnostics

Status

The filel and file2 parameters specify the two files to be compared. If file2 is
omitied, file] is compared to standard input.

Mismatched lines and descriptive messages are written to standard output With

the -h option, a portion of each file’s output lines are displayed side by side;
otherwise, the first stack’s lines are displayed before the second stack’s. In either case,
lines are shown with their line numbers.

-The following messages appear when showing mismatches:

Nonmatching lines
... both stacks are displayed...

Extra lines in lst before <#ne> in 2nd
...lines m filel’s stack are displayed. ..

Extra lines in 2nd before <line in 1st
...fines in file2’s stack are displayed...

Extra lines in lst file
..-Hines in filel’s stack are displayed. ..

Extra lines in 2nd file o
...Hnes in file2’s stack are displayed. ..

If an end-of-file condition occurs or the maximum stack depth is reached during
resynchronization, then one of the following messages will also appear:

*** Nothing seems to match **=
*** EOF on both fileg **x

*** EOF on file 1 %k k.

*** EQOF on file 2 *=**

If both files are in synchronization, and both reach their end-of-file at the same time.
then the following message will appear if any mismatches occurred:

*** EQOF on both files at the same time **x
If both files match, then the following message is displayed:

*** Files match **»*

Parameter errors are written to diagnostic output

The following status codes are returned to the Shell:

0 Files match .

1 Parameter or option error
2 Files don't match

3 Execution terminated

Cempare = 243

Qpfions

244

b

Treat several blanks (spaces or tabs) as 2 single space, and ignore
trailing blanks.

-C cou-colz,coll-cblzl

-d depth

Compare only the columns coil to coi2 of each file, If the second
column range is omitted, then the first range applies to both files;
otherwise the first range applies to filel and the second range
applies 1o fle2. If coll is omitted, 1 is assumed. If col2 is omirted,
255 is assumed. '

" Note: To use the — option, tabs must be expanded. The tab setting

is determined from the file's tab value. (See also the -x option
below.) _ .

Sets the maximum stack depth (size) for resynchronization, that is,
how far cut of synch the files can get before they're no longer worth
comparing. Depth is an integer value from 1 to 1000. The default is
1000 if dynamic grouping is being used, and 25 for static (-s)
grouping.

-g groupingFacior

-h width

Compare

Specifies the grouping factor, G. For dynamic grouping, -g specifies
the minimum grouping factor, that is, the minimum number of
lines that must match for the two files to be considered _
resynchronized. (This value must be at least 2, which is the default)
If the -8 (static) option is used, -g specifies a fixed grouping factor.
{(Values are from 1 to 1000, the default is 3.)

Display mismatches in the horizontal format. Only a portion of
each mismatched line is displayed side by side. Width is a number
from 70 to 255 that controls the number of characters displayed in
each portion by specifying the total display line width.

Ignore case differences (convert all lines to lowercase before
comparing them). The default is case sensitive.

Do not write any messages 1o standard output if both files match.
Write Compare’s version information to diagnostic cutput.

Static (fixed) grouping factor (the grouping factor is set with the -g
option).

Ignore trailing blanks (spaces or tabs). (This is a subset of
the -b option.)

-

—

Exampies

~Lirnitations

See also

-x Suppress tab expansion. Normally, except when the -b option is
used, tabs are expanded into spaces. The tab value is determined
from the file’s tab setting (a resource); if there is no setting, 4 is
used.

Caution: This option can cause stacked lines to be displayed
incorrectly if the files contain tabs. Also, the -¢ option should not
be used with -x, because -¢ depends on the true columns as
“displayed with tabs expanded.

Note: All comparison criteria that affect the individual lines before
comparison—column range (-c), blanks compression (-b), and case conversion
(-D—are applied to those lines before they are stacked. Thus when the lines are
displayed, they'll be shown in their modified form.

Compare File File.bak > Mismatches

‘Compare File and File.bak, writing the results to the file Mismatches. No options are

specified, so dynamic grouping is used, blanks are retained, tabs are expanded into
spaces, and matching is case sensitive,

Compare File.old.§ File.new.§ :
Compares the selected portions of the two windows and writes out the results.

Compare can handle text files with 2 maximum line length of 255 characters.

The text files compared should be fewer than 9999 lines lo'ng. because the displays-are
formatted based on four-digit line numbers.

Equal command (Equal is a quicker command that tells you whether files are
different, and stops at the byte at which they differ.)

Compare 245

Confirm — display confirmation dialog
Syhtax Confirm [1) message

Description Displays a confirmation dialog with QK and Cancel buttons and the prompt message.
There is no output to this command—the result of the dialog is returned in the {Status)
variable.

Note: Because Confirm retums a nonzero status value to indicate that No or Cancel
wis selected, 2 command file should set the Shell variable {Exit} to zero before
executing the Confirm command. (This stép is necessary because the Shell aborts
command file processing when a nonzero status value is returned and (Exit} is

ncmzero.)
Input None.
Cutput None.

Diagnostics Errors are wiritten 1o diagnostic output.

Status The Confirm command returns the following status values:

0 The OK (or yes) button was selected

1 Syntax error

4 'The Cancel (or no) button was selected

5 The Cancel button was selected in a three-way dialog—see the -t option

Note: In the context of a.two-button dialog, Cancel means the same thing as No.

Options -t Display a three-way confirmation dialog, which includes Yes, No,
and Cancel buttons. In this case, 4 means No and 5 means Cancel.

246 Confirm

TN

Examples Set Exit §
Confirm "Replace files with the same name?"
If {Status} == Q
Duplicate -y Source: Destination:
End .
Set Exit 1
The following confirmation dialog will be displayed:

— s
- e

Replace files with the same name?

O e

If the user selects the OK button, the Duplicate command will be executed.

The following command file makes use of a three-way confirmation dialog:

Set Exit (

Set list "™ :

For file In “files -t TEXT"
Confirm -t "Print file (filel?”
Set SaveStatus ({Status}

Continue If {SaveStatus} == 4 # No
Break If {SaveStatus} == .5 # Cancel
Set liat ™{list} *{file}'"™ - # Yes

End

Print {PrintCptions} {list}

Set Exit 1

This example prints selected TEXT files in the current directory. For each file, it
displays a dialog with three choices (Yes, No, and CanceD). Selecting Yes prints the
file. If you select No, the Continue command causes this file to be skipped, but
processing continues with the next file in the list If you select Cancel, the Break
command causes the For loop 1o be terminated, ending the question-and-answer
session. The filenames are saved in the variable {list, and printed following the loop.

See aiso Alert and Request commands

Confirm 247

Syntax

Description

Input
Output
Diagnostics

Status

Examples

See also

W

Continue — continue with next iteration of For or Loop
Continue [If expression |

If expression is nonzero, Continue terminates this iteration of the immediately
enclosing For or Loop command, and continues with the next iteration. (Null strings
evaluate to zero)) If the “If expression” clause is omitted, the Continue is
unconditional. If no further iterations are possible, the For or Loop is terminated.
(For a definition of expression, see the Evaluate command in this chapter.)

None.
None.
Errors are written to diagnostic output.

Continue returns the following status values:

0 No errors : o
1 Efror in parameters, or Continue not within For...End or Loop...End

Set Exit 0

Set list. ™" .

For file In ‘files -t TEXT®
Confirm -t "Print file {file}?"
Set SaveStatus {[Status}

Continue If {SaveStatus} == 4 ¥ No
Break If {SaveStatus} == 5 : # Cancel
Set list "f{list} "'{file}'" # YesEnd

Print {PrintOptions} {(list}

Set Exit 1

In this example, the Continue command is executed if the user selects No (status
value 4). The Continue causes the current file to be skipped, but processing continues
with the next file in the list.

(For a full explanation of this example, refer to the Confirm command on the
previous page.)

For, Loop, Break, and If commands

248 Continue

Evaluate command for a description of expressions
“Stuctured Commands” in Chapter 3

Continue 249

Copy — copy selection to Clipboard
Syntax Copy [-c count] selection [window}

Description Finds selection in the specified window and copies it to the Clipboard, replacing the
previous contents of the Clipboard. If no window is specified, the command operates
on the target window (the second window from the top). It's an error to specify a
window that doeésn’t exist.

For a-definition of selection, see “Selections” in Chapier 4; a summary of the
selection syntax is contained in Appendix B.

Note. To copy files, use the Duplicate command.
input None.
Ouipl..rl None.
Diagnostics Errors are written to dizgnostic output.

Status Copy returns the following status values:

0 At least one instance of the selection was found
1 Syntax error
2 Any other error

Options -¢ cotrt For a count of n, find and copy the 7zh instance of selection.

Examples Copy §

Copy the current selection to the Clipboard. This command is like the Copy
command in the Edit menu, except that the action takes place in the target window.

Copy /BEGIN/:/END/

Select everything from the next BEGIN through the following END, and copy this
selection to the Clipboard.

See also Cut and Paste commands
*Selections” in Chapter 4 and Appendix B

250 Copy

Count — count lines and characters :
Syntax Count (-1 1<} {fle..]

Description - Counts the lines and characters in its input, and writes the results 1o standard outpur. If
- no files are specified, standard input is read. If more than one file is specified,
Separate counts are printed for each file, one per line, preceded by the filename, and
a total is printed following the list. : _ :

Input Standard input is read if no files are specified on the command line.
Cuiput Line and character counts are written to standard output.
Diagnostics Errors are written to diagnostic output,

Status Count returns the following status values:

0 No errors
1 Emor in parameters
2 Unable to open input file

Options -1 _ ‘Write only the line counts.
-c Write only the character counts.
Examples Lount MakeFile.c Count.c .
will display line counts and character counts in the form
MakeFile.c .43 981 '
Count.c 153 3327
Total 196 4303

Filea | Count -1
Display the total number of files and directories in the current directory.

Count -1 §
Display the number of lines selected in the target window.

Count 251

Note The source code for Count is included in the CExamples folder, in the file Count.c, as
part of MPW C.

252 Count

Synfox

Description

Input
Output
Diagnostics

Status

Options

K ' " Examples

See also

P

Cut — copy selection to Clipboard and delete it
Cut { c count] selection | window]

Finds selection in the specified window, copies its contents to the Clipboard, and
then deletes the selection. If no window is specified, the command operates on the
target window (the second window from the top). It's an esror to specify a window that
doesn’t exist. '

For a definition of selection, see “Selections” in Chapter 4; a summary of the
selection syntax is contained in Appendix B.

None.

None.
Errors are written to diagnostic output.

Cut retumns the following status values:

- 0 - At least one instance of the selection was found

1 Syntax error _
2 Any _onher error

-¢ count Finds and cuts count -instances of selection.

cut' § _
Cut the current selection in the target window. (This is the same as the Cut menu item,
except that it operates on the target window rather than the active window.)

Cut. / BEGIN) +/END/ -

Select everytl‘ung from the next BEGIN Lh:ough the following END, copy the contents
of the selection to the Clipboard, and then delete the selection.

Clear, Copy, and Paste commands
“Selections” in Chapter 4 and in Appendix B

Cut 253

Syntax

Description

CviObj — convert Lisa Workshop object files to MPW

object files . _

CviCbj [-n namesFile] [-0 ou:putFﬂé] [-p1 LisaObfFile

Converts a Lisa object file (OB]J file) to the Macintosh object format (.0 file). This
command is for Lisa Workshop users who have old object files but no source files that
can be ported to the MPW system.

~ CviObj supports object files produced by the Lisa Pascal Compiler, the Green Hills C

Compiler, and the TLA Assembler that were targeted to the Macintosh run-time
environment. Obiject files produced by other compilers have not been tested, but
should work. The program should not be used to convert object files targeted for
execution on Lisa. '

Object files produced by the Lisa Pascal Compiler must have been compiled with the
Macintosh code generation option, $M+. Object files produced by the Green Hills C
Compiler must have been compiled with the default code generation option, that is,
the -Usa option must not have been specified. Assembler code produced by the TLA
Assembler should conform to the guidelines outlined in the “Using Assembly
Language” chapter of Inside Macintosh.

CviObj detects and rejects a number of Lisa object record types. If this happens,
CviObj generates a fatal error message ("Can't handle ..."), and terminates without
producing an output file. However, CviObj cannot detect and reject all object files
targeted for execution on the Lisa, especially Pascal and TLA Assembler files.

The Lisa Workshop toocls support only 8-character case-insensitive (shifted to

uppercase) external identifiers. The MPW compilers support variable-length, case-
sensitive external identifiers. (The MPW Pascal Compiler still defaults to upshifting
Pascal identifiers, primarily for language compatibility, portability of sources, and

_ease in providing both C and Pascal interfaces to the Macintosh ROM routines.)

CvtObj provides the -p option for substituting names, so that old object files can be
properly linked with new object files. The -n option specifies 2 “names” file, which
controls name substitution.

254 CvtObj

Input

Output

Diagnostics

Status

Options

Data initiaiization. In general, CviObj automatically maiches the Lisa object file
semantics with those of the Macintosh. However, data initialization records are more
difficult to handle. With the Lisa tools, data areas were often defined with differing
lengths, partial contents in different files, and so on. The underlying model was
Fortran-named common areas, with multiple initialization sources. On the
Macintosh, the default is to use only the first definition of a data module. In order to
matich the Macintosh default as closely as possible, CvtObj does not emit 2 defining
instance of 2 data area uniess initialization values are seen. For C data areas that need
to be initialized to zero, this behavior can result in Linker error messages reporting
that the data area names are “unresolved external references.” If the references come
from a file produced by CviObj, then the define directive can be used in a

names (-n) file to request CvtObj 10 emit a defining instance—this should result in a
proper size deﬁmucm for the data area, unless the data area was defined elsewhere as
larger.

Note: The DumpObj command can be useful in n‘ac.kmg down and fixing anomalies
in external names and data area definitions when using CvtOb;j.

None.
If no -0 option is specified, output is written to the file CviObj.out.o.

Errors and wamnings are wrilten to the diagnostic file. Progress information is also
written to the diagnostic file (with the -p option).

The 'following status values are requrned:

0 No problem
2 Fatal error
3 User interrupt

-n nameskFile Name conversion file. In this text file, lines that begin with a space
or tab are interpreted as name substitution lines; the first name is
the old name, the second name is the new name. (See “Examples”
below.) All occurrences of the old name are replaced with the new
namne. Lines that begin with the word define, followed by an entrv
name, create a2 global data module for that name.

-0 outpriFile Direct output to owiputFile. The default cutput filename is
CvtQObj.out.o.

-p . Write progress information to diagnostic output,

CvitObj 255

Exampiles Cvtobj -o MyFile.o MyLisaFile.OBJ
. Convert file MyLisaFile.OBJ, placing the output in MyFile.o.

CvtObj -n NewNames -o MyFile2.o MyLisaFile2.0BJ

Convent file MyLisaFile2.OBJ, placing the output in MyFile2.0, and applying the
name translations specified in NewNames. The NewNames file might contain the
following:

ACLOSEOUT CloseOutput

ADRAWROUN DrawRoundFigure

AFQ02 Fool2 : :

define FOO . _

where A indicates a leading space or tab character.

See qiso TLACwt, Link, and DumpObj commands
Appendix H, "Object File Format*

256 CvtOb)

P

. Syntox

Description
input

Output

Diognostics

Status

Options

Examples

Date — wrii_e the date and time -

Date {-at sl [d14]

Writes the current date and time toj standard output.

None.

Stanidard -ou[put..

Error_s are written 1o &iagnostic 6utpuL

Status co.de.o is returned if the options are consistén‘t% drherwi_sc 1 is rewmed.

s

-a Abbreviated date. Three-chmcter- abbreviations are used for the

month and day of the week. For example, Thu, Aug 29, 1985 .

d _ _ Write the date only.

-8 Short date form. Numeric values are used for the date. The day of .
the week is not given. For example, 8/29/85 (month/day/year). -

-t “Write the time only.

Date

returns the date in the form
Friday, February 14, 1986 10:34:25 PM

Date -a

returns . ‘
Fri, Feb 14, 1986 10:34:25 PHM

Date -3 -d

retarns

2/14/86

Bate 257

Syntax

Description

- Input
Outpuf

Diagnostics

Status

Options

258 Dsalate

Delete — delete files and directories

Delete [-y ! -nll-i] {-p] name.

Deletes file or directory name. If name is a directory, then name and its contents
(including all subdirectories) are deleted.

For deleting directories, a dialog box will request confirmation for the deletion.
The -y or -n options can be used in command files to avoid this interaction.

None.
None.

Frrors and warnings are written to diagnostic output. Progress and summary
information is also written to diagnostic output if the -p option is specified.

The following status codes are returned:

0 Al specified objects were deleted (except for any directories skipped with
the -n option)

1 Syntax error

2 An error occurred during the delete

-1 Ignore errors (that is, do not print messages, and return a stats

value of 0).
-n Answer *no” (o any confirmation dialog that may occur, skipping

the delete for any directories encountered.
P List progress information as the delete takes place.

-y Answer “yes” to any confirmation dialog that may occur, causing
any directory encountered 1o be deleted.

Examples

Warnings

See Also

Delete HD:MPW:=~.cC

Delete all items in the MPW folder that end in *.c”. (Recall that the Shell first replaces
the parameter “=.¢” with a list of filenames maiching the pattern—the Delete
command then deletes each of these files.)

Beware of potentially disastrous typing mistakes such as the following:

Delete = .c

Note that the space after “="—this space causes *=" and *.c*'to be treated as two
separate parameterss, In this case, Delete would delete all files in the current
directory, and also attempt to delete a file named *.c".

Also note that the following command deletes everything

Delete =:

That is, the filename patiern =: expands to the names of al volumes online
(including the startup volume?). .

When deleting files en masse, it's a good practice to use the Echo command to verify
the action of the filename generation operators; for example,

Echo =.¢

Clear command (for deleting selections)
“Filename ‘Generation” in Chapter 3

Celete 259

Syntax

Description

input
Qutput
Diagnostics

Status

Examples

See also

DeleteMenu — delete user-defined menus and items

DeleteMenu [menuName [itemName 1}

Deletes the user-defined item itemName, in the menu menuName . If itemName is
omitted, all user-deﬁ_ned items for menuName are deleted.

Caution: If ftemName and menuName are both omitted, zll user-defined itemns are
deleted. :

Menu items that haven't been added with AddMenu can't be deleted with
DeleteMenu. :

None.
None.

Errors are written to diagnostic oulput.

- DeleteMenu returns the following status values:

0 No errors
1 Syntax error
2 Other errors

_ DeleteMenu Search

Deletes ali user-defined items from the Search menu.

AddMenu command

260 DeleteManu

4/*\

Syntax

Description

Input

Output

Diagnostics

DeRez — Resource Decompiler
DeRez | option... | resourceFile {rmowteDescrgoﬁonFﬁe...]

Creates a text representation (resource description) of the resource fork of
resourceFile, according to the resource type declarations in the resource description
file(s). The resource description is written to standard output.

A resource description file is 2 file of type dedlarations in the same formdt as that
used by the Resource Compiler, Rez. The type declarations for standard Macintosh
resources are contained in the files Types.r and SysTypes.r, contained in the
{RIncludes} folder. If no resource description file is specified, the output consists of
data statements giving the resource data in hexadecimal form, without any
additional format information.

If the output of DeRez is used as input to Rez, with the samé resource description ﬁles
it produces the same resource fork that was originally input 10 DeRez. DeRez is not
guaranteed to be able to run a declaration backwards-—if it can't, it produces a data
statement instead of the appropriate resource statement

DeRez ignores all include (but not #include), read, data, and resource
statements found in the resourceDascﬂptionFﬂe (It still parses these statements for
correct syntax.)

For the format of resource type declarations, see Chapter 6 and Appendix D.

Standard input is never read. DeRez requires a resource file as input Optional
formatting information may be given by specifying one or more resource descnpuon
files. .

For all input files on the command line, the following search rules are applied:
1. DeRez tries to open the file with the name specified “as is.”

2. If rule 1 fails, and the filename conmains no colons or begins with 2 colon, DeRez
appends the filename to each of the pathnames specified by the {RIncludes}
variable and tries to open the file.

A resource description is written to standard output. The resource description
consists of resource and data statements that can be understood by Rez. (See
Chapter 6.)

If no errors or wamings are detected, DeRez runs silently. Errors and warnings are
writlen to diagnostic output.

Delkez 261

Status

Options

202

The following status values are returned:

No errors -

Error in paramelters
Syntax error in file
I/O or program emror

W= O

-dlefine] macrol=data }
Define the macro variable macro 10 have the value data. If data is
omitted, then macro is set to the null swing—note that this still
means that macro is defined. The -d option is the same as writing

#define macro [data)

at the beginning of the input. The -d option may be repeated any
number of times.

" -mlaxstringsizel n.

DeRez

Set the maxirnum stnng size (0 m n must be in the range 2-120. This
setting controls how wide strings will be in the output.

-only tpefxpr ((D1 11)2]) resourceName |
Read only resources of resource type ppeExpr. If an 1D, range of
- IDs, or resource name is given, read only those resources for the
given type. This option may be repeated.

Note: typeExpris an expression, so literal quotes (') might be
needed. If an ID, range of IDs, or name is given, the entire option
parameter must be quoted; for example,

DeRez =-only " 'MENU'(1:128)"
See also the 'F.xamples section below.

Note: The -only opuon cannot be specified together with the skip
opticn.

-only type A simpler version of the above opuon—no quotes are needed o
specify a literal type as long as it starts with a leter. No escape
characters or anything fancy is allowed. For example,

DeRez -only MENU...
-p Display progress and version information.

-rd Suppress warning messages if a resource type is redeclared.

- Examples

Se'e also

-sikipl typeExpr [(IDI[: ID2]) | resourceName|
Skip resources of type fypeExpr in the resource file. For example,
it's very useful to be able to skip 'CODE' resources. fypeExpris an
expression—see the note under -only ‘The -s option may be
repeated any number of times. '

-s(kip] ype A simpler version of the -8 option—no quotes are needed to specify
a literal as long as it starts with a 1ette.r

-uindef] macro Undefine the macro variable macro. This is the same as writing
#undef macro

at the beginning of the input file. It is only meaningful to undefine
‘the preset macro variables. This option may be repeated.

DeRez "{ShellDirectory!MPW Shell" -only MENU Types.r

Display all of the "MENU' resources used by the MPW Shell. The type definition for
'MENU' resources is found in the file Types.r.

DeRez HD:08: System SysTypes.r 4

-only "'DRVR' (9"\0x00Scrapbookd™)" _
Decompile the Scrapbook desk accessory in the copy of the System file that's located
in directory HD:OS:. (The type definition for 'DRVR' resources is found in the file

" SysTypes.r.

Rez and RezDet comnmands
Chapter 6, “Using the Resource Compiler and Decompiler”
Type declaration files in Rincludes folder:

- Types.r

a SysTypes.r
m MPWTypes.r
Chapter 5, “Editing Resources With ResEdit”

DeRez 263

Syntax

' 'Descriplion

Input

Output

Diagnostics
Status

- Options

Examples

‘Directory — set or write the defauit directory

Directory [-q | directory)

If specified, directory ‘becomes the new default directory; otherwise the pathiname of
the current default directory is written 1o standard output.

Note: To display a directory’s contents, use the Files command.
None.

If no directory is specified, the default directory pathname is written to standard

- outputl.

Errors are written to diagnostic output.
Status code 0 is returned if the command succeeded; otherwise 1 is reurned.

-q Don't quote the pathname that is written to standard output
(Normally, a directory name is quoted if it contains spaces or other
special characters.)

Directory
Write the pathname of the current directory to standard output

Directory HD:MPW:AExamples:
Set the default directory to the folder AExamples in the folder MPW on the volume
HD. The final colon is optional.

Directory Reports:

Set the default directory to the volume Reports. (Note that volume names must end in
a colon.)

Directoxy :Include:Pascal:

Set the default directory to the folder Pascal in the folder Include in the current default
directory.

264 Directory

See also *File and Window Names” in Chapter 1
Files and NewFolder commands

Dlrectory 265

"

Syntax

Description

Input '

Qutput

Diagnostics

Status

e ——————— e ————e
e e LSl SIS e

DumpCode — work formatted resources
DumpCode { option... 1 resourceFile

Disassembles object code that is stored in resources such 2s 'CODE', 'DRVR', and
"PDEF. DumpCode reads from the resource fork of the specified file, and writes the
formatted assembly code to standard output. The default formatting convention is 10
disassembile the code, and to display the corresponding bytes in hexadecimal and
ASCIL.

The default behavior of DumpCode is to dump all the 'CODE' resources from a
program file. The -rt option can be used to dump resources of other types such as
drivers and desk accessories. :

Some conventions about executable code resources are built into DumpCode, and
affect the formatted output in special ways:

8 'CODE resources with ID 0 are formatted as a jump table (unloaded format).

& Other 'CODE!' resources have information about jump table entries in the first four
bytes. : i '
® 'DRVR' resources have a special format at the beginning of the resource.

In addition, you can direct DumpCode 1o give a symbolic dump of data initialization

descriptors and initial values.
None.
DumpCode writes formarted resources to standard output.

Errors and warnings are written to diagnostic output. Progress information can also
be written to diagnostic output (with the -p option).

DumpCode returns the following status values:

0 No problem
2 Faul error
3 User interrupt

266 DumpCode

Options

Examples

Note: Numeric values for options can be specified as decimal constants, or as hex
constants preceded by a *$°. '

-d

Suppress the disassembly and dumping of code. (The default is 1o
disassemble the code.)

This option is useful in producing a small output file, and looking at
just the resource names, sizes, and resource header information. It
is aiso useful when just some specialized information is desired,
such as the jump tble or daa descriptors.

Suppress the writing of header information, such as resource
relative locations, hexadecimal and ASCH equivalents, and so on.
The default is to produce this type of header information,

This option is useful in producing output that can be edited and

" submitted to the Assembler for reassembly.

-n
P

-t bytell,byteN)

-rt Hypd=ID]

-8 resourceName

Suppress formatting of jump table. Only summary information for
the jump table is given. (The default is to format the jurnp table
unless one of the options -8, -rt, -n, or -t is specified.)

Write oniy the resource names associated with resources. This
option is useful for finding segments or desk accessories by name.

Write progress information (filenames, resource names, IDs, and
sizes) to diagnostic output.

Limit the disassembly of code to the range bytel...byteN. The
default is to disassembile all bytes in a segmeni. If EyteN is omiited,
then the rest of the segment is disassembled,

Dump only the single resource with type #p¢ and ID number of /D

If ID is omitted, then all resources of the specified type are
dumped.

Dump only the single resource named resourceName. o

DumpCode Sample > SampleDump

Format the 'CODE' resources in the file Sample, writing the output 10 the file
SampleDump. This output has the following format:

DumpCode 267

File: sample, Resource 3, Type: CODE, Name: _Datalnit
Offset of first jump table entry: $00000018
Segment is $000000D2 bytes long, and uses 1 jump table entry

000000: 48E7 FFFO "H.o. . MOVEM.L DO~D7/A0-A3, = (AT
000004: 4247 "BG' " CLR.W D7 :
0000061 4EAD 0032 N..2¢ JSR $0032 (AS)
00000A: 2218 L MOVE.L (AO}+,D1
etc.

See also - DumpObi command

“The Jump Table” in the *Segment Loader” chapter of Inside Macintosh, for a
description of the jump table

268 DumpCode

SN

- Syntax’

Description

Quiput

Diagnostics

Status

Options

PN

DumpObj — write formatted object file

DumpObj [option... | objectFile

Disassembles object code that is stored in the data fork of an object file. By
convention, object files end in the suffix .0. In addition, the object file must have type
‘QOBJ .

DumpCbj does not read standard input

- DumpObj writes formatted object file records and disassembled code to standard

ourput

Errors and warnings are written to diagnostic output. Progress information is also
wrilten to diagnostic cutput with the -p option.

DumpCbj retums the following status values:

0 Neo problem'
2 Fatal error
3 User interrupt

-d Suppress disassembly of code and display of data. The default is 1o
' disassemble code and to display data in hexadecimal and ASCIL

-i Suppress substitution of names for IDs. The default is to preread the
entire file, processing the Dictionary records, and then to show
names in place of ID numbers, '

This option is useful in examining an object file up to the point
where an object file format error has been reported by Link or Lib,
that is, it suppresses the preread, which is also likely to fail.

-h . Suppress printing of header information on code lines. Header
information includes the offset of the code and the code bytes in
hex and ASCIL The default is to print header information.

This option is useful in producing code that can be edited and
submitted to the Assémbler for reassembly.

CumpCb) 269

Exampie

270

-1 Print file locations of object records. The default is not to print
these locations. _
" This option is useful in debugging compilers and assemblers,
particularly when debugging code used to generate Pad records 1o
assure alignment. (See Appendix H, *Object File Format.™)

-m name - Dump a particular module. If name is an entry point, then the
module containing name is dumped. Other options that control
format still have an effect.

Note: mame is case sensitive, as are all object file identifiers.

-a Print names only. When this option is specified, only the -p option
has an effect.
This option is useful in determining which names are defined in an
object file, particulasly when there appears to be a discrepancy in
spelling, capitalization, or length of identifiers.

-p Write progress information (such as the name of the file being
dumped and the version of DumpObj o diagnostic cutput.

-r bytell, byteN) Limit the disassembly of code to the range bytel..byteN. The
' default is to disassemble all bytes in a segment. [f &yteN is omitted,
then the rest of the segment is disassembled.

DumpCbi Sample.p.o >SampleDump

Formats the file Sample.p.o and writes its contents to the file SampleDump. This
output has the following format:

Pump of file sample.p.o

First: Kind ¢ Version 1
Dictionary: FirstId 2
2: Main
Pad
Module: Flags $00 Moduleld 1 Segmentld Main

Content: Flags 500
Contents offset (00C size 0Ce8A

00Q0CC: 4ES6 FFFE ENVL LY LINK A6, #SFFFE
Q000C4: 2FQ7 A MOVE.L D7,-1A7)
0000C6: 42A7 'B." CLR.L - (A7)
000008: 3F3C 0080 T MOVE. W #50080, - (A7)
eI,

For more information, see Appendix H, "Object File Format.”

DumpOb)

TN

See also

DumpCode command
Appendix H, *Object File Format”

DumpObi

27

Syniax

Description

input
Output

Diagnostics

Status

Opfions

| Duplicate — duplicate files and directories

Duplicate {-y | -n1 [d t] [-p] name.. targetName

Duplicate name to targetName. (Name and :argerName are file or directory
names.) If targetName is a file or doesn’t exist, then the file or directory name is
duplicated and named targetName. If targetName is a directory, then the objects
named are duplicated into that directory. (If more than one name is present,
targetName must be a directory.) Created objects are given the same creation and
modification dates as their source.

If a directory is duplicated, then its contents (including ail subdirectories) are also
duplicated. No directory duplicated can be a parent of targetName. ' '

Name can also be a volume; if targetName is a directory, then name is copied into
targetNamae.

A dialog box requests a confirmation if the duplicate would overwrite an existing file
or folder. The -y or -n options can be used in command files to avoid this
interaction,

None.
None.

Progress and summary information is written to diagnostic output if the -p option is
specified. : .

The following status codes are returned:

0 Al objects were duplicated
1 . Missing or inaccessibie parameters
2 An error occurred

-y Answer “yes” 10 any confirmation dialog that occurs, causing
conflicting files or folders to be overwritten.

-0 _ Answer “no” to any confirmation dialog that occurs, skipping files
or folders that already exist.

272 Duplicate

Examples

Limitations

See also

-d Duplicate the data fork only. If targetName is an existing file, its
~dara fork is overwritten and its resource fork remains untouched.

-r Dupilicate the resource fork only. If ta@etName is an existing file,
its resource fork is overwritten and its data fork remains untouched.’

-p List progress information.

Duplicate Augf86 "Monthly Reports”

Assuming 'Monthly Reports” is an existing directory, duplicate the file Aug86 into

that directory.

Duplicate Filel Folderl "Béckup Disk:"
Duplicate Filel and Folder! (including its contents) onto Backup Disk.

Duplicate -y Filel File2
Duplicate Filel to File2, overwriting File2 if it exists.

Duplicate Diskl:= HD:Files:
Duplicate all of the files on Disk1 into the directory HD:Files.

Duplicate Diskl: HD:Files:
Duplicate all of Disk1 (as a directory) into HD:Files.

Duplicate doesn't recognize folders on non-HFS disks.

Move and Rename commands

“File and Window Names” in Chapter 1
“Filename Generation™ in Chapter 3

Duplicate

273

- Echo — echo parameters

Syntax

Description

Echo [-n] [parameters ...]

Writes its parameters, separated by spaces and terminated by a return, (o standard
output. If no parameters are specified, only a return is written.

Echo is especially useful for checking the results of variable substitution, comrmand

" substitution, and filename generation.

Input
Qutput
Diagnaostics
Status

Options

Examples

274 gEcho

None.
Parameters are written to standard output.
None.

Status value 0 is always returned.

-n - Don't write a retumn following Echo's parameters (that is, the

insertion point remains at the end of the output line). The -n isn’t
echoed.

Echo "Use Echo to write progress info from command files.™

Use Echo to write progress info from command files.
The Echo command above writes the second line to standard output.

Echo. {Statusa}

Writes the current value of the {Status} variable; that is, the status of the last command
execuled.

Eche =.a

Echoes the names of all files in the current directory that end with “.a". (This mignt
be useful as a precaution before executing another command with the argument

L) an-)

FE

Echo -n > EmptyFile

If EmptyFile exists, this command deletes its contents; if the file doesn't exist, it is
created.

See also Parameters command

Echo 275

Syntax

Description

input -
Qutput
Diagnostics

Status

Options

Examples

See qlso

276 Ejoct

W
Eject — eject volumes

Fject [-m | volume..

Flushes the volume, unmounts it, and then ejects it, if it is a floppy disk. A volume

" name must end with 2 colon (). If volume is 2 number without a colon, it's

interpreted as a drive number.

Note: If you unmount the current volume (the voiume containing the current
directory), the boot volume becomes the current volume. You can keep the volume
mounted with the -m option. (See the "File Manager® chapter of Inside Macintosh.)

None.

None.

Errors are written to diagnostic cutput.

The following status codes are returned:

0 The disk was successfully ejected
1 Syntax error
2 An error occurred

-m Leave the volume mounted.

. Ejeét Memos:

Eject (and unmount) the disk titled Memos.

Eject 1
Eject and unmount the disk in drive 1 (the internal drive).

Mount, Unmount, and Volumes commands

SN

-

Syntax

Description

Input
Quitput

Diagnostics

Status

Options

Entab — convert runs of spaces fo tabs

" Enizb {option ... | [file ...}

Copies the specified text files to standard output, replacing runs of spaces with tabs.

- The default behavior of Entab is to do the following:

1. Detab the input file using the file's ta.b.sem'ng (a resource saved with the file 7
by the Shell editor), or 4 if there is none. You can override this “detab” value with
the -d option.

2. Then entab the file, setting 1ab stbps every 4 spaces. You can specify another mb

setting with the -t option. The entabbed output file looks the same as the original
file(s), but contains fewer characters. - :

Options are also provided for controlling the processing of blanks between quoted
strings. .)

If no filenames are specified, standard inpuf is processed.
All files are written to standard output.

Parameter errors and progress information (with the -p option) are wrilten 1o
diagnostic output, ' :

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or oplion error
2 - Execution terminated

-d tabSetﬂng. Override the input file’s default tab setting with iabSesting. This
option is useful for detabbing non-MPW files.

Note: Entab’s defaull action is to detab the input file, using the
file's tab setting; or 4 if there is none. For MPW files, specifying a -d
option would override the file’s own tab setting, leading to incorrect
results if a different value were used.

Entab 277

-q quote...

- quote. ..

-t iabSetting

Specify a list of left quote characters. Quote... is a string of one or
more nonblank characters. If -1 is specified, then -r must zlso be
specified. Single quotes () and double quotes (" are assumed as the
default quoting characters. :

Treat all quotes as “normal” characters—entab the file, replacing
runs-of spaces embedded in quoted strings with tabs.

Caution: This option should not be used when entabbing program
source files. If this option is used, the -q, -1, and -r options are
ignored.

‘Write version and progress information to diagnostic output

Specify a list of characters to be used as both left and right quotes.

Quote... is a string of one or more nonblank characters. This is the
default option; single quotes () and double quotes (™ are assumed
as the quoting characters.

Specify a list of right quote characters. Quore... is a string of one or
more nonblank characters. If -r is specified, then -1 must also be
specified.

Note: Entab does not check that a particular left quote character
matches a particular right quote character.

Set the output file’s b setting to tabSesting. If the -t option is
omitted, 4 is assumed for the tab setting. If you specify a 1ab setting
of 0, no tabs are placed in the output Thus -t 0 may be used to
completely detab input files.

Cautlon: If you specify the -q, -1, or -r options, then you should quote the entire
string parameter to these options (otherwise, the Shell may misinterpret special
characters in the parameter sifing).

Example . Entab -t 2 Example.p > CleanExample.p

Detab the file Example.p (using the file’s default tab setting), re-entab it with tab
setting of 2, and write the resulting output to CleanExample.p.

Caution: Beware of command formats such as

Entab Foo > Foo

Limitations Entab does not take into account embedded formatting characters except for tab
characters. Thus backspace characters may cause incorrect resultz.

278 . Entab

TN

See also

‘The maximum width for an input line is 255 characters,

Tab command

Entab

279

M

Equal — compare files and directories
Syntax Equal [option... | name... targetName

Description Compares name (o targetName. By default, Equal makes no comment if files are the
same; if they differ, it announces the byte at which the difference occurred. When
comparing directories, the default condition is to report all differences, inciuding
files not found—the -i option ignores files in targetName that are not present in
name. :

If targetName's 2 file, every name must also be a file. The specified files are
- compared with iargetName.

If targetName is a directory and name is a file, Equal checks in targetName for the
file name and compares the two files. That is, the command

Equal Filel Dirl
compares Filel with :Diri:Filel.

If more than one name is specified, Equal compares each name with the
corresponding file or directory in targetName (all subdirectories are also
compared). The command

Equal Filel Dirl Dir2
compares Filel with :Dir2:Filel and then compares Dirl with :DirZ:Dirl.

If targetName is a directory, name is a directory, and only one name is specified,
then the Equal command directly compares the two directories, That is, the
command

Equal Dirl Dir2
compares Dirl (and all subdirectories) with Dir2.
I'nput None.

Qutput Differences are written to standard output.

Diagnostics Errors are written to diagnostic cutput.

280 Equal

4 "\

.

Status

Options

. Examples

See also

The following status codes are retumed:

0 Identical files

1 Syntax error

2 Inaccessible or missing parameter
3 Files not equal : .

- Ignore files missing from directory name, that is, if files in
largetName are not present in name, Equal won't report the
missing files as differences,

-d Compare the data forks oniy.

o Compare the resource forks only.

-p List progress information as files are compared,

-q _ Remain quiet about differenées; return stzfus codes only.

Equal Filel FilelBackup _ _ S
Report if the files are different and at what point they differ, in a message such as:
Filel FilelBackup differ in data fork, at byte 5

Equal -i HD:Dir:i Diskl;Dirl
Compare all files and directories in HD:Dirl with files and directories with the same

names found in Disk1:Dir1, and report any differences. This command does not
report files in Disk1:Dirl that aren’t found in HD:Dirl.

Equal -i -d Backup: #HD:Source

Compare the data forks of al] files on the volume Backup: with all those of the same
name in the directory HD:Source, . '

Equal -p Old:=.c HD:Source

Compare all files on Old: ending in .c with their counterparts in HD:Source. Pring
progress information as the <omparison proceeds,

Compare command (Compare is a more elaborate ool that writes two text files’
differences to standard output.)

Equal 281

Syntax

Description

input
Qutput
Diagnostics

Status

Options

Examples

282 Ercse

Erase — initalize volumes

Erase [-y1 [-s] volume...

Initializes the specified volumes—— the previous contents are destroyed. A volume
name must end with a colon (). If vofume is a number without a colon, it's
interpreted as a disk drive number. :

A dialog box requests confirmation before proceeding with the command, unless the
-y option is specified. The -y option can be used in command files to avoid this
interaction.

None.
None,
Errors are written to diagnostic output.

The following status codes are returned:

0 Successful initialization

1 Syntax error

2 No such volume, or boot volume

3 Erors during the initialization procedure

-y Answer *yes” to the confirmation dialog, causing initialization o0
' begin immediately. '

-8 _ Format the disk for single-sided use (that is, as a 400K, non-HF3
disk).

Erase Reports:
Initialize the volume titled Reports.

Erase 1

Initialize the volume in drive 1 (the internal drive). It will be formatted as a 400K disk if
drive 1 is a 400K drive, or as an 800K disk if drive 1 is an 800K drive.

™~

Syntax

bescription

Evaluate { word...]

The list of words is taken 2s an expression. After evzluation, the result is written 1o

Evaluate — evaluate an expression

standard output Missing or null parameters are taken as ‘zero. You should quote string

operands that contain blanks- or any of the characters listed in the table below.
. The operators and precedence are mostly those of the C language; they're described

below.

Expressions. An expression can include any of the following operators. (In some
cases, two or three different symbols can be used for the same operation.) The
operators are listed in order of precedence—wi

same precedence.

Operator
1. (epr)
2. -
! NOT
3¢ _
+ DIv
% MOD -
4. +
5. <<
>>
6. <
<= <
>
o= 2
7. ==
I= <>
I
8 &
9. A
10, |
11. &% AND
12. 11 CR

Operation

thin each group, operators have the

Parentheses are used to group expressions,

Unary negation
Birwise negation
Logical NOT «
Muitiplication
Division
Modulus division
Addition
Subtraction
Shifi left
Shift right
Less than
Less than or equal
Greater than
Greater than or equal
Equal
Not equal
Equal—regular expression

‘Not equal—regular expression

Bitwise AND
Bitwise XOR
Birwise OR
Logical AND
Logical OR

Evaluate

283

Input

Qutput

Diagnostics

Status

Examples

All operators group from left to right. Parentheses can be used to averride the
operator precedence. Null or missing operands are interpreted as zero. The result of
an expression is always a string representing a decimal number.

"~ The logical operators 1, NOT, =, &&, AND, | I, and OR interpret null and zero

operands as false and nonzero operands as true. Relational operators retum the value
1 when the relation is true, and the value 0 when the relation is false.

The string operators ==, 1=, ==, and = compare their operands as strings. All others
operate on numbers. Numbers may be either decimal or hexadecimal integers
representable by a 32-bit signed value. Hexadecimal numbers begin with either § or
Ox. Every expression is computed as a 32-bit signed value. Overflows are ignored.
The pattern-matching operators =~ and '~ are like == and 1= except that the right-
hand side is a regular expression which is matched against the left-hand operand.
Regular expressions must be enclosed within the regular expression delimiters /.../.
Regular expressions are summarized in Appendix B.

Note: There is one difference between using regular expressions after =~ and i~ and
using them in editing commands—when evaluating an expression that contains the
tagging operator, ®, the Shell creates variables of the form (®n}, containing the
matched substrings for each ® operator. (See the examples below.)

Filenam; generation, conditional execution, pipe specifications, and input/output
specifications are disabled within expressions, to allow the use of many special
characters that would otherwise have to be quoted.

Expressions are also used in the If, Else, Break, Continue, and Exit commands.
None.

The result of the expression is written to standard output Logical operators return the
values 0 (false) and 1 (true).

Note: To redirect Evaluate’s output (or diagnostic outpup), you'll need to enclose the
Evaluate command in parentheses; otherwise, the > or 2 symbols will be interpreted
as expression operators.' and an error will occur. (See the third example below.)

Errors are written to diagnostic output.
The following starus values are returned:
¢ Valid expression

1 Invalid expression

Evaluate {(1+2) * (3+4)

Do the compuiation and write the result to standard output.

284 Evaluate

See also

Set lines “Evaluate {lines} + 1°

The Set command increments the value of the Shell variable {lines)—the Evaluate
command enclosed in command substitution characters C...") is replaced by its
output. '

(Evaluate "{aPathname}™ =~ / ({([=:]+)*) @1~/) > Dev:Null

Echo {®1} .

These commands examine a2 pathname contained in the variable {aPathname}, and
retumn the directory prefix portion of the name. In this case, Evaluate is used for its
side effect of enabling regular expression processing of a filename pattern, The right-
hand side of the expression (/ (([~:]+:) *}®l=/) is a regular expression that
matches everything in a pathname up 1o the last colon, and remembers it 4s the Shell
variable {@1). Evaluate’s actual output is not of interest, so it's redirected to the bit
bucket, Dev:Null. (See “Pseudo-filenames” in Chapter 3.) Note that the use of [/O
redirection means that the Evaluate command must be enclosed in parentheses so
that the output redirection symbol, >, is not taken as an expression operator.

This is a complex, but useful, example of implementing a “substring” function. For a
similar example, see the Réname command, ‘

“Strucrured Commands® in Chapter 3
“Pagern Matching (Using Regular Expressions)™ in Chapter 4 and Appendix B

Evailuate 285

Syntax

Description

Input
Qutput
Diagnostics
Status

Examples

See aiso

Execute — execute a command file in the current
scope -

Execute commandFile

Execute the command file as if its contents appeared in place of the Execute
command. This means that variable definitions, exports, and aliases in the
command file will continue to exist after it has finished executing. (Normally these
definitions, exports, and aliases would be local to the command file.) Any
parameters following commandFile are ignored. Any parameters to the enclosing
command file are available within commandFile. :

Note: If commandFile is not a command file (that is', if it"s 2 buit-in command,
tool, or application), the command is run as if the word Execute did not appear.
Parameters are passed to the command as usual

None.
None.
None.
Execute returns the status returned by commandFile.

Execute "{ShellDirectoryj”Startup

Execute the Startup (and UserStartup) command files. This command is useful for
testing any changes you've made to the Startup-UserStartup script. Variable
definitions, exports, and aliases set in Startup and UserStartup will be available after
Startup is done execuling.

“Defining and Redefining Varables” in Chapter 3
“The Startup and UserStartup Files™ in Chapter 3

284 Execute

Syntax .

Description

input

Outpui

Diagnostics

Status

Examples

(C See also

4/—‘\'

Exit — exit from command file
Exit [status] [1f expression]

If the expression is nonzero (that is, true), Exit terminates execution of the command
file in which it appears. When used interactively, Exit terminates execution of
previously entered commands. Status is 2 number; if present, it is returned as the
status value of the command file; otherwise, the status of the previous command is
retumned. If the “If expresston® is omitted, the Exit is unconditional. (For a definition
of expression, refer to the description of the Evaluate cormmand.) :

None,

None.

Errors are written to diagnostic output.

If status is present, it is retumed as the status value of the command file. If the
expression is invalid, 1 is reruned. Otherwise, the status of the last command

~ executed is retumed.

Exit {ExitStatus!}

As the last line of 2 command file, this Exit command would remum as a status value
whatever value had previously been assigned to {ExitStatus}. '

‘Evaluate command (for information on expressions)

“Structured Commands” in Chapter 3
{Exit} and {Status} variables, in “Variables,” Chaptér 3

Exit 287

Syntax

Description

Input

Qutput

Export — make variables availabie to commands
Export [name...|

Make the specified variables available to command files and tools. The list of
variables exported within a command file is local to that command file. An enciosed
command file or tool inherits 2 list of exported variables from the endosing
command file. (See Figure 3-1 in Chapter 3 for clarification.)

Note: You can make a variable available to 2ll command files and tools by setting
and exporting it in the Startup or UserStartup files. (Startup acts as the enclosing
command file for all Shell operations.)

If no names are specified, a list of exported variables is written to standard output.
(Note that the output of Export is in the form of Export commands.)

None.

If no parameters are given, Export writes a list of exported variables to standard

sutput.

Diagnostics
Status

Examples

See also

288 Export

None.
Export always retumns a status value of 0.

Set AIncludes " {MPW}AIncludes:"
Export AIncludes

Define the variable {Alncludes} as the pathname "(MPW}Alncludes:", and make it
available to command files and programs.

Set and Execute commands
“The Startup and UserStartup Files™ in Chapter 3
“Exporting Variables” in Chapter 3

AN

s

Syntax

Description

input

Outoud

Diagnostics

Status

Optiens

FileDiv — divide a file into several smaller files

FileDiv {-f] [-n plitpotnt] (-p] file [prefix]

FileDiv is the inverse of the Catenate command. It is used to break a large file into ’
several smaller pieces. The input file is divided into smaller files, each containing an
equal number of lines determined by the spliipoint (default=2000). The last file
containg whatever is left over,

There is 2ls0 an option (- for splitting a file only when a form feed character

(ASCH $0C) occurs as the first character of a fine that is beyond the splitpoint This
option lets you split a file a: peints that are known to be the tops of pages.

Each group of spliipotnt lines is written to a file with the name prefixNN, where NN is
2 number starting at 01, If the prefix is omitted, the input file name is used as the
prefix.

An input file must be specified in the command line. Standard input is not used.

FileDiv creates files with names of the form PrefixNN,; where NN is a number. (If
Prefix is omitted, the input flename is used a5 2 prefix.) Standard output is not used.

Parameter errors and progress information are written to diagnostic cutput.

The following status codes zre returned to the Sheli:

0 Normal termination
1 Parameter or option error
2 Execution terminated

-£ Spiit the input file only when at least splitpoint lines have been
wngen 1o the current cutput file and there is a form feed character
(ASCI SOC3 a5 the first character of a line. The line containing the
formn feed becomes the first line in the next output file.

-1y Splsthoing Split the inpus e into groups of splitpoint lines (or, if the -f option

was specified, pfitpoint or more lines). If the -n option is omitted,
2000 5 assumed.

FilaDiv 289

-p Write version information and progress information to diagnostic
output.

Example FileDiv -f -n 2500 Bigfile

Split Bigfile into files of at least 2500 lines; split the file at points where there are form
feed characters. The output files have the names Bigfile VN, where NV is 01, 02, and
50 on. ' :

Limitations The maximum length of an input line is 255 characters.

260 FileDiv

Syntax

Description

Input

Output

Diagnosiics

Status

Options

Files — list files and directories |
Files [option...] [name...)

For each disk or directory named. Files lists its contents; for each file named, Files
writes its name and any other information requested. Information is written to
standard output. By default the output is sorted alphabetically. If no name is given,
the current directory is listed.

" None.

File information is written to standard oﬁtpur.
Errors and wamings are written to diagnostic output. -

The following status codes are returned to the Shell:

0 All names were processed successfilly
1 Syntax error
2 An error occurred

-C creator ' List only those files with the given file creator.

-1 _ List in long format, giving name, type, creator, size, attributes,
modification date, and creation date.

The attributes listed under the -1 option consist of the following

characters:

L Locked

A% Invisible

B Bundle

) System

P Protected

O Open

I Inited

D (on) Desktop

Uppercase letters indicate a value of 1, lowercase a value of 0. See
the *File Manages” chapter of Inside Macintosh for information.

Flles 29N

-q : Don't quote nzmes in the output. (Normally, the Files command
quotes names that contain spaces or special characters.)

-t Recursively list subfolders encountered; that is, list every file in
every directory.

-t fype List only those files with the given file type.
Examples Files (MPW} -t TEXT _
List all files of type TEXT in the {MPW} directory. (_

Files -1 "MPW Shell”
Write “long” output such as

Name Type Crtr . Size Flags Last-Mod-Date Creation~Date

MPW Shell APPL MPS 166K lvBspOld 8/8/86 4:51 PM 8/8/86 4:31
M

292 Files

Syntax

Description

input
Ouipu_t
Diagnostics

Status

Options

Examples

e
e — T

Find — find and select a text pattern

Find [-c count] selection { window

Create a selection in window. If no window is specified, the target window (the
second window from the top) is assumed. It's an error to specify a window that doesn't
exist ‘ : '

Selection is a selection as defined in Chapter 4 and in Appendix B.

Note: Searches do not necessarily start at the beginning of a window—a forward
search begins at the end of the current selection and continues to the end of the
document. A backward search begins at the start of the current selection and
continues to the beginning of the document

All searches are case insensitive by default. You can specify case-sensitive searches by
first setting the Shell variable {CaseSensitive} to 2 nonzero value. (You can
automatically set {CaseSensitive} by selecting the Case Sensitive item from the Find
menu.) ' ' '

None.
None.
None.

The following status codes are returned:

0 At least one instance of the selection was found
1 Syntax error
2 Any other error

-C count For a count of #, find the »th occurrence of the selection. -

Find -
Position the insertion point at the beginning of the targer window.

Find -¢ 5 /procedure/ Sample.p
Select the fifth occurrence of *procedure” in the window Sample.p.

Find 293

See also

294

Find

Find 332 _
Select line 332 in the target window. -

“Selections” and "Pattern Matching” in Chapter 4
*Find Menu" in Chapter 2

T,

Syntax -

Description

Input

Qutput

Diagnostics

Status

Examples

Font — set font characteristics

Font fomtname fontsize | window]

Change the font family and point size of all text in window to Soruname and fontsize
Both forsname and fontsize are required. It's an error to specify a window that
doesn't exist. If no window is specified, the command operates on the target window
(the second window from the top).

None,
None.
Errors are written to diagnostic output.

Font returns the following status values:

0 Successful completion
1 Error in parameters '
2 An illegal fontname or fontsize was specified

Font Monaco 12
Change the font of the target window to Monaco 12 point.

Font 205

Syntax

Description

Input
Qutput
" Diagnostics

Status

Examples

296 For...

For... — repeat commands once per parameter

For name In word...
commana. ..

" End

Executes the list of commands once for each word from the “In word ..." list. The
current word is assigned to variable name, and you can therefore reference it in the
list of commands by using the notation {ngmel. Return characters must appear at the
end of each line as shown above, or they can be replaced with semicolons ().

The Break command can be used to terminate the loop. The Continue command can
be used 1o terminate the current iteration of the loop.

The pipe specification (|), conditional command terminators (&& and | 1), and
input/output specifications (<, >, >>, 2, and 22) may appear followmg the End,
and apply to all of the commands in the list

‘None.

None.
Errors are written to diagnostic output.

For returns the following status values:

0 The list of words or list of commands was empty

1 There was an error in the parameters to For

Otherwise, the status of the last command executed is returned.

For i Inl1 2 3
Echo i1 = (i}

End

Returns the following:

1

2
3

i

[l

i

i

See aiso

For File In =.c¢

C "{File}" ; Echo "{File}" compiled.
End
This example compiles every file in the current directory whose name ends with the
suffix “.c*. The Shell first expands the filename pattern-=~. ¢, creating a list of the
filenames after the *In" ward. The enclosed commands are then executed once for
each name in the list. Bach time that the loop is executed, the variable {File}
represents the current word in the list. {File} is quoted because a filename could
contain spaces or other special characters.

For file in Startup UserStartup Suspend Resume Quit

Entab "{file}" > temp ' :

Rename -y temp "{file}"

Print =-h "{file}"

Echo "{file}"
End L .
This example entabs (replaces multiple spaces with tabs) the five files listed, prints
them with headings, and echoes the name of each file, after printing is complete. You
might want to use this set of commands before making copies of the files to give to 2
friend. Entabbing the files saves considerable disk space, and printing them gives you
some quick documentation to go with the files. .

Loop, Break, and Continue commands

“Structured Commands” in Chapter 3

For... 297

- Syntax
‘Description’
input
Qutput
Diagnostics
298 Help

e —— —
E— —— e ——

Help — display summary information
‘Help [-f heipFile) | command..]

'Help writes information about the specified commands to standard cutput. If no

command is specified, information about Help is written to standard output.

' Command can include any of the following:

commandName information about commandName
commands a list of all MPW commands

expressions : a summary of expressions
patterns ' " a summary of pattem specifications (regular
S expressions) . '

selections a summary of selection operators
characters a summary of MPW Shell special characters

By default, the Help command looks for information in the file MPW.Help. It looks
for this file first in {Shell Directoryl; if it isn't found, it looks in {System Folder},

The following syntax notation is used to describe Macintosh Workshop commands:

[optional]
repeated. ..

alb
(grouping)
< friput

> output
2 progress

None.

Square brackets mean that the enclosed elements are optional.

Ellipses indicate that the preceding ilem can be repeated one or more
times.

A vertical bar indicates an either/or choice.

Parentheses indicate grouping (useful with * ! " and *...").
If input is not specified, the command reads from standard
input.

The command writes o standard output

Progress information is written to diagnostic output (with the
-p option). :

Command information is written to standard output.

None.

T

Status

- Qptions

Exampie

The following status codes are returned:

given command

Specify help file 1o be searched. (A help file is an ordinary MPW

text file.) The default file is MPW Help.

0 Information could be found for the

1 Syntax error

2 A command could not be found, or error in parameters
3 The help file could not be opened

-f helpFile

Help Rez

Writes information such as

Rez

{option.] [file.] < file 2 Progress

-¢{reator] creator
-dlefine] name [=value)
-0 file '

-p

~-rd

-ro

-t [ype] type

-ui{ndef] name

W A M e M Wk e

set output file creator

equivalent to #define macro [value]
write output to file (default Rez.out)
write progress information to diagnostic
suppress warnings for redeclared types
set the mapReadCOnly flag in output

set output file type

equivalent to #undef name

Help 269

Syniax

Description

Input
Cutput
Diagnostics

Status

Examples

300 f...

if... — conditional command execution

If expression

[Else If exgpression
command...) ...

[Else
command, ..

End '

~ Executes the list of commands following the first expression whose value is nonzero.

(Null strings are considered zero.) At most one list of commands is executed. You
may specify any number of “Else If* clauses. The final Else clause is optional. The
Return characters must appear at the end of each line as shown zbove, or they can be
replaced with semicolons (.

The pipe specification (|), conditional command terminators (&& and | |), and
input/output specifications { <, >, >>, 2, and 22) may appear following the End
word, and apply to all of the commands in the list.

For a definition of expression, see the description of the Evaluate command.
None.

None.

Errors are wriu:éri 10 diagnostic output.

If none of the lists of commands is executed, the If command returns a status value
of 0. Otherwise, it returns the value returned by the last command executed.

If {Status} == 0
Beep la,25,200
Else
Beep -3a,25,200
End
Produce an audible indication of the success or failure of the preceding command.

© See also

For window in ‘Windows®
If "{window}"” != " {Worksheet}" AND "{window}" 1= "{Active}
Close "{window}"
End) '
End
Close all of the open windows except the active window and the Worksheet window.
(Refer also 1o the Windows command.)

The following commands, as 2 command file, would implement a trivial case of 2
general “compile” command:

If "(1}" =~ /m_ ¢/
C {COptions} "{1}"
Else If "{1}" =~ /m.p/
Pascal {POptions} "{1lj)"
End

If the above commands were saved as 2 command ﬁlé.(say, as “Compile™), both C
and Pascal programs could be compiled with the command -

Compile filename

Evaluate command (for 2 description of expressions)
“Structured Commands” in Chapter 3

... 01

Syntax

Description

Input

Qutput

302

Lib — combine object files into a library file
Lib loption... | objectFile ...

Combines the specified object files into a single file. By convention, input files end in
the suffix .0, which must be present. In addition, input files must have type 'OBJ ' and
creator 'MPS . '

Lib is used for the following:
m Combining object code from different languages into a single file.

' m Combining several libraries into a single library, for use in building a particular

application or desk accessory. This can greatly improve the performance of the
Linker.

m Deleting unneeded modules (with the -dm option), changing segmentation (the
-sg and -sn options), renaming external modules (the -mn option), or changing
the scope of a symbol from external to local (the -dn option). (These options are
useful when you construct a specialized library for linking a particular program.)

Object files that have been processed with Lib resuit in significantly faster Links when
compared with the *raw” object files produced by the Assembler or Compilers.

The output of Lib is logically equivalent to the concatenation of the the input files,
except for the optional renaming, resegmentation, and deletion operations, and the
possibility of overriding an external name. The resolution of external names in Lib is
identical to Link—in fact, the two programs share the same code for reading object
files. Although multiple symbols are reduced to a single symbol, no combining of
modules into larger modules is performed, and no cross-module references are
resolved. This behavior guarantees that the Linker's output will be the same size
whether or not the output of Lib was used.

See “Library Construction” in Chaptér 7 for a detailed discussion of the behavior and
use of Lib.

Lib does not read standard input.

Lib does not write to standard output. The combined library output is placed in the
data fork of the output library file. The default output file is Lib.Out.c—you can
specify another name with the -0 option. The output file is given type ‘OBJ ' and
creator 'MPS .

N

Diagnostics

Status

Opﬁons

Errors and warnings are written to diagnostic output. Progress information is also
written to the diagnostic file if you specify the -p option.

Lib returns the following status values:

0 No problem
2 Fatal error

3 . User interrupt

b

-bf

-d

-df deleteFile

Do 2 big execution of Lib, that is, -bf and -bs 4 options.

Allow a big number of files; that is, keep only one input file open at
a time. If Lib fails with a “too many files open” message, use this
option.

Set the buffer size for input to nn blocks (512 bytes each). If Lib fails
with 2 “heap error” or "out of memory” message, try this option.

_ Val_uﬁ for mn must be between 2 and 64. (The default is 16)

Note: Numeric values can be specified as decimal constants, or as
hex constants preceded by a “$”.

Suppress ivarnings for duplicate symbol definitions (data and
code). '

Delete the list of external modules found in deleteFile. DeleteFile is
a text file generated by the Linker option -uf. See the Link command
and "Library Construction® in Chapter 7 for information,

-dm name { name ..)

“Delete Module”—delete the specified external modules from the
output file. name may be either an external module or entry-point
name. For each entry point.name, the entire module containing

' the entry point is deleted, together with all other entry names in the

module. The contents of the module and all entry points are
removed from the output file.

Note: References to names deleted in this way will persist as
references “by name.” That is, if the references are from active
code, they'll need to be resolved by external modules or enuy
points in another file,

The primary use of this operation is to make the library file smaller,
s0 subsequent links are faster. You can use the Linker option -uf,
which lists unreferenced (*dead”) modules or entry points, to
generale 3 list of names that can be deleted in this way.

Ub 303

Examples

See also

304

Lie

" -sn oldSeg=newSeg

-dn name [name ...
“Delete Name™—delete the list of external names from the outpul
file, by reducing their scope to local. dn is a “gentle” deletion, in
that it affects only the list of external module or entry-point names.
The contents of the module, other entry points, references, and so
on will still be present in the output file. References to names
sdeleted” in this way will continue o refer to the same code, but
with local scope. This is a useful operation when 2 global name
conflict occurs between two pieces of code, one of which is library
code from which you don't need 1o call the name directly.

-mn oldName=newName
Change the module or entry point named oldName 10 the name
newName, See the -ma option of the Link command for a
description of a similiar option.

-0 name.o Place the output in file nameo. (The default name is Lib.Out.0).
-p Write progress and summary information to diagnostic output.

-5g newSeg-oldSegI[.oldSeg2 |
Change segment names. All code in the old segments named
oldSeg1,0ldSeg2,... is placed in the segment named newseg.

Change a segment name. All code in the segment named oldSeg is
placed in the segment named newsSeg.

Note: The -sn and -sg options behave exactly as in Link, except
that -sn is limited to identifiers on both sides of the equal sign. The
arbitrary string for a desk accessory name can be introduced only
with Link, not with Lib. The major difference between -sn and -sg is
that the order of the option parameters oldSeg and newsSeg is
reversed. (This is done for consistency with Link.)

-w Suppress warning messages.

Lib {CLibraries}- -0 {CLibraries}CLibrary.o
Combine all of the library object files from the {CLibraries} directory into a single

library named CLibrary.o. For applications that require most or all of the C library
files, using the new CLibrary file will reduce link time.

Link, DumpObj, and DumpCode commands

“Optimizing Your Links” and “Library Construction” in.Chapter 7

Appendix H, *Object File Format”

Lib

Syntax

Description

Input

3ok

Link — link an application, tool, or resource
Link [option...] obfectFile...

Links the specified object files into an application, tool, desk accessory, or driver.
The input object files must have type 'OBJ ' and creator 'MPS ', and must end in the
suffix “.0". Linked segments from the input object files are placed in code resources
in the resource fork of the output file. The default output file name is Link.Qut—you
can specify other names with the -0 option.

For detailed information about the Linker, and instructions for linking applications,
MPW tools, and desk accessories, see Chapter 7.

The Linker's default action is to link an application, placing the output segments into
'CODF' resources. When you link an application, ail old 'CODE' resources are deleted
before the new 'CODE' resources are written. By default, resources created by the
Linker are given rescurce names that are the same as the comresponding segment
names. You can change a resource (segment) name with the -sn or -sg options; you
can create unnamed resources with the -rm option. '

The Linker executes in three phases:

1. Input phase: The Linker reads all input files, finds all symbolic references and
their corresponding definitions, and constructs 2 reference graph. Duplicate
references are found and wamings are issued.

2. Analysis phase: The Linker allocates and relocates code and data, detects missing
references, and builds the jump table. If the -1 or -x options are given, the Linker .
produces a linker map or cross-reference listing. The Linker also eliminates
unused code. '

3. Output phase: The Linker copies linked code segments into code resources in the
resource fork of the output file. By default, these resources are given the same
names as the corresponding segment names. (The cursor spins backward during
this phase.)

Link does not read standard input.

/-‘\\

P

Qutpuyt

Diagnostics

Status

Options

By defaulr, linked segments are placed in 'CODE' resources in the resource fork of the
output file. The default output file name is Link.Out——you can specify other names with
the -0 option. If the output file already exists, the Linker adds ar replaces code
segments in the resource fork. If the output file doesn’t exist, it is created with file type

- APPL and creator '7227". The -t and -¢ options can be used to set the output file type

and output filé creator to other values.

Note: 1f a Linker error or user interrupt causes the output file 10 be invalid, then the
Linker sets the modification date on the file to ‘zero® (Jan. 1, 1904, 12:00 a.m.). This

. Buarantees that Make will recognize that the file needs to be relinked,

If you specify the -I option, the Linker writes 2 location map to standard output. The
map is produced in location ordering, that is, sorted by segNum, segQffet . The
formar is divided into several fields:

name segName segNum, segO_[}%er [@/TOfet 1 [# [E] 1 fleNum, defOffser |

See Chapter 7 for more information,

Errors and warnings are written to diaghostic output, Progress information is also
written to diagnostic output if the -P option is specified.

The following status values are returned: .

0 No probiem
2 Fatal error
3 User interrupt

Note: Numeric values for options can be specified as decimal constants, of as hex
constants preceded by the dollar sign character (8).

b | Do a big link; that is, do both -bf and -bs 4 options,

-bf Allow a big number of files; that s, keep only one input file open at
a time. If a link £ails with a “too many files open” message, use this
option.

-bs blocks Set the buffer size for the Linker to blocks blocks (512 bytes each). If

a link fails with a “heap error” or “ocut of memoery” message, Uy this
option. Values for blocks must be between 2 and 64. (The default

is 16.)
-C creator Set the output file creator to creator. The default creator is 22 27
-d Suppress warnings for duplicate symbol definitions (for data and
code).

Link 307

308

Link

4

Convert segment names to desk accessory names on oulput. Desk
accessory names begin with a leading null character ($00). This
option is used when linking assembly-language code into a final
desk accessory (resource type 'DRVRD.

Write a location-ordered map to standard output. Usually, this
option will be used with output redirection in effect. For example,

Link ObjFile -1 > MyMapFile

List anonymous symbols in the location map (with the -1 option).

. The default is to omit anonymous symbols from the map.

-1f

-m mainEntry

-ma name=alias

-0 oulputFile

In the location map data (- option), include the location where
symbols are defined in the input file, that is, the file number and

byte offset of the Module or Entry-Point record. (See Appendix H,

“Object File Format,” for more details.) The default is to omit the
symbol definition location.

. Set (or override) the main entry point specified in the object files.

MainEntry is 2 module or entry-point name.

Note: For an application or MPW tool, the main entry point is
assigned the first jump-table entry, as required by the Segment
Loader. If 2 main entry point is specified for a desk accessory,
driver, or other type of link, for purposes of using the Linker’s
active-code analysis feature, then the main entry point should be
the first byte of code in the first Linker input file. (A desk accessory
has no jump table.)

“Module alias”—give the module or entry-point #gme the new
name alias. This option lets you resolve undefined external
symbols at link time, when the problem is caused by differences in
spelling or capitalization. Note that you can’t use an alias
specification to override an existing module or entry point.

Note: You can alias aliases, as long as the chain of aliases is not
circular.

Place the Linker output in owdputFile. If no -0 option is specified, the
default output filename is Link.Out.

Write progress and summary information 1o diagnostic output.

-ra [segl=nn

-rn

-rt type=ID

Set the resource attribules of a segment or segments. If seg is
specified, the single segment named segis given the awribute value
nn. If seg is omitted, then all segmenis except 0 and 1 are given the
atribute value n. (f you intend to set the aaributes of all segments,
then you must specify this option before any other options that
name segments, such as -sa and -sg) The segment containing the
main entry point. (the 'CODE' resource with ID=1) must be set
individually to override the default resource artributes (described in
Chapier 7). '

Suppfeés the setting of resource names. (The default is 1o name each
resource with the name of the segment) Desk accessories must
always be named.

-Set the output resource type {0 type and the ID to ID. This option

indicates the link of a desk accessory of driver—that is, only one
resource is modified. (The default is type 'CODE' and resource 1Ds
numbered from 0.)

Assembly-language note: When you link a desk accessory or
driver, the Linker uses PC-relative offsets, and attempts to edit JSR,
JMP, LEA, or PEA instructions from AS-relative to PC-relative
addressing mode. Other instructions will generate an error
message.

-sg newSeg=oldSeg 1l,0idSeg2 I...

Change segment names. All code in the segments named oldSegl,
oldSeg2,. . is placed in the segment named newSeg.

-sn oldSeg=newString

Change a segment name. All code in the segment named oldSeg is
placed in the segment named newstring:

There are two major differences between -sn and -5g:

'w -sm allows an arbitrary sumg for the new name, whereas -8g is

intended only for identifiers separated by commas.
8 The order of the oldSeg and newSeg parameters is reversed.
For example,

Link... @
-3g Main=SAConsol, Std10,%A5Init)
-sn Main="MyDA" d

The first option combines the three specified segments into one
segment named Main; the second option renames Main [0

‘MyDA”,

Link 309

Examples

310

Link

88 size Change the maximum segment size io size. The default value is
o 32760 (32K less a few overhead bytes). The value size can be any
value greater than 32760.

64K ROM note: Caution! Applications with segments greater than
32K in size may not load correctly on Macintoshes with 64K ROMs.

-t hpe Set Lhe output file type to fype. The default type is APPL.

-uf deleteFile List unreferenced modules in the text file deleteFile. (Thxs opnon is .
useful in identifying dead source code.) This file can be used as
input to Lib in building a specialized library that optimizes
subsequent links. See the Lib command’s -df option and ‘hbrary
Construction” in Chapter 7 for more details,

-w ’ Suppress warning messages.
Note: Wamings generally indicate potential errors at run time.

-x crossRefFile Generate a cross-reference listing of active modules and enuy
- points. The listing is ordered by module within each segment. For
each module, the following information is listed: each active enuy -
point in the module, other modules and entry points that are
referenced by the module, ind other modules that reference this -
module. For each entry point in 2 module, the modules that '
reference the entry point are listed,

- Link Sample.p.o @

" (PLibraries}"PInterface.c a

"{PLibraries}"Paslib.o d

"{Libraries)}"Runtime.o 9

-0 Sample d

-1 -la >Sample.map 0
Link the main program file Sample.p.o with the libraries PInterface.o, PasLib.o, and
Runtime.o, placing the output in Sample, and placing the Linker map in the file
Sample.map. Sample will be an application, whxch can be launched from the Finder
or executed from MPW.

Link -rt MROM=8 -c 'MP3 ' -t ZROM -33 140000 4
-1 > ROMLocListing -0 MyROMImage ({LinkList}

Link the files defined in the Shell variable {LinkList} into 2 ROM image file, placing the
output in the file MyROMImage. The segment size is set to 140,000 bytes, and the -
ROM is created as a rescurce 'MROM' with ID=8. The file is typed as being created by .
MPW (creator 'MPS), with file type ZROM. The Linker location-ordered listing is
placed in the file ROMLocListing.

For additional examples, see “Linking” in Chapter 7 and the makefiles in the
Examples folders for the languages you are using. '

See also - “Linking" and "More About Linking” in Chapter 7
Lib command, in this chapter
“The Segment Loader,” Inside Macintosh, Volume II
“The Resource Manager,” Inside Macintosh , Volume I '

Inside Macintosh, Volume IV for information on the 128K ROM, System Folder,
and Finder '

Appendix H, “Object File Format®

Link N

Syntax

Description

!npui
Qutput
Diagnostics
Status

Example

Loop...End — repeat command lisf__unfil Break

Executes the enclosed commands repeatedly. The Break command is used to
terminate the loop. The Continue command can be used to terminate the current
iteration of the loop. Return characters must appear as shown above, or be replaced
with semicolons (). '

The pipe specification |), conditional command terminators (&& and | |), and
input/ocutput specifications (<, >, >>, 2, and 22) may appear following the End
word, and apply to all of the commands in the list.)

None.

None.

None.

Loop retumns the status of the last command executed.

The command file below runs a command several times, once for each paramerer.

Repeat - Repeat a command for several parameters ##4#
#

Syntax:

Repeat command parameter..

#

Execute command once for each parameter in the parameter
list. Options can be specified by including them with

the command name in quotes.

#

Set cmd "{1l}1"

Leoop
Shift
Break If "{1}™ == "n
{cmd} "{l}"

End

312 Loop...End

T

See also

Notice that Shift is used to step through the para
when all the parameters have been used.

Break, For, and Continue commands
*Structured Commands® in Chapter 3

meters, and that Break ends the loop

Loop...End a3

Syntax

Description

Input

Qutput

Diagnostics

Status

3/

Make — build up-to-date version of a program
Make [option...] | targetFile... |

Generates a set of Shell commands that you can execute to build up-to-date versions
of the specified target files. Make allows you 1o rebuild only those compoenents of a

program that require rebuilding. Make determines this by reading 2 makefile—this
is a text file that describes dependencies among the components of a program, and
associates sets of Shell commands with those dependency relations. You can specify
makefiles with the -f option. After evaluating the makefile, Make writes the appropriate
set(s) of commands to standard output.

See "Using Make” in Chapter 7 for a description of the format of a makefile.

Make executes in two phases:

1. In the first phase, Make reads the makefiles (the "beachball” cursor spins
backwards during this phase).

2. In the second phase, Make generates the build commands for the target (the cursor
spins forwards)—if a target file doesn't exist or if it depends on files that are out-of-
date or newer than the target, Make writes out the appropriate command lines for
updating the target file.

You can execute the build comrﬁands after Make is done executing,

Standard input.is not read. If you don't specify a makefile with the -f option, Make tries
to open a file called MakeFile. If no target file is specified, Make uses the first target
encountered in the makefile.

If 4 file needs to be updated, Make writes a list of Shell commands to standard output.

Errors and warnings are written to diagnostic output. If you specify the -p option,
progress and summary information is also written to diagnostic output.

The following status values are returned:

0 Successful completion
1 Parameter or option error
2 Execution error

N

PO

Options

.d namd=valuel Define a variable name with the given value. Variables defined

-8

-f makefile

-r

-a

from the command line take precedence over definitions of the
same varizble in the makefile. Thus definitions in the makefiles act
as defaults which may be overridden from the command line.

Rebuild everything, regardless of whether targets are out of date.
This option causes Make to unconditionally output all of the
commands to rebuild the specified targets. .

Read dependency information from makefile. You can specify
more than one -f option—all dependency information is treited as
if it were in a single file. (If no -f option is specified, the default file is
a file named MakeFile in the current directory.)

Write progress information to diag,nostic.output. (Normally, Make
runs silently, unless errors are detected.)

Find roots (that i3, the top leveD of Lhe dependency graph. (See
the - option.)

Show structure of target dependencies. This option writes a
dependency graph for the specified targets to standard output,
using indentation to indicate levels in the dependency tree.
Circular dependendies are noted, if present.

" Note: This option overrides the normal Make output. It's useful in

debugging or verifying complicated r_na.keﬁle.s.

“Touch” dates of targets and their prerequisites, that is, bring files
up to date by adjusting their modification dates, without outputting
build commands. This option is used to bring a set of files up to date
when they appear not to be, such as when you've only made
changes to comments. -t does the minimal adjustment needed to
satisfy the dependency relationships—files are touched only if
required, and are given the date of their newest dependency, to
minimize the repercussions of the date adjustments (this feature is
especially useful if the touched file is also a prerequisite for cther
programs).

Note: This option overrides normal Make output.

Write a list of unreachable targets e dmgnosue output (for
debugginz).

Make 35

Example

See also

316

Make

v Write verbose oulput to the diagnostic output file. This option is

useful if you want to figure out what Make is doing. The diagnostic
output will indicate if targets do not exist, whether or not they need
to be rebuilt, and why they need to be rebuilt. It also indicates
targets in the makefile that were not reached in the build.

-w Suppress wamning messages. Warning messages are issued for things
: such as files with dates in the future and circular dependency
relationships.

Make -p -f MakeFile.a Sample

Make the target file Sample, printing progress information, Sample’s dependency
relations are described in the makefile MakeFile a:

‘Sample f Sample.r
Rez Sample.r -o Sample

Sample ff Sample.r Sample.a.o
Link Sample.a.o -o Sample

Sample.a.o fF Sample.a

Asm Sample.a

The f (Option-F) character means *is a function of"——that is, the file on the lefthand
side depends on the files on the righthand side. If the files on the righthznd side are
newer, the subsequent Shell commands are written to standard output. (See Chapter 7
for details.)

“Using Make” in Chapter 7, for the format of a makefile, examples, and other
information about using Make.

Makefiles for building sample programs are contained in the Examples folders:
® :AExamples:Makefile.a
m :PExamples:Makefile.p
a :CExamples:Makefile.c

‘ hY

Syntax

Description

Inpv;_n

Qutput

Diggnostics

Status

Qptions

e ——— e

MDSCvt — convert MDS Assembler source -
MDSCvt {opw 1 Ale ..]

Converts the specified Macintosh 68000 Development System (MDS) Assembler
source files to the syntax required by the MPW Assembler. The following elements are
converted: _ : '

m tokens within statements

' m special tokens within macros

m directives
For a description of these conversions, refer to "MDS$ Conversion” in Appendix E of
the companion manual MPW Assembler Reference. '

Standard input is converted if no filenames are specified. If the -main, -g, or -!
options are used, only one filename should be specified.

~1f input is from the standard input file, the converted output is written to standard

output. If the input file name is Name, the converted output is written to Name.a.
The -n, -prefix, and -suffix options let you modify the naming conventions for the
output file.

Parameter errors and progress information are writien to diagnostic output.

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or option error
2 Fxecution aborted

-d Detab the input. All tabs are removed and replaced with spaces.
The default setring is 8 spaces; this value can be changed with '
the -t option.

MDsCvt 7

318

-f directivesFile

-g globals

-

-main

-p

-prelfix| string

-sufifix] string

-t tabSetting

MDSCvt

Detab the input (like the -d opticn), and entab the output as 2
function of the tab setting (either 8, or the value specified with the -t
option).

Set the case (upper/lower) of directives according 1o the entries in
directivesFile. The file MDSCvt.Directives is supplied for this
purpose; you can edit it to change the capitalization. If you don't
use this option, then all directives are converted 10 uppercase.

Convert a2 main program source and reserve globals space below
AS. Globals may be specified in decimal or hexadecimal (by
preceding the value with a $). The value specified must be negative.
For example,

-g =512
-g $200

Convert include files. No PROC or MAIN or END will be generated
by MDSCwt.

Do not insert MDS-compatible mode-setting directives (BLANKS
ON and STRING ASIS) into the converted source.

Convert a main program source. The conversion is done to make
the file look like the main code ind data modules. Only one file
should be converted when using this option.

Do not add the *.a" extension (o the input filename to produce the
output filename. If you use this option, you must also specxfy
either -preﬂx or -suffix.)

Write MDSCvt's version mformanon and conversion starus o
diagnostic output.

If the input filename is "Name”, the output filename is produced by
prefixing the string to Name, that is, “stringName.z”. (You can
suppress the “.a" suffix by using the -n option, or change it by using
the -suffix option.)

If the inpﬁt filename is *“Name”, the output filename is produced by
appending the stringto the filename, that is, “Namestring”. The
default suffix is .a.

Set the tab value for input and output files to tabSerting value (2 to
255). The default setting is assumed to be 8.

.ﬁ R

Example

Limitations

See dlso

ac When MDSCvt detects a name in the opcode field that is the same as
an MPW directive, it appends the character ¢ to make the name
unique. (The default character is #.)

-1 identifier ' Convert a2 main program source and define the main program's

entry point by the specified identifier. This option corresponds (o
the MDS Linker's | command.

MhSCvt -t 8§ MDSFilel.Asm MDSFile2.Asm

Convert MDS Assembler source files MDSFilel Asm 2nd MDSFile2.Asm to MPW
Assembler source files MDSFile1.Asm.a and MDSFile2.Asm.a. The -t option sets the
tab setting for both files to 8, and entabs the cutput files based on that value. Itis
assumed that neither file is 2 main program because the -maia option has not been

- specified. If either file is 2 main program, thén the -main option should be specified

and only that file should be specified as input to MDSCvt.

See Appendix E in MPW Assembler Reference for details of conversions that can and
cannot be done with MDSCvt.

Appendix E, "MDS Conversion,” in MPW Assembler Reference

MDSCvt e

Synlax

Description

Input
Qutput
Diagnostics

Status

Exampie

See also

320 Mount

Mount — mount volumes
Mounf dri_r_;e...

Mounts the disks in the specified drives, making them accessible to the file system.
Drive is the drive number.

Mounting is normally automatic when a disk is inserted. The Mount command is
needed for mounting multiple hard disks, which cannot be “inserted,” or if a volume
has been unmounted via the Unmount command. '

None.
None.
Errors are written to 'diagnostic output.

The following status values are refurned:

0 The disk was mounted
1 Syntax error
2 An error occurred

Mount _1
Mount the disk in drive 1 (the internal drive).

Unmount and Volumes commands

Syniax

Description

SN

Input
Qutput

Diagnosﬂcs

Status

QOpfion

W

Move — move files and directories

Move [-y | -n] {-p] name. taigerName

‘Moves name to targetName. (Name and targetName are file or directory names.) If
" targetName is a directory, then one or more objects (files and/or directories) are

moved into that directory. If targetName is a file or doesn't exist, then file ot
directory name replaces targetName. In either case, the old cbjects are deleted.

Moved objects retain their current creation and modification dates.

1f a directory is moved, then its contents, including all subdirectories, are also
moved. No directory moved can be a parent of targetName.

Name can also be a volume; if targetName is a directory, then name is copied into
targetName. -

A dialog box requests a confirmation if the move would overwrite an existing file or
folder. The -y or -n options can be used t0 avoid this interaction. :

~ None.

None.

Errors and warnings are writien 1o diagnostic output. Progress and summary
information is also written to diagnostic output if the -p option is specified.

The following status values are retumned to the Shell:

0 Al objects were moved
1 Syntax error
2 An error occurred during the move

-y Answer “yes” to any confirmation dialog that may occur, causing
- conflicting files or folders to be overwritten.

-n Answer “no” to any confirmation dialog that may occur, skipping
the move for files or folders that already exist.

-p List progress information as the move takes place.

Move az1

Examples

See ciso

322

Move Startup Suspend Resume Quit * {SystemFolder}"
Move the four files from the current directory to the System Folder.

Move File ::
Move File from the current directory to the enclosing (parent) directory.

Move -y Filel File2
Move Filel to File2, overwriting File2 if it exists. (This is the same as renaming the
file.) .

" Duplicate and Rename commands

Move

“File and Window Names” in Chapter 1

‘Filename Generation” in Chapter 3

P

Syntax

- Description

Input

 Output

Diagnosﬂcs

Status

Examples

See also

W

New — open a new window

New [name]

Opens a new window as the active (topmost) window. If name is not specified, the

Shell generates a unique name for the new window, of the form 'Un_tided—n’_‘, where n

is.a decimal number. If name already exists, an error resuits.

Note: New is slightly different from the Open command with the -n option, which

simply brings the specified window to the top if it already exists, without retuming an

. @rror.

None.

None.

Errors are written to diagnostic output.
New returns the following status values:
0 No errors

1 Error in parameters

2 Unable 10 complete operation
3 System error

New Test.a

Open a new window named Testa.

New
Open a new window with a Shell-generated name.

Open command

New

323

NewFolder — create a directory

Syntax NewFolder name...
Description Creates new directories with the names specified. Any parent directories included in
the name specification must already exist.
Note: ‘This command can only be used on hierarchical file system (HFS) disks.
Input None.
Quiput None.
Diagnostics Errors and warnings are written to diagnostic ourput.
Status The following status values are returned to the Shell:
o 0 Folders were created for each name listed
1 Syntax error
2 An error occurred
3 Amempi to use NewFolder on non-HFS volume
Examples Newfolder Memos
Create Memos as a subdirectory of the current directory.
Newfolder Parent :Parent:Kid _
Create Parent as a subdirectory of the current directory, and Kid as a subdirectory of
Parent. : :
324 Newfolder

Syntax

Description

Input
Output
Diognoslics

Status

Options

Examples

EEE

Open — open d window

“Open [-nl <] i-t] I name]

Opens a file as the active (topmost) window. If neither ngme nor the -n option is
specified, an error results. If n@me is already open as 2 window, that window becomes
the active (topmost) window.

None.
None.
Errors are wrilten to diagnostic output.

Open returns the following status values:

0 No errors

1 Error in paramelers

2 Unable to complete operation
3 System efror

-0 A new window is opened with the tide name. If name is not
' specified, a unique name is generated for the new window. If file
name already exists, that file is opened.

-r Opens 2 read-only window associated with the file name. If file
name doesn't exist, an error occurs.

-t Open the window as the target window rather than as the active

window (that is, make it the second window from the top). This
option is identical to the Target command.

COpen Test.a
Open the window Test.2.

Qpen -n
Open a new window with 2 Shell-generated name, Untitled-n.

Open- T a8

See also Target, New, and Close commands

326 Cpen

Syntai '

Description

Input
Qutput
Diagnostics
Status

Examples

See qiso

Parameters — write parameters

Parameters [parameters ... |

The Parameters command writes its parameters, inciuding its name, to standard

output. The parameters are written one per line, and each is preceded by its

parameter number (in braces) and a blank. This command is useful for checking the

and filename generation.

None.

Paramelers are writte-n 10 smndérd output.
None. N

A status value of 0 is always returned.
Parameters One Two "and Three”

Writes the following three lines to standard output:

{0} Parameters
{1} One
{2} Two
{3} and Three

. Recall that *..." and '..." quotes are removed before parameters are passed to

commands.

Echo command
*Parameters to Command Files” in Chapter 3

Parametsrs

"results of variable substitution, command substitution, quoting, blank interpretation,

327

- Syntax

Description

Input
Output
Diagnostics

Status

Opfions

F3z&

Pascal — Pascal Compiler

Pascal [option... 1 [flle...]

Compiles the specified Pascal source files (programs or units). You can specify zero
or more filenames. Each file is compiled separately—compiling file Name.p creates
object file Name.p.o. By convention, Pascal source filenames end in a “.p" suffix.

See the manual MPW Pascal Reference for details of the language definition.

If no filenames are specified, standard input is compiled, with output directed to the
file p.o. You can terminate input by typing Command-Enter.

Nothing is written to standard output. For each input file name, object code is sent 10
the file name.o. :

Errors are written to diagnostic output. Progress and summary information is also
written to diagnostic output if the -P option is selected.

The following stans values are retumed to the Shell:

0 Successful completion
1 Erer in parameters
2 Compilation halted

b Generate AS-relative references whenever the address of a
procedure or function is taken. (By default, PC-relative references
are generated for routines in the same segment.)

-C Syntax check only-—no cbject file is generated.

-d name=TRUE | FALSE
Set the compile time variable name o TRUE or FALSE.

~e errLogFile Write all errors to the error log file errLogFile. A copy of the error
report will still be sent to diagnostic cutput.

TN

s

Go directly to code generation, skipping the compilation pass. For
an input filename Foo.p, an intermediate file Foo.p.o.i is expecied
as input to the process. Such a file is created if the Compiler crashes
during code generation (for example, if the disk was full), or was
aborted, :

- Note: The “beachball* cursor spins clockwise during compilation

and counter-ciockwise during code generation.

1 pathnamd,pathnamel. ..

-k p‘reﬁ:q)ath

-0 obfName

-Ov

Search for include or USES files in the specified directories.
Multiple -1 options may be specified. At most 15 directories will be
searched. The search order is as follows:

1. In the case of 2 USES filename, if no prior $U filename was
specified, the filenamc is assumed to be the same as the unit
name (with a *.p” appended). :

2. The filename is used as specified. If a fidl pathname is given,
then no other searching is applied. _
If the file wasn't found, and the pathname used to specify the file
was a partial pathname (no colons in the name or a leading
colon), then the following directories are searched.

3. The directory containing the current input file.

4. The directories specified in -i options, in the order listed.

5. The directories specified in the Shell variable {PInterfaces}.

The source filenames specified on the command line must include
any relevant prefixes. :

Put the files specified in $LOAD commands in the directory
specified by prefixpath.

Specify the pathname for the generated object file: If objName
ends with a colon (), it indicates a directory for the output file,
whose name is then formed by the normal rules (that is, '
inpuitFilename.o). If the source file name contains a pathname, it is
stripped off before obfName. is used as 2 prefix. If objName does
not end with a colon, the object file is written (0 the file obfName.
(In this case, only one source file should be specified.)

Suppress register code optimizations.

Turn on overflow checking. (Warning: This may significantly
increase code size.)

Pascal 329

P

-

-t

-y pathname

Supply progress and summary information to diagnostic outpur,
including Compiler header information (copyright notice and
version number), module names and code sizes in bytes, and
number of errors and compilation time.

Suppress range. checking.

Enable swapping—the Compiler runs much more slowly, but uses
less memory.

Report compilation time to diagnostic output. The -p option also

_treports the compilation tUime.

Put the Compiler’s temporary intermediate (".0.i") files in the
directory specified by pathname. (See also the -g option.)

Turn off the output of embedded procedure names in the object
code. This option is equivalent to specifying {$D-} in the source

- code.

Examples pascal Sample.p
Compile the Sample program provided in the PExamples folder.

Pascal Filel.p Filel.p ~r

Compile Filel.p and File2.p, producing object files Filel.p.o and File2.p.0, and
performing no range checking.

Note Listing files are not produced directly by the Compiler. Refer to the PasMat and -

PasRef tools.

Availability The Pascal Compiler is available as part of a separate Apple product, MPW Pascal.

See also PasMat and PasRef commands

330 Pascal

*a

Syntax

Description

input

Cutput

Diagnostics

PasMat — Pascal program formatter (“prefty-printer”)

PasMat [option...] [inpusfile | outputfile]]

Reformats Paseal source code into a standard format, suitable for printouts or
compilation. PasMat accepts full programs, external procedures, blocks, and groups
of statements. '

Note: A syntactically incorrect program causes PasMat to abort. If this happens, the
generated output will contain the formatted source up to the point of the error.

PasMat options let you do the following:
m Convert a program to uniform case conventions.

® Indent a program to show is logical structure, and adjust lines to fit into a specified
. line length.

m Change the comment delimiters (* *) 0 { }.

® Remove the underscore character (_) from identifiers, rename identifiers, or
change their case. :

a Format include files named in MPW Pascal include directives.

PasMat specifications can be made through PasMat options or through special
formatier directives, which resemble Pascal Compiler directives, and are inserted
into the source file as Pascal comments. PasMar’s default formatting is
straightforward, and does not necessarily require you to use any options. The best way
to find out how PasMat formats something is to try out 2 small example and see.

See Appendix K of the manual MPW Pascal Reference for details of PasMat directives
and their functions.

If no input files are specified, standard inp,ut is formarted.

If no output file is specified, the formatted output is written to standard cutput. Refer
to “Error Handling” below for more information about PasMat's treatment of errors
in'the source.

Parameter errors and progress information are written to diagnostic output.

PasMat 3759

Status

Options

332

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or option error
2 Execution terminated

Most of the following options modify the initial default settings of the directives
described in Appendix K of the MPW Pascal Reference manual.

Set a- to disabie CASE label bunching.

-a

b Set b+ to enable IF bunching.

-body Set body+ to align procedure bodies with their enclosing
BEGIN/END npair. _

-C Set ¢+ for placement of BEGIN on same line as previous word,

-d Set d+ to enable the replacement of (* *) with { } comment
delimiters. o

-€ Set e+ to capitalize identifiers.

-entab Réplaoe runs of blanks with tabs. The tab value is determined by the
-t option or current t=n directive (n0t by the file’s tab setting).

-f Set £~ to disable formatting.

-2 Set g+ to group assignment and call statements.

-h Set b- to disable FOR, WHILE, and WITH bunching.

-1 pathnamed,pathname }...
Search for include files in the specified directories. Multiple -
options may be specified. At most 15 directories will be searched.
The search order for includes is specified under the description of
the -1 option for the Pascal command. (Note however that USES are
not processed by PasMat.) :

-in Set in+ to process Pascal compiler includes. This option is implied
if the -1 option is used. :

k Set k+ to indent statements between BEGIN/END pairs.

-1 Set I+ for literal copy of reserved words and identifiers.

-list listingFile Generate a listing of the formatted source. The listing is writien 1o
the specified file.

-n Set n+ to groﬁp formal parameters.

-0 widsh ' Set the output lirie width, The maximum value allowed is 150. The
' default is 80.

-p Display version information and progress information 1o

diagnostic output.

-pattern =pattern=replacemeni= : . _

‘ Process includes (-in) and-generate a set of output files with exactly
the same include structure as the input, but with new names. The
new output filenames and include directives are generated by
editing the input (or include) filenames according 10 the pattern’
and replacement strings. Pattern is a pathname (o be looked for in
the input file and in each include file (the entire pathname is used, -
and case is ignored). If the pattern is found, it is replaced by the
replacement string. The result is a new pathname, which becomes
the name for an output file. For example, - '

PésMat_-pattern =01dFile=NewFile= . .

replaces each name containing the string “01dFile” with the string
“NewFile”,

Note: Ahy character not contained in the pattern or replacement
strings can be used in place of an equal sign. Special characters
must be quoted. (See “Examples” below.) -

-q Set 'q+ not to treat the ELSE IF sequence specially.
-r | Set r+ to uppercase reserved words.
-rec ' ~ Indent a RECORD's field list under the record identifier.

PasMat 333

i

-8 renamekFile

B} |

l'_#l'

PasMat

Rename identifiers. RenameFileis a file containing a list of
identifiers and their new names. Each line in this file contains two
identifiers of up 10 63 characters each: The first name is the
identifier to be renamed; the second name will replace all
occurrences of the first identifier in the output. There must be at
least one space or tab between the two identifiers. Leading and
trailing spaces and tabs are optional. The case of the first identifier
doesn't maner, but the second identifier must be specified exactly
as it is to appear in the output. The case of all identifiers not
specified in the renameFtle is subject to.the other case options

{-e, -1, -u, and -w) or their correspondmg directives. Reserved
words canriot be renamed.

Set the tab amount for each indentation level. If the -entab cption s
also specified, tab characters will actually be generated The default
b value is 2.

Rename all identifiers based on their first occurrence in the source.
Specifications in the rename (-s) file always have precedence over
this option—that is, the identifier’s translation is based on the
rename file rather than on the first occurrence .

‘Set v+ to put THEN on a separate line.

Set w+ to upperca.se identifiers.

Ser x+ o suppress space around operators.
Set y+ to suppress space around :=

Set z+ to suppress space after commas.

Set s+ to align colons in VAR declarations (only ifa j PasMaL '
directive in the source specxﬁes a width). |

Set @+ to force muitiple CASE tags onto separate lines.

Set #+ for “smart” grouping of assignment and call statements
(grouped assignment and call statements on an input line will
appear grouped on output).

Note: Because # is the Shell's comment character, this option, must
be quoted on the command line.

Set _+ for “portability” mode (underscores are deleted from
identifiers).

TN

._//_‘\‘

/‘”\

Exampie

All options except for -list, -pattern, -, and -entab have directive counterparts. It's
recommended that you specify the options as directives in the input source s that
you won't have to specify them each time you call PasMat

{PasMatOpts} variable. You can also specify a set of default options in the exported
Shell variable {PasMatOpts}—PasMat processes these options before it processes the

. command-line options. {PasMatOpts) should contain a string (maximum length 255)

specifying the options exactly as you would specify them on the command line
(except for command-line quoting, which should be omitted; also note that the
optons -patters, -list -s, and -1, which require a string parameter, can only be
specified on the command line}. For example, you can define {PasMatOpts} to the
Shell (perhaps in the UserStartup file) as follows:

Set PasMatOpts "-n -u -r -d -entab -# -0 gz -t 2"
Export PasMatOpts

_ The entire definition string must be quoted to preserve the spaces.

As an alternative 1o specifying the options directly, you can indicate that the options
are stored in a file, by specifying the file’s full pathname prefixed with the character

Set PasMatCpts "~pathname" ’
Export PasMatoOpts

PasMat will now look for the default options in the specified file. The ines in this file
can contain any sequence of command-line options (except for -pattern, -list, -s,
and -0, grouped together on the same or separale lines. The lines may be
commented by placing the comment in braces ({...1). A typical options file might

appear as follows: :

~n {group formal params on same line}

-u {auto translation of id's based on lst occurrence}
-r {uppercase reserved words}

-d {leave comment braces alone}

-entab ({place real tabs in the output]

-# ° [smart grouping!}

-0 82 . {output line widthj o

-£ 2 {indent tab wvalue} . .

(Except for the tab value, this example shows the recommended set of options.)

If PasMat does find a default set of options, then those options will be echoed as part
of the status information given with the -p option.

pasmat -n -u -r -d —-pattern n==formatted/=" Sample.p 9
"formatted/Sample.p”

PasMat 3r5

Limitations

Availability

Format the file Sample.p with the -n, -u, -r, and -d options, and write the output w©
the file “formatted/Sample.p”. Includes are processed (-pattern) and each Pascal
Compiler $1 include file causes additional output files to be generated. Each of these
files is created with the name “formatted/ filename’, where filename is the filename
specified in the corresponding include. (The -pattern parameter contained a null
pattern (==) with “formatted/” as a replacement string-—a null pattern always matches
the start of a string.) - :

Care must be taken when a command line contains quotes, slashes, or other special
characters that are processed by the Shell itself. In this example, we used the slash
character, so the strings containing it had to be quoted.

PasMat has the following limitations:

w The maximum length of an input line is 255 characters.
m The maximum output line length is 150 characters. .

m The input files and ocutput files must be different.
]

Only syntactically correct programs, units, blocks, procedures, and statements are
formatted. This limitation must be taken into consideration when separate include
files and conditional compiler directives are to be formarted.

A The Pascal include directive should be the last thing on the input line if includes are
to be processed. Includes are processed to a maximum nesting depth of five. All
includes not processed are summarized at the end of formatting. {This assumes, of
course, that the In directive/option is in effect.)

w The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by
PasMat. They are treated as two loop control statements by Pascal unless explicitly
declared.

Error handling. The following errors are detected and written to diagnostic output:

= In general, premature end-of-file conditions in the input are not reported as
errors, to accommodate formatting of individual include files, which may be only
program segments. There are cases, however, where the include file is a partial
program, which PasMat interprets and reports as a syntax error.

m There is 2 limit on the number of indentation levels that PasMat can handle. If this '
limit is exceeded, processing will abort. This problem should be exceedingly rare.

m If 2 comment would require more than the maximum output length (150) to meet
the rules given, processing will abort. This problem should be even rarer than
indentation level problems.

If a syntax error in the input code causes forinatting to abort, an error message will
give the input line number on which the error was detected. The error checking is not
perfect—successful formalting is no guarantee that the program will compile,

PasMat is available as part of a separate Apple product, MPW Pascal.

T3s PasMat

See also

Appendix K of the MPW Pascal Reference manual

Pascal and PasRef commands

PasMat

3

AN

7

Syntax

Description

Input

PasRef — Pascal cross-referencer
PasRef [option ... | [sotrceFile ...]

Reads Pascal sousce files, and writes 2 listing of the source followed by a cross- (
reference listing of all identifiers. Each identifier is listed in alphabetical order,
followed by the line numbers on which it appears. Line numbers can refer to the
entire source file, or can be relative to individual include files and units. Each
refarence indicates whether the identifier is defined, assxgned, or simply named {for
example, used in an expression).

See the manual MPW Pascal Reference for details of the Pascal language.

Identifiers may be up to 63 characters long, and are displayed in their entirety uniless
overridden with the -x directive. Identifiers may remain as they appear in the input,
or they can be converted to all lowercase (-D or all uppercase (-u).

For include files, line numbers are relative 10 the start of the include file; an
additional key number indicates which include file is referred to. A list of each include
file processed and its associated key number is displayed prior to the cross-reference
listing.

USES declarations can also be processed by PasRef (their associated $U filename
compiler directives are processed a5 in the Pascal Compiler). These declarations are

treated exacdy like inchides, and, as with the Compiler, only the outermost USES

declaration is processed (that is, a used unit's USES declaration is not processed).

As an alternative to processing USES declarations, PasRef accepts multiple source (
files. Thus you cross-reference 2 set of main programs together with the units they use. -
All the sources are treated like include files for display purposes. In addition, PasRef

" checks to see whether it has already processed a file (for example, i it appeared twice

on the input list, or if one of the files already used or included iD). if it has already
been processed, then the file is skipped.

If no filenames are specified, standard input is processed. Unless the -d option is
specified, multiple source files are cross-referenced as a whole, producing a single
source listing and a single cross-reference listing. Specifying the -d option is the same
as execuling PasRef individually for each file.

238

Cutput

Diagnostics .

Status

Options

All listings are written Lo standard outpuL. Form feed characters are placed in the file
before each new source listing and its associated cross reference. Pascal $P (page
eject) compiler directives are also processed by PasRef, which may generate

additional form feeds in the standard output listing.

Parameter errors and progress information are written to dizagnostic cutput.

The following statuS codes are returned 1o the Sheil:

0 Normal termination
1 Parameter or option error .
2 Execution terminated

- -a ' Process all files even if they are duplicates of ones already

processed. The default is to process each (include) file or used unit
only once. :

< Do not process a unit if the unit’s filename is speciﬁed"m the list of
files to be processed on the command line, or if the unit has already
been processed. :

-d Treat each file specified on the command line as distinct. The
' default is to treat the entire list of files as a whole, producing a single
source listing and a single cross-reference listing, This option is the
same as executing PasRef individually for each specified file.

-1 pathname [pathname ...
Search for include or USES files in the specified directories.
Mutltiple -i options may be specified. At most 15 directories will be
searched. The search order is specified under the description of the
- option for the Pascal command. ’

1 " Display all identifiers in the cross-reference table in lowercase. This
option should not be used if -u is specified, but if it is, the -u is
ignored.

-ni | -noincludes _
Do not process include files. The default is 10 process the include
files. .

-nk | -nolisting

Do not display the input source as it is being processed. (The
default is to list the input.)

PasRef 345

-nolex
-nt | -nototal

-aoful | -nouseé

-u

-w width

-X width

Do not display the lexical information 6:1 the source listing, See the
“Examples” section for further details. -

Do not display the total line count in the source listing. This option
is ignored if no listing is being generated (-nl). '

Do not process USES declarations. (The default is to process USES
declarations.) If -nu is specified, then the -¢ option is ignored.

The source file is an Object Pascal program. The identifier OBJECT
is considered as a reserved word so that Object Pascal declarations
may be processed. The default is to assume the source is not an
Obiject Pascal program. :

Write version and progress information to diagnostic output

Do not display include and USES information in the listing or cross
reference, and cross-reference by total source line number count
rather than by include-file line number.

Cross-reference by total source line-number count rather than by
include-file line number. This option can be used if you are not
interested in knowing the positions in included files. However, the
include information is still displayed (unless -8, -nl, or -nu is
specified). This option is implied by the -8 option.

Display all identifiers in the cross-reference table in uppercase.
This option should not be used if -1 is specified.

Set the maximum output width of the cross-reference listing. This
setting determines how many line numbers are displayed on one
line of theé cross-reference listing. It does not affect the source
listing. Width can be a value from 40 to 255; the default is 110.

‘Ser the maximum display width for identifiers in the cross-reference .

listing. (The default is to set the width to the size of the largest
identifier cross-referenced.) If an identifier is too long to fit in the
specified width, it'is indicated by preceding the last four characters
with an ellipsis (...). Width can be a value from 8 to 63.

Normally both include files and USES declarations are processed. The -noincludes
option suppresses processing of includes. The -nouses option suppresses processing

of USES.

34 PasiRef

Y

Examplie
Tt
z 1
31
4 1
5 1
5 1
3 1
g 1
] 1

e i
12 1
3 b
4 I
=] 1
< H
7ot

Omitting the -nouses option causes PasRef to process 2 USES declaration exactly as
does the Pascal Compiler, However, you may want to cross-reference an entire
system, including ali of the units of that system. Processing the units through the USES
declaration would cause only the INTERFACE section of each unit to be processed. If
you use the -nouses option, then USES will not be processed and each unit from the
list can be cross-referenced, treating the entire list as a single source.

PasRef can also cross-reference all the units of a program while still expanding other
units not directly part of that program, such as the Toolbox units. In that case

the -c option should be used. With the -¢ option, if the ($U interface) filename is the
same as one of the filenames specified on the list, then the unit will not be processed

" from the USES dedlaration, because its full source will be (or has been) processed.

PR

N O W @~ oy W N

To summarize, you have the following choices:

® Don't process the USES, and specify 2 list of all files you want to process, by using
the -nouses option. '

® Process only the INTERFACEs through the USES declarations (like the Compiler),
by omitting the -nouses option. ' :

m Process some of the units through the USES and others as full sources, by specifying
the -c option. : . :

In all cases where 2 list of files is specified, no unit will ever be processed more than

once (unless the -a opton is given). '

PasRef -nu ~w 80 Memory.p > Memory.p.Xref

Cross-reference the sample desk accessory Memory.p and write the output to the file
Memory.p.Xref. No USES are processed (-nu). The following source and
cross-reference listings are generated:

- Memory.p -~ reports the amount of free space in the application
-- - and system heap

e e e o ke B i ot e A A8 e e o e S TS S =

- UNIT Memory;

- INTERFACE

- UsSES

-— MemTypes,
- QuickDraw,
-- OSIntf,

= ToclIntf,
- PackIntf;

- {sD+} { procedure names in the code, please }

PasRef 47

g 1

18 1 19 --
22 1 20 ==
21 1 21 -
22 1 22 -~
23 1 23 --
24 1 24 —-
et cetera

222 1 222 --
223 1 223 --

18 --

{5R-} { If we make a mistake, make it big }

{ These 5 routines must be declared as below. Calls to your DA
are dispatched to the appropriate routine by DRVRRuntime }

FUNCTION DRVROpen (ctl1PB: ParmBlkPtr;
. dCtl: DCtlPtr): QSEr:;

END. {of memory UNIT}

Each line of the source listing is preceded by five columns of information:

1:
2: The include key assigned by PasRef for an include or USES file. (See below.)

\ 3. The line number within the include or main file.
4: Two indicators (left and right) that reflect the static block nesting level. The left

The total line count.

indicator is incremented (mod 10) and displayed whenever a BEGIN, REPEAT, or
CASE is encountered. On termination of these structures with an END or UNTIL,
the right indicator is displayed, then decremented. It is thus easy to match BEGIN,
REPEAT, and CASE statements with their matching terminations. '

. A letter that reflects the static level of procedures. The character is updated for

each procedure nest level (A" for level 1, *B” for level 2, and so on), and
displayed on the line containing the heading, and on the BEGIN and END
associated with the procedure body. Using this column you can easily find the
procedure body for a procedure heading when there are nested procedures
declared between the heading and its body.

The cross-reference: listing follows:

L. memory.p

-A-
accEvent
accRun
App..cZone
Away

- -

Beginlpdate
2cld

2ecolean

348 PasRef

146*(1) 167 (1}
147+ 1y 182 (1)
125 (D

153*¢(1) 168 (1)

179 (1)
93 (1y 121 (L)
151*{ 1}

165 (1)
168 (1) .

47*{ 1) S5¢*(1y - 33*(1) 536*(1) 59=(1} 143*(1}
165 { 1) 168 (1) 183={ 1) 219*(1) 231+{ 1} 238*{ 1)

48*(1) Si*¢ 1) 54*(1} 57T*(1) 60*(1) 144*(1)
194%(1) 202 (1) 203 (1) 211 (1) 220%(1) 223 (1}
225 (1) 226 (1) 232+ 1) 239*({ L} :

3CLlPLr 48 (1) 51 1 1) 54 ¢ 1) 57T (1) 60 (1) 144 (1)
194 ¢ 1) 220 (1y 232 (1) 239 {1

dct LRefNum 209 (D

SCtlWindow 202 ¢ 1) 211=(1) 225 (1) 226=(1)

dczlwindow 223 (1)

DisposeWindow 225 (1)

“Drawstring a2 (1) 123 (1) 128 (1) “13¢ (1) 137 ¢ Ly 133 (1)

el cetera

N

" Limitctions

Availability

See also

~x= End PasRef: 100 1d's 230 referances

The numbers in parentheses following the line numbers are the include keys of the

- associated include files (shown in column 2 of the source listing). The include file

names are shown following the source listing. Thus you can see what line number was
in which include file. An asterisk (*) following a line number indicates 2 definition of
the variable. An equal sign (=) indicates an assignment A line number with nothing
following it means a reference to the identifier.

PasRef does not process conditional compilation directives! Thus, given the “right”
combination of $IFC's and $ELSEC’s, PasRefs lexical (nesting) information can be '
thrown off. If this happens, or if you just don’t want the lexical information, you may
specify the -nolex option.) : _
PasRef stores all its information on the Pascal heap. Up to 5000 identifiers can be
handled, but more identifiers will mean less cross-reference space. A message is
given if PasRef runs out of heap space. '

Note: Although PasRef never misses a reference, it can infrequently be fooled into
thinking that a variable is defined when it acwally isn’'t. One case where this happens
is in record structure variants. The. record variant's case tag is always flagged as a
definition (even when there is no tag type) and the variant’s case label constants (if
they are identifiers) are also sometimes incorrectly flagged depending on the
context. (This occuss only in the declaration parts of the program.)

The identifiers CYCLE and LEAVE are treated as reserved Pascal keywords by PasRef.
These are treated as two [oop control statements by Pascal unless explicitly declared.

pasRef is available as part of a separate Apple product, MPW Pascal.

MPW Pascal Reference

Pascal command

PasRef 349

Syntax

Description

Input
Qutput
Diagnosﬁcé

Status

Options

Examples

Paste — replace selection with Clipboard contents

Paste [-c coumt] selection | window]

Finds selection in the specified window and replaces its contents with the contents of
the Clipboard. If no window is specified, the command operates on the target window
(the second window from the top). It's an error to specify a window that doesn't exist

For a definition of selection, see *Selections® in Chapter 4; 2 summary of the
selection syntax is contained in Appendix B,

None.
None.
Errors are written to diagnostic output.

The following status values are returned:

0 At least one instance of the selection was found
1 System error
2 Any other error

-C count For a count of n, replace the next n instances of the selection with
the contents of the Clipboard.

Paste §

Replace the current selection with the contents of the Clipboard. This command is
like the Paste item in the Edit menu, except that the action occuts in the target
window,

Paste /BEGIN/:/END/

Select everything from the next BEGIN to the following END, and replace the
selection with the contents of the Clipboard.

C

See also Copy, Cut, and Replace commands
“Selections” in Chapter 4

Paste 351

Syntax

Description

Input
Output
Diagnostics

Status

Options

352 Print

~ Print — print text files

Print { option... 1 [file...]

Prints text files on the currently selected printer. (Printers are selected with the
Chooser desk accessory.) One or more files may be printed.

Note: Print does not support font substitution. To print in a font other than that
indicated in the resource fork of the file, use the -font option.

Impoﬂém.- Print requires the printer drivers available on version 1.0 (or later) of the
Printer Installation disk. . :

If no files are specified, Print reads from standard input. You can terminate input by
typing Command-Enter. '

All output goes to the currently selected printer. Print sends no output to standard
oulput.

Errors and warnings are written to diagnostic outpur. If the -p option is specified,
progress and summary information is also writen to diagnostic output.

The following status values are returned:

0 Successful completion
1 Parameter or option error
2. Execution error

Note: 'The Print options can also be applied to the Print Window/ Print Selection
menu item, by including them in the exported Shell variable {PrintOptions}.
{PrintOptions} is originally set 1o *~h' in the Startup file.

-b Print 2 round-rect border around the printable area of the page.
Headers, if specified with the -h option, are separated from the
body text by an extra line.

-clopies] n Print n copies of the file or selection.

-flont] name

-from n
h.
-hflont] name

-hslize] n

-lines] n

1w n

-q quality

Print using the font identified by name (for example, Courier). The
default is the font indicated in information in the resource fork of
the file, if present, and otherwise Monaco 9. (See also the -size
option.) .

Note: Printing with a font that is not directly supported by the

printer is significantly slower than printing with a built-in font

Print pages starting from page number n The default is to start with
thefirst page of the file.

Print page headers at the top of each page. The header indicates the
time of printing, the name of the file, and the page number.

Specify the font 10 be used in headers (h option). The default is the
font used in the file. :

Specify the font size to be used in headers. The default is 10.

* Print (at mosD) lines per page. Line spacing is adjusted so that the

full page is used. If both -1 and -1s are specified, the -1 option takes
precedence.

‘Set line spacing. A value of 1 indicates normal (single) spacing (the
default), 2 indicates double-spacing, and so on.

Tum on line numbering; numbers appear 1o the left of the printed
text. . . .

Specify the width of the line number (-n) field in characters..(The
default is value is 5.) Negative values for # cause the field 10 be zero-
padded.

' Write progress information to diagnostic output, indicating which

files are printing and the number of lines and pages printed.

Number the pages of the file beginning with n. (By default, pages
are numbered starting with 1.)

Set print quality on the ImageWriter. quality is one of the foliowi.ng
strings: . :

high standard draft
Note: This option is ignored when printing on the LaserWriter,

Print 353

Exampies

See dlso

354

Print

-r

-s(izel n
-tiabs] n

-title name

on

. Cutput pages to the printer in reverse order. This option eliminates

the need to reorder pages on the LaserWriter.

Print using the font size identified by 7 The default is 10 use the font
size indicated in the resource fork of the file, if present; otherwise,
the default size is 9.

Expand tabs, using the indicated tab setting. If this option isn™
specified, the tzb setting is taken from the resource fork of the file, if
present; otherwise, the tab setting is taken from the {Tab} variable,

If printing page headers (with -h), use ngme as the title. (The defauit

. is to use the filename.)

Print pages up o page 1. (The default is to print to the last page of
the file.) .

The following options control the page margins. 2 is the margin width in inches.

-tm 7
bm n
-mn

-rm n

Top margin. (Default = { inches)
Bortom margin. (Default = 0 inches)
Left margin. (Default = 0.2778 inches, for 3-hole punched pages)

Right margin. (Default = 0 inches)

Print -h -size 8 -13 0.85 Startup UserStartup

Print the files Startup and UserStartup with page headers, using Monaco 8 and
compressing the line spacing.

Print

Print all text subsequently entered (that is, until you indicate end-of-file by typing
Command-Enter).

"Print...” menu item in Chapter 2

Syntax

Description

(//\

Inpﬁi
Qutput
Diagnostics

Status

Options

M

Rename — rename files and directories
Rename [-y | -n] name newName

The file, folder, or disk specified by name is renamed newName. A dialog box
requests a confirmation if the rename would averwrite an existing file or folder. The -y
or -0 options can be used in command files to avoid this interaction.

Note: You can't use the Rename command to change the directory a file is in. To do
this, use the Move command.

Note also: Wildeard renames in the following form will not work:

Rename =_.teéxt =.p

This is because the Shell expands the filename patterns “=.text” and “=.p’ before
invoking the Rename command. In order to gain the desired effect, you would need
1o exequte a command such as the one shown in the fourth example below.

None.
None.
Errors and warnings are written to diagnostic output.

The following status values are returned:

0 Successful rename
1 Syntax error _
2 Name does not exist
3 An error occurred

-y Answer "yes” 10 any confirmation dialog that may occur, causing
: conflicting files or folders to be deleted.

-0 Answer “no” to any confirmation dialog that may occur, skipping k
the rename for files or folders that already exist.

Rename 355

Examples

See also

Rename Filel File2
Change the name of Filelto File2.

Rename HD:Programs:Prog.c Prog.Backup.c

Change the name of Prog.c in the dmsc:ory HD:Programs to Prog.Backup.c in the
same du-ectory

Rename Untitled: Backup:
Change the hame of the disk Untitled to Backup.

To perform a wildcard rename, you could execute the following set of commands:

For Name In =.text

(Evaluate "{Name}" =~ /{=}®l.text/) > Dev:Null

Rename "{®1}.text™ "{®1l}.p"
End
The Evaluate command is executed only for its side effect of permitting regular
expression processing. (The expression operator =~ indicates that the right-hand
side of the expression is a regular expression.) Thus, you can use the regular

expression capture mechanism, (regularExpH®n. Evaluate’s output is tossed in the

bit bucket (Dev:Nuil).

Move command
Alias command (for giving alternate names to a command)

356 Rename

Syntax

Description

?‘“‘\.

Input
Qutput
Diu_gnos!ics

Status

Options

Examples

————
Replace — replace the selection
Replace [couns} selection - replacement [window

Finds selection in the specified window and replaces it with. replacement. If no window
is specified, the command operates onl the target window (the second window from :
the top). It's an error to specify 2 window that doesn’t exist. If a count is specified, the
Replace command will be repeated count tmes.

For a definition of selection, see “Selections” in Chapter 4. A summary of the
selection syntax is contained in Appendix B. - :

The replacement may contain references to parts of the selection by using the ® -
operator. The expression ®n, where nis 2 digit, is replaced with the string of -
characters that matches the regular expression tagged by ®n in the selection. (See

“Tagging Regular Expressions With the ® Operator” in Chapter 4.)

All searches are by default case insensitive. ’fd_ specify case-sensitive matching, set
the {CaseSensitive} variable before executing the command. {You can do this by
selecting the Case Sensitive item from the Find menu.)

None.

None.

Errors are written to diagnostic outpui.

The following status values are returned:

0 A least one instance of the sélection was found

1 Syntax error
2 Any other error

-c count Repeat the command count times. As a convenience, = (Option-3)
can be specified in place of 2 number. ~¢ e replaces zll instances
of the selection from the current selection to the end of the
document (or to the start of the document, for a backward search).

Replace -c¢ e /myVar/ ‘myVariable' Prog.p
Replace every subsequent instance of the selection with the string in single quotes.

. Replace 357

Replace -c 5 /e[dtl+/ "'

Strip off all the spaces and tabs at the front of the next five lines in the file (replace with
the null string). This action takes place in the target window. .

Set HexNum [0-9A-F]+
Set Spaces [dt]l+
Replace -c = /({HexNum})®1l{Spaces} ({HexNum})®2/ ®1ldn®2

Define two variables for use in the subsequent Replace command, and convert a file.
- that contains two columns of hex digits (such as Lhe icon list from ResEdiD) into a
“single column of hex digits.

See calso Find and Clear commands '

Chapter 4, “Advanced Editing” _
Appendix B, “Selections and Regular Expressions”

358 Replace

Syntax

Description

Input

Qutput
Diagnoslics

Status

Options

Examples

Request — request text from a dialog
Request [-d defaultl message

Displays a2n editable text dialog with OK and Cancel buttons and the prompt message.
If the OK button is selected, then all text that the user typed into the dialog box is
written to standard output. The -d option lets you set a default response to the request.

None.
Text from the dialog is written to standard output.
None.

The Request comrnand returns the following status values

¢ The OK button was sélected
1 Syntax errors
2 The Cancel button was selected

-d defau.f: The editable text field of the dialog is initialized to default. The
" default text appears in the dialog box--if the OK button is selected
without changing the response, the default is written to standard
output.

Set Exit 0 : :
Set FileName "'Request 'File to comp:.le' -d "{Active}" ™™
If {FileName} # ""
Pascal "{FileName]"™ 2> "{WorkSheet}"
End
Set Exit 1

Displays a dialog box that lets the user enter the name of a file 10 be compded Sets
the default to be the name of the active window, as follows:

Request 35¢

. file to compile

|
X @

See aiso Alert and Confirm commands

360 Request

Syntax

Description

Input

Output
Diagnostics

Status

Rez — Resource Compiler
Rez [option... | | resourceDescriptionFile...

Creates the resource fork of a file according to a textual description. The resource
description file is a text file that has the same format as the output produced by the

. Resource Decompiler, DeRez. The data used to build the resource file can come

directly from the resource description file(s) as well as from other text files (via
#include and read directives in the resource descnpuon file), and other resource
files (via the include directive).

Rez includes macro processing, full expression cvaluauon and built-in functions and
system variables. For details of Rez, and the format of a resource description file, see
Chapter 6. For a summary of the format of a resource description file, see

Appendix D. '

Standard input is processed if no filenames are specified.
For all input ﬁles_ on the command line, the following search rules are applied:
1. Try to open the file with the name specified *as is.” '

2. If the preceding rule fails, and the filename contains no colons or begins with a
colon, append the filename to each of the pathnames specified by the {RIncludes}
variable and try to open the file.

No output is sent to the standard'-output file. By default, the resource fork is written to
the file RezOut. You can specify an output file with the -0 option.

If no.errors or wamnings are detected, Rez runs silently. Errors and warnings are
writlen to diagnostic output. :

The following status codes are returned:

0 No errors

1 Error in parameters
2 Syntax error in file

3 1/O or program ermor

Reaz 361

Options

Example

See also

362

Rez

-cdreator] creatorExpr :

Set the output file creator. (The default value is '2222')

-dlefine] macrd=data)

-0 oytputFue _
-plrogress]

-rd

-10

-typel t}peﬁxpr

-ulndef] macro

Define the macro variable macro to have the value data. If data is
omitted, then macro is set to the null string—note that this still
means that macro is defined. The -d option is the same as writing

#define macro [dala '_]
at the beginning of the input.

Place the 6utput in outputFile. The default output file is Rez.Out.
Write version and progress information to diagnostic ouiput.
Suppress waming messages if a resource type is redeclared.

Set the mapReadOnly flag in the resource map.

Set the type of the output file. The default value is 'APPL".

Undefine the macro vasiable macro. This is the same as writing
#undef macro

at the beginning of the input It is onh} meazningful to undefine the
preset macro variables.

Rez Types.r Sample.r -o Sample
Generate a resource fork for the file Sample, based on the descriptions in Types.r and

Sample.r.

DeRez and RezDet commands
Chapter 6, *Using the Resource Compiler and Decompiler”
Standard resource type declarations in the {RIncludes} directory:

m Types.r
® SysTypes.r
s MPWTypes.r

Chapter 5, “Editing Resources With ResEdit”

-

Syntax

Description

RezDet — the resource detective
RezDet (b} l-q | 5 | <d | « | -11 resourceFile...

If no options are specified, RezDet investigates the resource fork of each file for
damage or inconsistencies. The specified files are read and checked one by one.
Output is generated according to the options specified.

RezDet checks for the following conditions:

s The resource fork is at least the minimum size. (There must be encugh bytes to read
a resource header.)

a There is no overlip or space between the header, the resource data list, and the
resource map. There should be no bytes between the EOF and the end of the
‘resource map.

s Each record in the resource data list is used once and only once. The last data item
ends exactly where the data list ends.

® Each item in the resource type list contains at least one reference; each sequence of
referenced items starts where the previous resource type item’s reference list
ended; and each item in the reference list is pointed to by one and only one
resource type list item. '

m There ire no duplicates in the resource type list

a Each name in the name list has one and only one reference, and the last name
doesn’t point outside the name list.

® There are no duplicate names in the name list. Duplicate names cause an agvisory
warning rather than a true error. This warning is given only if the -s, -d, or -r option
.is selected.

" m Each reference list item points to a valid data item and either has a name list offset

of -1 or points to a valid name list offset.

8 Bits 7 (Unused), 1 (Changed), or 0 (Unused) should not be set in the resource
attributes.

& All names have a nonzero length.

Fields are displayed as hex or decimal for numeric values, or as 2 hex dump with
associated printable Macintosh characters. The characters rern ($0D), ab (509,
and null ($00) are displayed as "—", “A”, and *.” respectively. The same is true for a
resource name shown as text strings.

"Note: RezDet does not use the Rescurce Manager and should not crash, no matter

how corrupt the resource fork of the file.

Rezbet 363

Input

Output

Diagnostics

Status

Options

Examples

RezDet does not read from standard input,

Information describing the resource fork is written 1o standard output (together with
any other information generated by the -8, -d, -, or -r options).

Error messages go to diagnostic output.

The following status values are possible:

0 No errors detected

1 Invalid options or no files specified

2 Resource format error detected

3 Fatal error—an 1/O or program error was detected

- Only one of the following options can be used at one time:

-qluiet] Don’t write any information to standard cutput This option
suppresses all resource file format errors normally generated.

. -slhow] Write information about each resource to standard output.

-diump] ' Same as -show but also genérates detailed information about
headers, name lists, data lists, and so on,

-rflawdumpl| Same as -dump but also dumps contents of data blocks, and so on.
Note: This option can generate huge amounts of output.

-Kist] List resource types, IDs, names, attributes, and resourée sizes to
" standard output in the following format: o

‘tpe' (IDname,attributes) [sizel
The following option can be used by itself or with other options:
-bligl Read the data for each resource into memory one resource at a

time, instead of ail at once (used for huge resource files). If RezDet
* tells you that it ran out of memory, try using this option.

RezDet "{SystemFolder}System”
Check the System file for damage.

364 RezDet

Limitations

Rezhet -g Foo || Delete Foo
Remove the file Foo if the resource fork is damaged.

Duplicate resource name warnings are generated even if the names belong to
resources of different types.

The file attributes field in the resource map header is not validated.

The Finder-specific fields in the header and resource map header are ignored.

RezDeat

365

E—- @ O o oo ey
Save — save windows

Synidx Save [-a | window]

Description Saves the contents of window to disk, without closing window. The -a option saves all ~
windows. Save with no parameters saves the target window (the second window from
the top). :

Input None.

Qutput None.

Diagnostics Errors are written to diagnostic output.

Status Save returns the following status values: -

0 No errors
1 Syntax error
2 Any other ermor

Obfi_ons I | Save all open windows. _ (

Examples Save Test.c
Save the contents of the window titted Test.c.

Save "{Active}"
Save the contents of the active window.

Save " {Worksheet}"”

Save the Worksheet window. This command is included in the Suspend and Quit
files—it saves the Worksheet whenever you run an application or quit from the Shell.

o¥eTs) Save

Syntax

Description

Input .

Output

Diagnostics

Status

Options

Examples

M

Search — search files for a pattern

‘Search {-1] pastern | file...]

Searches the input files for lines that contain a pauern, and echoes them to standard
output If no input file is given, standard input is searched.

Pattern is 2 regular expression, optionally enclosed in forward slashes (/). Pattern is
defined in “Pattern Matching” in Chapter 4 and in Appendix B.

Note: Pattern matching is by default case insensitive. To specify case-sensitive
matching, set the {CaseSensitive} variable to 2 nonzero value and export it before
executing the command. (You can do this by selecting the Case Sensitive item from
the Find menu.) ' '

Standard input is read if no files are specified.

Each line that contains the pattern is writien 10 standard output. If more than one
input file is given, Search prepends the filename to each output line. '

Error messages are writlen to diagnostic output.
Search returns the following status values:
0 No error

1 Parameter error
2 Pattern not found

1 Display line numbers with the matched line(s).

Search /procedure/ Sample.p

Search the file Sample.p for the patern “procedure"; All lines containing this pattern
are wrilten to standard output.

Search /Export / "{MPW}"Startup " {MPW}"UserStartup
List the Export commands in the Startup and UserStartup files.

Search 387

See also

368

Search /PRQCEDURE [a-zA~Z0-9_]1*;/ "{PInterfaces}"=

Search for the procedures with no parameters in the Pascal interface files supplied
with MPW Pascal. Because more than one input file is specified, a filename wiil
precede each line in the output. '

Search -1 /typedef{ dt]+struct/ "{CIncludes}"=

List all lines containing stucture typedef£s in the include files supplied with MPW C.

Both the filename and the line number will be listed with each line that matches the
pattern.

Find command
“Pattern Matching (Using Regular Expressions)™ in Chapter 4

Search

/_“.

——
i .
i

Syntax

Description

Input

Qutput

Diagnostics

Status

Examples

Set — define or write Shell variable

Set [name | value 11

Assigns the string value to the variable name. If value is omitted, Set writes the name
and its current value to standard output. If both name and value are omitted, Set
writes a list of all variables and their values to standard output (This output is in the
form of Set commands.)

Note: To make variable definitions available to enciosed command files and
programs, you must use the Export command.

None.

If value or both ngme and value are omitted, variable names and their values are
written to standard output. :

Error messages are written to diagnostic output.

The following status values are remrned:

-0 No error

1 Parameter errorf

Saet CIncludes " {MPWiCFiles:CIncludes:"
Redefine the variable Clncludes.

Set CiIncludes
Display the new definition of Clncludes.

Set Commands o
"., [MPW]}Tools:, (MPR}Applications:, {MPW}ShellScripts:"”

Redefine the variable {Commands} o include the directory "(MPWI]ShellScripts:".
(See Chapter 3 for a complete list of predefined variables.)

Set » SavedVariables
... other commands
Execute SavedVariables

Set 369

See dlso_

370

Set

Write the values of all variables to file SavedVariables. Because the output of Set is
actyally Set commands, the file can be executed later to restore the saved variable
definitions. This technique is used in the Suspend and Resume scripts to save and
restore variable definitions, as well as exports, aliases, and menus.

Export and Unset commands _
*Defining and Redefining Variables” in Chapter 3
“The Startup and UserStartup File* in Chapter 3

S —
e e

Seffile — set file atiributes

Syntax Setfile {opton... 1 file..
Description .Sets atiributes for one or more ﬁles. The opﬁons apply to all files listea.
Input : N.one.
Output - None.
Diagnostics Error messages are written to diagnostic output.
Sfcﬂuf. o The foﬂowing status values are xémmed:
0 The atributes for all files were set

1 Syntax errot
2 An error occurred

- Options -C creator Set the file creator. Creator must be 4 characters; for example,
-¢ 'MPS ' o o
-t hpe - Set the file type. Type must be 4 characters; for example, |
-t TTEXT' ’ 7
-d date Set the creation date. Date is a string in the form

“mm/dd/yy | Rh:mm[:ss] [AM | PM 11" _
represénting monm; day, year (0-99), hour (0-23), minute, and’
second. The string must be quoted if it contains 2 space. A period
) indicates the current date and time.

-m date Set the modification date: same format as above. A period ()
indicates the current date and time.

1Ay Set the icon location. # and v are positive integer values and

represent the horizontal and vertical pixel offsets from the upper-
feft corner of the enclosing window.

Satfile 371

-a attributes Set the file attributes. Atiributes is a string composed of the
. characters listed below. Anrbutes that aren't listed remain

unchanged.

L Locked

v Invisible

B Bundle

S System

I Inited

D on Desktop

Uppercase letters set the atiribute to 1, lowercase to 0. For example,
Setfile -a vB
clears the invisible bit and sets the bundle bit.

Nore: These attributes are described in the "File Manager* chapter
of Instde Macintash. Note that setting the locked bit doesn’t
prevent the file from being changed.

Examples Setfile -c "MPS " -t MPST ResEqual
Set the creator and type for the MPW Pascal tool ResEqual.

Setfile Foo -m "2/15/86 2:25"
Set file Foo’s modification date.

Setfile Foo Bar -m .

Set the modification date to the current date and time (). This is useful, for instance,
before running Make,

See aiso Files command (The -1 option displays file information.)

372 Seftfie

Syntax

Description

lnput
Qutput
Diagnostics

Status

Examples

See ciso

_—

Shift — renumber command-file parameters

Shift [number]

Renames the command-file positional parameters {number+1}, {number+2}... to
(1}, {2}, and so on. If number is not specified, the default value is 1. Parameter 0 (the
command name) is not affected. The variables {Parameters}, {"Parameters", and
{#} variables are also modified to reflect the new parameters.

~None.

None.

" Errors are written to diagnostic output.

The following starus values are returned:

¢ Success
1 Error in the parameter

The following command file, “FontMany," sets the font information for a list of

- windows.

FontMany fontName fontSize [window.]

Set Exit 0

Set fontName "{1}i"

Set fontSize ™(2}"

shift 2 S

For window in {"Parametera"}

Font "{fontName}™ "(fontSize}™ "{window}™
£nd : :
The Shift command removes FontMany's fontName and fontSize parameters from
("Parameters”, so that {"Parameters"} can be used in the For command. The new
command file could be called as follows: ' ' '

FontMany Monaco 9 “windows’
That is, use Monaco 9 to display all the open windows.

“Parameters to Command Files” in Chapter 3

Shift 373

Syntax

DPescription

Input
Oulput
Diagnostics

Status

Examples

See also -

374 Tab

Tab — set a window's tab setting -

Tab number | window |

Sets the tab setting of the file in window to numberspaces. If no window is specified,

the command operates on the target window (the second window from the top). It's
an error to specify 2 window that doesn’t exist.

Note: The Tab command (and the Tabs... menu item) modify the tab setting of an
existing window. ‘The {Tab} variable is used to initialize the tab setting of 2 new
window, or as the default for files with no tab setting.

None.

None.

Errors are written to diagnostic output.

Tab. retums the following status values:

-0 No errors

1 Syntax error
2 An illegal tab count was specified

. Tab 4

Set the tab value of the target window © represent 4 spaces:

"Entab command

P

Syntax

Description

Input
OQutput
Diagnostics

Status

Examples

See also

Target — make a window the target window

Target name

Makes window mame the target window for editing commands (that is, the second

-window from the top). If window name isn't already open, then file name is opened

s the target window. If name doesn’F exist, an error is returned.
None.

None.

Error messages are written .to diagnostic cutput

Target retumns the following status values:

0 No errors

1 Error in parameters

2 Unable to complete operation
3 System error

Taiget Sample.a.
Make the window Sample.a the target window.

“Editing With the Command Language” in Chapter 2

Target 375

Syntox

Description

input

Qutput

Dicgnbstics

Status

Options

TLACVt — convert Lisa TLA Assembler source
TLACwt | option...] [sourceFile..}

Converts the specified Lisa Workshop TLA Assembler source files to the syntax
required by the MPW Assembler. If the input file name is name, the converted output
is written to namea. The following elements are converted:

m tokens within statements

® spedal tokens within macros

m directives

For the details of these conversions, see “TLA Conversion” in Appendix E of the
companion volume MPW Assembler Reference. :

The case (upper/lower) of directive names in the output may be controlled by editing
the file TLACvt. Directives. This file contains a list of all the MPW Assembler
directives needed for conversion. The pathname to this file must be specified with
the -f option.

If no filenames are specified, standard input is converted.

If input is from the standard input file, the converted output is writen to standard
output. If the input file name is name, the converted output is written to name.a. You
can use the -n, -prefix, and -suffix options to modify the output file naming
conventons, '

Parameter errors and progress information are written to diagnostic cutput.

The following status codes are returned to the Shell:

0 Normal termination
1 Parameter or option efror
2 Execution terminated

-d Detab the input. All tabs are removed and replaced with spaces.
The number of spaces is determined by the tab setting. {(See the -t
oplion below.)

-e Detab the input (as done by the -d option) and entab the output as 1
function of the tab setting. (See the -t option below.)

ré TLACvt

-f directivesFile The casing of directives is controlled by the file of directives
specified by directivesFile. The file TLACvt.Directives is supplied
for this purpose; you can edit it to change the capitalization. By
default, all directives are converied to uppercase.

-m Do not insert TLA-compatible mode-setting directives (BLANKS
ON and STRING ASIS) into converted source.

n Do not add the *.a" extension to the input filename to produce the
" output filename. If you specify this option, you must also specify
-prefix or -suffix.

-p ' Writes TLACv's version information and conversion stams to
diagnostic outpuL.

-preifix] string If the input file name is Name, the output filename is produced by
: prefixing siring 1o the name, that is, "stringName.a". (The “.a”
suffix may be suppressed by using the -a option or changed by using
the -suffix option.) -

-sufifix] string If the input file name is Name, the output filename is produced by
appending string to the file name, that is, “Namestring”. The
default suffix is ".a".

-t tabSetting Set the output file’s tab value to tabSetting (2 to 255). The default is
to use the input file’s tab setting f there is one); otherwise a value
" of 8 is assumed. (8 is the default used by the Lisa Workshop's
MacCom utility when transferring text files—it's assumed that
‘MacCom was used 1o transfer the TLA files from the Lisa 1o the
Macintosh.)

ac When TLACvT detects a name in the opcode field that is the same as
' an MPW directive, it appends the character ¢ to make the name
unique. (The default character is #.)

Exampie TLACvt -t 8 TLAFilel.Text TLAFilel.Text

Convert the Lisa TLA Assembler source files TLAFilel.Text and TLAFile2.Text 1o the
MPW Assembler source files TLAFilel.Text.a and TLAFile2. Texta. The -t option set
the tab setting for both input files to 8, and entabs the output files based on a tab
setting of 8.

Limitations Limitations are noted in the detailed description of TLA conversions in MPW
Assembler Reference.

TLACvt 377

See also Appendix E, “TLA Conversion,” in Macintosh Workshop Assembler Reference
CvtObj command

378 TLACvt

Syntax

Description

input

Output

Diagnostics

Status

Example

See also

Unalias — remove aliases
Unalias { name...]

Removes any alias definition assocxated with the alias name. (It is not an error if no
definition exists for name.)

Caullen: If no names are specified, all aliases are removed

The scope of the Unalias command is limited to the current command file; that is,
aliases in enclosing command files are not affected. If you are writing a command file
that is to be completely portable across various users’ configurations of MPW, you
should place the command :

Unalias .

at the beginning of your file to make sure no unwanted substitutions occur.
None,

None.

f\lone.

A status value of 0 is always retumed.

Unalias File
Remove the alias “File”. (‘I'hxs alias is defined in the Startup fite.)

Alias command
“Command Aliases” in Chapter 3

Unallas 379

Syntax

Description

Input
Qutput
Diagnostics

Stotus

Examples

See aiso

e

Unmount — unmount volumes

Unmount " volume...

Unmounts the specified volumes. A volume name must end with a colon (). If

‘volume is 4 number without a colon, it's interpreted as a disk drive number. The

volumes cannot be referenced again until remounted. If you unmount the current
volume (the volume containing the current directory), then the boot volume

. becomes the current volume.

None.

None.

Error messages are written to diagnostic_output._
The following status valués_are returned:

0 The volume was successfully umnoun[ed

1 Syntax error
2 An error occurred

Unmount Memos:

Unmount the volume titted Memos.

Unmount 1 2

Unmount the volumes in drives 1 (the internal drive) and 2 (the external drve). (The
command Eject 1 2 would unmount and eject the volumes.)

Eject and Mount commands

380 Unmount

~

Syntax

Description

Input:

- Quiput

Diagnosiics
Status

Example

 See also

- Unset — remove Shell variables

Unset [mame...]

Removes any variable definition associated with name. (It's not an error if no
definition exists for name.)

Caution; If no names are specified, all variable definitions are removed. This can
have serious consequences. For example, the Shell uses the variable {Commands) to
locate utilities and applications, and uses several other variables to set defaults. The
Assembler and Compilers use variables to help locate include files. (For derails, see
*Variables Defined in the Starup File® in Chapter 3.)

The scope of the Unset command is limited to the current command file; that is,
variables in enclosing command files are not affected.

Ncne.

None.

A status valye of 0 is always retumed.

Unset CaseSensitive

Remove the variable definition for {CaseSensitive}. (This turns off case-sensitive
searching for the editing commands.)

Set and Export commands
“Defining and Redefining Variables” in Chapter 3

Unset 381

Volumes — list mounted volumes

Syntax Volumes [-1] [q] [volme...]
Description For each volume named, Volumes writes its name and any other information
requested to standard output. The output is sorted aiphabetically. A volume name

must end with a colon ()—if volume is 2 number without 2 colon, it’s interpreted as a

disk drive number. If volume is not given, all mounted volumes are listed.

|hput N.one.'

Quiput Information about the specified volumes is written to standard output.
Diagnostics Error messages are written to diagnostic output.

Status The following status values are returned:

¢ No errors

1 Syntax error

2 No such volume

Options -1 List volumes in long format, giving volume name, drive (0 if
off-line), capacity, free space, number of files, and number of
directories.

-q Don't quote volume names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.)

. Examples Volumes -1

will write information such as:

HD: 3 19171K 14242K 290 33

Files “Volumes 1°

List the files on the disk in drive 1 (the built-in floppy disk drive).

382 Volumes

P

Syntax

Description

Input

0_u1pui

Diagnoslics.

- Status

Options

Examples

Windows — list windows
Windows [-q]

Writes the full pathname of each file currently in a window. The names are written o
standard output, one per line, from backmost to frontmost.

None,

The list of open windows is written 1o §t.a.ndard output.
None.

Status value 0 is always remrﬁed,

-q Don't quote window names that contain special characters. (The
default is to quote names that contain spaces or other special
characters.) :

Windows
List the pathnames of all open windows.

Print {PrintOptions} “Windows"

Print all of the open windows, using the options specified by the {PrintOptions}
variable. This example uses command substitution: Because the Windows command
appears in backquotes (..."), its output supplies the parameters to the Print
command.

Begin .
Echo For window in " Windows'™

Echo 'Open "{window}"™ | Set Status 0°'
Echo End

End > SavedWindows

Windows 383

Write 2 command script, in the file SavedWindows, that will reopen the current set of
open windows. Note how Echo is used to create the script, and that the /O

redirection following End applies o all of the enclosed commands. Also note the use
of quoting: The *Windows™ command is executed immediately; but, because it's in
single quotes, the " {window} ™ variable isn’t expanded until the SavedWindows file is
exeauted. This technique is used in the Suspend script to save the list of open
windows. '

384 Windows

~Appendix A

- Macintosh Workshop Files

This appendix lists all of the files provided with the Macintosh Programmer’s
Workshop, including Macintosh Workshop Pasczl and Macintosh Workshop C. The
first list is an inclusive list of all MPW files. (Volume names are shown in boid;
directory names begin and end with a colon.) Subsequent lists show the
recommended arrangements of these files for an HD-20 and for 2 set of 800K disks.

Distribution files

MPW1:
MPW- Shell MPW Shell
Startip - Startep comrnand file
_ StartUp.800K Starup file for 800K disk system
StantUp.XL Startup file for Macintosh XL
UserStartup User-specific startup file
Suspend Suspend command file
Resume Resume command file
Quit . Quit command file:
MPW . Help Command syntax descriptions (for Help command)
:System Folder:
Finder Finder
System System file (Systern 3.2 or later is required for MPW)

Appendix A . Macintosh Workshop Files

gl
~

85

MPW2:

SysErrs.Err

Indexed error message file (used by the Shell and tools)

:Rincludes:
Types.r Common resource type definitions
MPWTypes.r MPW-specific resource type definitions
SysTypes.r System resource type definitions
:Tools:
Compare Text file comparison tool
Count Line count, character count tool
Entab Entabbing tool
Lib "Library construction - tool
Line Command file for selecting error line
Link Linker
Make Program builder
Print Print tool
Rez Resource Compiler _
Search Search tool (regular expression processor)
MPW3:
:More Tools:
Canon Canonical spelling tool
Canon.Dict Dictionary file for Canon
CvtObi Lisa Workshop object file conversion tool
DeRez Resource Decompiler
DumpCode Code formatting tool
DumpObj Object file formatting tool
FileDiv File division toal
MDSCvt MDS Assembler conversion tool
MDSCvt.Directives Directives file for MDSCvt
RezDet Resource detective
TLACvL TLA Assembler conversion tool

TLACvt.Directives

Directives file for TLACvt

MPWA4:

386

Asm

:Applications:
ResEdit

68xxx Assembler

Interactive resource editor

Appendix A : Macintosh Workshop Ffiles

S

:Debuggers:

FSPrivate.a
Graf3DEqu.a

HardwareEqu. a2
IntEnv.a

ObjMacros.a
PackMacs.a
PrEqu.a
Private.a
QuickEqu.a
SANEMacs.a
SCSIEqu.a
Signal.a
SonyEqu.a
SysEqu.a
SysErr.a
TimeEqu.a
ToolEqu.a
Traps.a

MacsBug MacsBug debugger
MacsBug. XL Macintosh XL version of MacsBug
:AExamples: _
Instructions.a Instructions for building assembly-language examples
MakeFile.a Makefile for building assembly-language examples
Sample.a Source for Mnside Macintosh sample application
Sample.r Resource definitions for Sample application
IntEnv.a Integrated Environment interface used in Count tool
Signal.a Signal-handler interface used in Count
Count.a Source for MPW Count tool
- Stubs.a Dummy library routines (used to override library
.- Routines not used by MPW tools)
Memeory.a Source for Memory desk accessory
:Alncludes:
ATalkEqu.a AppleTalk equates
FixMath.a Fixed-point mathematics routines
FSEqu.a File systemn equates, including hierarchical file system (HFS)

File system low-level equates

Graf3D interface

Hardware equates

Integrated Environment (MPW tool) equates
Macros for object-oriented programming
Package macros, including List Manager
Printing equates

- Low-level system equales

Quickdraw equates

_ SANE (Standard Apple Numerics Environment) macros

SCSI port equates and trap macros

Signal handler equates -

Low-level Sony disk driver equates

System equates, including HFS

System errors

Time Manager queue element and local variable structure

- Macintosh toolbox equates

Trap macro definitions for toolbox calls

Distribution files

387

:Libraries:’

AppleTalk AppleTalk resources

SERD Serial Driver resources

DRVRRuntime.o Driver runtime library

Interface.o © “Inside Macintosh” interface library

ObjLib.o Obiect-criented programming library

Runtime.o Runtime library for assembly language and Pascal
Toollibs.o - MPW tool library (spinning cursor, error manager)

MPW Pascal files

Pascall:
Pascal Pascal Compiler
PasMat Pascal print formatter (“pretty-printer™)
PasRef Pascal cross-referencer
Pascal2:
:PExamples:
Instructions.p Instructions for building example programs
MakeFile.p Makefile for Sample programn
Sample.p Sample application
Sample.r Resource description file for Sample.p
ResEqual.p Sample MPW tool _
Stubs.a : " Dummy Library routines (used to override library routines not used by
MPW tools)
Memory.p ' Sample MPW to0l
Memory.r Resource description file for Memory.p
ResEd68K.a Routines for extending ResEdit
ResEd.p Routines for extending ResEdit
ResXXXXEd.p Sample resource editor

388 Appendix A : Macintosh Workshop Files

Pinterfaces:

AppleTalk.p AppleTalk interface
CursorCtl.p MPW cursor-control interface
EerMgr.p MPW error manager interface
FixMath.p Interface for fixed-point mathematics routines
Graf3D.p Graf3D interface
IntEnv.p Integrated Environment (MPW tool) interface
MacPrint.p Printing interface
MemTypes.p Common types
OStntf.p Operating system interface
PackInif.p Packages interface’ '
‘PasLiblntf.p Pascal library interface
Quickdraw.p Quickdraw interface
SANE.p SANE numerics interface
SCSIIntf.p SCSI manager interface
Signal.p Signal-handling interface
ToolIntf.p Macintosh toolbox interfac’e
:PLibraries:
PasLib.o ' Pasml language library, mcluded built-ins and I/O
SANELib.o SANE numerics library
MPW C files
Cl:
C C Compiler
Cz
CExamples:
Instructions.c Instructions for building examples
MakeFile.c Makefile for building examples
Sample.c Source for Sample application
“Sample.r Resource specifications for Sample applxcauon
Count.c Source for Count tool
Stubs.c Dummy library routines (used 1o override library routines not used by
MPW tools)
Memory.c Source for Memory desk accessory
Memory.r Resource specifications for Memory desk accessory

MPW C fites 389

Clncludes:

AppleTalk.h
Controls.h
CType.h
Desk.h
Devices.h
Dialogs.h
DiskInit.h
Disks.h
ErrNo.h
Errors.h
Events.h
FCatl.h
Files.h
FixMath.h
Fonts.h
Graf3D.h
10CiL.h
Lists.h
Math.h
Memory.h
Menus.h

OSEvents.h

CSUdls.h
Packages.h
Printing.h
Quickdraw.h
Resources.h
Retrace.h
SANE.h
Scrap.h
SCSLh
Segload.h
Serial.h
SetJmp.h
Signal.h
Sound.h
StdIO.h
Strings.h
TextEdit.h
Time.h
ToolUtils.h
Types.h
Values.h
VarArgs.h

AppleTalk header file

Control Manager header file
Character types header file

Desk Manager header file

Device Manager header file
Dialog Manager header file

Disk Initialization header file

Disk Driver header file

Standard C Library error numbers
Macintosh libraries eror numbers
Toclbox Event Manager header file
File controls header file

File Manager header file
Fixed-point math header file

Font Manager header file

Graf3D header file

I/O Control header file

List Manager header file
Mathematical functions header file
Memory Manager header file
Menu Manager header file
Operating System Event Manager header file-
Operating Systemn Utilities header file
Packages header file

Print Manager header file
Quickdraw header file

Resource Manager header file
Vertical Retrace header file

SANE header file

Scrap Manager header file

SCSI Manager header file

Segment Loader header file

Serial Driver header file

Setimp header file

Signal handler header file

Sound Driver header file

Standard I/O header file

String conversion header file
TextEdit header file

Time Manager header file
Toolbox Utilities header file
Common types header file
Arithmetic values header file
Variable argument list header file

Appendix A : Macintosh Workshop Files

Windows.h

:CLibraries:
Clnterface.o
CRuntime.o

CSANELib.o
Math.o
StdCLib.o

. Window Manager header file

Macintosh interface library for C only
C runtime library: "Main" entry point, data initialization, Quickdraw

data, AS, low-level

/O, built-in routines for C, signal handling

SANE numerics library
Math functions library
Standard C Library

Hard Disk 20 configuration

:System Folder:
Finder
System

MPW:
MPW Shell
StartUp
UserStartup
Suspend
Resume
Quit
MPW . Help
SysErrs.Err

:RIncludes:
Types.r -
SysTypes.r
MPWTypes.r

Hard Disk-20 configuration

:Tools:

Asm

C

Canon
Canon.Dict
Compare
Count
CviObj
DeRez
PumpCode
DumpObj :
Entab
FileDiv
Lib
Line
Link

Make
MDSCvt

. MDSCvt.Directives
Pascal
PasMat
PasRef

" Print
Rez
RezDet
Search
TLACwVE

- TLACvt.Directives

:Applications:
‘ResEdit

:Debuggers:
MacsBug

:AExamples:
Instructions.a
Makefile.a
Sample.a

-Sampie.r
IntEnv.a
Signal.a
Count.a
Stubs.a
Memory.a

92 Appendix A : Macintosh Workshop Flles

./“\

PN

:Alncludes:
‘ATalkEqu.a
FixMath.a
FSEqu.a
FSPrivate.a
Graf3DEqu.a

HardwareEqu.a

ObjMacros.a
PackMacs.a
PrEqu.a
Private.a
QuickEqu.a
SANEMacs.a
SCSIEqu.a
SonyEqu.a
SysEqu.a
SysErr.a
TimeEqu.a
ToolEqu.a
Traps.a

:Libraries;
AppleTalk
SERD
Interface.o
ObijlLib.o
Runtime.o
Toollibs.o

DRVRRuntime.o

:PExamples:

- Instructions.p
MakeFile.p
Sample.p
Sampie.r
ResEqual.p
Stubs.a
Memory.p
Memory.r
DRVRHezad.a
ResEd68K.a
ResEd.p

ResXXXXEd.p

Hard Disk-20 configuration

:PInterfaces:
AppleTalk.p
CursorCil.p
ErrtMgr.p
FixMath.p
Graf3D.p
IntEnv.p
MacPrint.p
MemTypes.p
OSIntf.p
PackIntf.p
PasLiblntf.p
Quickdraw.p
SANE.p
SCSIIntf.p
Signal.p
Toollntf.p

:PLibraries:
PasLib.o
SANELib.o

:CExamples:
Instructions.c
MakeFile.c
Sample.c
Sample.r
Count.c
Stubs.c
Memory.c
Memory.r

104 Appendix A : Macintosh Workshop Files

—
i

:CIncludes:

AppleTalk.h
Controls.h
CType.h
Desk.h
Devices.h
Dizlogs.h
Disks.h
ErrNo.h
Errors.h
Events.h
FCntlLh
Files.h
FixMath.h
Fonts.h
Graf3D.h
10CtL.h
Lists.h
Math.h
Memory.h
Menus.h
OSEvents.h
OSUtils.h
Packages.h
Printing.h
Quickdraw.h

Resources.h

Retrace.h
SANE.h
Scrap.h
SCSLh
Segload.h
Serial.h
Setmp.h
Signal.h
Sound.h
S1dIO.h
Strings.h
TextEdit.h
Time.h
ToolUtils.h
Types.h
Values.h
VarArgs.h
Windows.h

Hard Disk-20 configuration

395

:CLibraries:
Clnterface.o
CRuntime.o
CSANELib.o
Math.o
StdCLib.o

800K disk configuration

MPW:

MPW Shell

StartUp (renamed from Startup.800K)
UserStartup

Suspend

Resume

Quit

MPW Help

SysErrs.Err

:Debuggers:
MacsBug

:Rincludes:
Types.r
SysTypes.r
MPWTypes.r

:Tools:
Line
Link
Make
Print
Rez
etc.

396 Appendix A : Macintosh Workshop Files

N

:Libraries: _
AppleTalk
SERD
Interface.o
Obijlib.o
Runtime.o
ToolLibs.o
DRVRRuntime.o

:System Folder:
Finder
System

 Note: You can free up more disk s

Shell the startup application.

pace by removing the Finder and making the MPW

Asm:
Asm

:AExamples; -
Instructions.a
MakeFile.a
Sample.a
Sample.r
IntEnv.a
Signal.a
Count.a
Stubs.a
Memory.a

BOOK disk configuration

397

:Alncludes:

ATalkEqu.a
FixMath.a
FSEqu.a
FSPrivate.a
Graf3DEqu.a
HardwareEqu.a
ObjMacros.o
PackMacs.a
PrEqu.a
Private.a
QuickEqu.a
SANEMacs.a
SCSIEqu.a
SonyEqu.a
SysEqu.a
SysErr.a
TimeEqu.a
ToolEqu.a
Traps.a

Pascal:

Pascal

:PExamples:

398

Instructions.p
MakeFile.p
Sample.p
Sampie.r
ResEqual.p
Stubs.a
Memory.p
Memory.r
DRVRHead.a
ResEd68K.a
ResEd.p

ResXXXXEd.p

Appendix A : Macintosh Workshop Files

N

N

:PInterfaces:
AppleTalk.p
CursorCtl.p
ErrMgr.p
‘FixMath.p
Graf3D.p
IntEnv.p
MacPrint.p
MemTypes.p
OSIntf.p
Packintf p
PasLibIntf.p
Quickdraw.p
SANE.p
SCSIIntf.p
Signal.p
Toollntf.p

:PLibraries:

PasLib.Q’
SANELib.o

C:
C

+CExamples:
Instructions.c
MakeFile.c
Sample.c
Sample.r
Count.c
Stubs.c
Memory.c
Memory.r

800K disk configuration 399

:CIncludes:
AppleTalk.h
Controls.h
CType.h
Desk.h
Devices.h
Dialogs.h
Disks.h
ErrNo.h
Errors'h
Events.h
FCntl.h
Files.h
FixMath.h
Fonts.h
GrafaD.h
1OCiLh
Lists.h
Math.h
Memory.h
Menus.h
OSEvents.h
OSUtils.h
Packages.h
Printing.h
Quickdraw.h
Resources.h
Retrace.h
SANE.h
Scrap.h
SCSL.h
Segload.h
Serial.h
Setymp.h
Signal.h
Sound.h
5tdiO.h
Strings.h
TextEdit.h
Time.h
ToolUtils.h
Types.h
Values.h
VarArgs.h
Windows.h

400 Appendix A : Macintosh Workshop Files

:CLibrarle_s: ’
Clnterface.o
CRuntime.o
CSANELib.o
Math.o
StdCLib.o

BOOK disk configuration

401

Appendix B

Selections and Regular
Expressions

This appendix formally defines the syntax of selections and regular expressions as
used in the Shell command language. It also lists the Option-key characters used in
setections and regular expressions. For examples of their use, see Chapter 4,
“Advanced Editing.” :

Selections

Selections are passed as arguments to the editing commands. They're defined in
Table B-1.

Table B-1
Selec_:ﬂons

selection (specifies a selection or insertion point)

§ current selection
number line number
! number " numberlines after the end of the current selection
| number . number lines before the start of the current
. selection
position position (defined below)
patternt patiern (defined below)
(selection) selection grouping
selection : selection both selections and everything in berween

Yoo

position (specifies an insertion point)

. position before the first character in the file

o position after the last characier in the file

A selection position before the first character of selection

selection A _ position after the last character of selection

selection ! number position number characters after the end of selection

sefection | number position number characters before the beginning of selection
pattern (specifies characters to be matched)

/ entireRegularExpr / - regular expression—search forward {see Table B-2)

\ entireRegularExpr \ regular expression—search backward

This is the precedence of the selection operators, from highest to lowest:

/and \

()
A
tand

Regular expressions

Regular expressions are used for pattern marching within /.../ and \...\. (See
“pattern” in Table B-1.) Regular expressions are defined in table B-2.

Table B-2
Regular expressions -

entireRegularExpr :
* regularfxpr _ regular expression at beginning of line
reguiarExpr oo : regular expression at end of line
reguiarExpr : regular expression
reguiarkxpr
simpleExpr untagged regular expression
taggedExpr tagged regular expression
literal quoted string literal
reguiarExpry reguiarExpr, regular-expr followed by regular-expry
simpleExpr
(regularFxpr) regular expression grouping
chgracterfExpr single-character regular expression
simpleExpr® regular expression zero or more times

Regutar Expressions

403

simpleExpre regular expression one or more times

- simpleExpr «numbers regular expression number times
simpleExpr snumber,» regular expression at least number times
simpleExpr« 1y , Np» regular expression at least n; times and at
: ' most 1, limes
taggedExpr _
(reguiarExpH®digit the string matched by the regular-expr can be
referred to as edigit
Itercd
string' each character in string is taken literally
"string” each character in siring is taken literally, except
for @ substitutions '
characterExpr :
character character (unless ir's listed as special following
the table)
dcharacter 9 defeats special meaning of following character
? _ any character except Retumn
- any string not containing a Return, including the
. null string (this is the same as ?*)
[characterList] . any character in the list
[= characterList } any character not in the list
character-List :
] *]* first in list represents itself
- =~ first in list represents itself
character characier
characterlist character list of characters
charactery — character, character range from character; to characier,
inclusive
< Note: The regular expression operators ?, =, [...], * +, and «...» are also used

in filename generation.

The following characters have special meanings:

d always special, except within '...'

Pt r (3" special everywhere except within {...],*..", and ".."
® special only after a right parenthesis character,)

. special as first character of entire regular expression
o special as last character of entire regular expression
AN ' special if used to delimit regular expression

The operators are listed below beginning with the highest-precedence operators.

404 Appendix B: Selections and Regular Expressions

2= " v] «» ®
concatenation

- oo

Option-key characters

e ————

The foilowin'g Option-key characters are used in Selections and regular expressions:

Character Key

§ Option-6

3 ~ Option-D

= g Option-X

. Option-8

oo . Option-5

. Option-1

A Option-J

® Option-R

«- : Option-\

» Shift-Option-\

Meaning

current selection character
escépe character

any string

beginning of line or file

end of line or file

minus number of Iihe.s or spaces
position '
tag operator _
encloses number of repetitions

encloses number of repetitions

Option-key characters

405

Appendix C

MPW Character Reference

This appendix gives a brief summary of the special operators used in the Macintosh
Programmer's Workshop. For characters that are part of the extended character set,
Option-key combinations are also given. For details on the action of these
operators, see Chapters 3 and 4.

Table C-1
MPW operators

Shell characters:

COperator - Meaning

space - Separates words

tab Separates words

return Separates commands

; Separates commands

i Pipe—separates commands, piping output to input

&& “And™—separates commands, executing second if first succeeds

' *Or"—separates commands, executing second if first fails

{ commands) Group commands '

¥ comment Ignore comment o '

dchar Escape—literalizes char an, ot and 9f are pecial (@ is Option-D)

'chars' “Hard quotes”—literalize chars '

"chars" “Soft quotes”—literalize chars except for {...} (variable substitution),
"..." (command substitution), and 3 (escape)

fchars/ Regular expression quotes—literalize /chars/ except for {...},°.. ", and 8

\chars\ Regular expression quotes—literalize \chars\ except for{...}, *...", and §

{variable) Substitute variable

‘command” * Substitute output of command

< filename Redirect standard inpigt _

> filename Redirect standard output, replacing contents of flename

>> filename Redirect standard output, appending to filename

2 filename Redirect diagnastics, replacing contents of filename (2 is Option->)

22 filename

Redirect diagnostics, appending to flename ¢ is Option->)

Selections (editing commands):

§ Current selection (§ is Option-6)

n Line nurber n.

'n n lines after §

in n lines before § (j is Option-1)

. Beginning of file (» is Option-8)

o0 End of file (= is Option-5)

Aselection Beginning of selection (A is Option-])

selectionA End of sefection (A is Option-

selectionln n characters before selection

sefectiomgn n characters after selection (is Option-1)
regExpr/ regExpr after current selection

L regExpiry regfxpr before current selection

Appendix C: MPW Character Reference

In

selectiony:selection;

selection,, selectiony and in between

Regulor expressions tand filename generation):

char’
dchar
‘char...
?

(characterList]
(—characterList]
regExpr”
regExpr+

- regExpramn»
regExpran,»
regExpruny, ny»
(regExpr)
(regExpn)®n
regExpry regExpry
regExpr
regExpreo

Shell numbers:

Snnn
Oxnrm

Match char
Literal char (¢ is Option-D)
Literal chars
Any character
Zero or more chars (short for #) (= is Option-X)
Any character in characterList
Any character not in characterList (- is Option-1)
regExpr zero or more limes
regExpr one or more times
regExpr n times (« and » are Option-\ and Option-Shift-\)
regExpr n or more times
regExpr ny 10 1, times
regExpr (grouping)
Tagged regExpr, where 0<n<9 (® is Option-R)
regExprl followed by regExpr,

regExpr at beginning of line (e is Opuon-B)
regExpr at end of line (= is Option-5)

Hexadecimal number
Hexadecimal number

408 Appendix C: MPW Character Reference

e

R
S
6

Shell operators (by precedence):

(expr)

UNOT -
+ Div
% MOD

M
it
i

v
]
v

1]
!

v

Expression grouping

{(unary) arithmetic negation
(unary) bitwise negation _
(unary) logical negation (-~ is-Option-L)
Muitiplication :

Division (+ is Option-/)

Modulus

Addition

Subtraction

Shift left

Shift right Qogical)

Less than

Less than or equal @ is Option-<)
Greater than

Greater than or equal (2 is Option->)
Equal :
Not equal (# is Option.=)

Matches regular expression

Does not match regular expression
Bitwise AND

Bitwise XOR

Bitwise OR

Logical AND

Logical OR

Appendix C: MPW Character Referance

409

l

"Appendix D

Resource Description Syntax

Syntax Notation xx

Structure of a Resource Descriptlion FHle xx
" Include — include resources from another file x
Read — read dau as a resource X
Data — spedfy raw data x
Type — declare resource type x
Data-types
Fill-type
Alignment .
Switch-type
Array-type
Resource — specify resource data x . (

Preprocessor Directives xx

Syntax xx

Identifiers x

Token Delimiters x
Compound Types x
Expressions x _
Numbers and Literals x
Variables x

Strings x

This appendix defines the form of a resource description file, used by the Resource
Compiler and Decompiler. For a full explanation, see Chapter 6, “Using the
Resource Compiler and Decompiler.”

Syntax NOtati:;

The following syntax notation is used in this appendix: -

terminal Must be entered as shown.

non-terminal May be replaced by anything matching its definition.

Al B[C Either A or B or C. (Vertical stacking also indicates an either/or chonce)
L.y Enclosed element is optional, but may not be repeated.

{...]+ Enclosed element may be repeated one or more times (not optional}.
L.r Enclosed element may be repeated zero or more times.

{.

in Enclosed element must be repedted n times.

If one of the syntax elements must be included literally, it is shown enclosed in single
quotes; for example, : :

{ ¢ data-smng PR

—that is, 2 data-string is optional, and must be enclosed in braces, if included.
* Otherwise, all punctuation (; , ' " § =) must be entered as shown. The non-
terminal symbols used are fully defined under “Syntax” at the end of this appendix.

Wﬁz
Structure of a resource description file

The Resource Compiler input file consists of any number of statements, where a
siatement may be any of the following:

include Include resources from another file,

read Read the data fork of a file and include it as a resource.

data Specify raw data,

Type Declare resource type descriptions for subsequent resource slaiemenis.
rescurce Specify data for a resource type declared in a previous type statement.

Structure of a resource description file

*

411

Include —~ include resources from another file
include file { include-selectori? ;

include-selector .=

file .=
[D-specifier ::=

ID-range .=

' reséurce-speciﬂer o
resource-specifier =
resource-1D ::=
resource-name ;=

resource-attributes:.:=

resource-type { ‘(' ID-specifier)’ P ;

not resource-bype ;

resource-typel as resource-fypes ;

resource-typel '’ resource-ID | resource-name')’
as resource-type2 ' (' resource-specifier ')’ :

string

ID-range

resorce-name

ID {: IDP?

‘resource-ID {, resource-name 1 { resource-attributes ?

resource-1D {, resource-name 1? { resource-astributes \?
word-expression

string
resource-literal-attributes | resource-numeric-attributes

resource-numeric-attributes ::= byte-expression

resource-literai-attributes =

{,sysheap | ,appheap}?

{ ,purgeable | ,nonpurgeable P
{,locked | ,unlocked ¥

{ ,prelcad | ,nonpreleadl?

Read — read data as a resource

read resource-type ' ('resource-specifier) file :

Data — specify raw data

data resource-type {"resource-specifier)’ ‘(' data-string { : P}

Type — declare resource type
type resource-nype [‘('ID-range')’' ¥ '’ | pe-statement ; }*°}'

resource-type =

long-expression

412 Appendix D: Rescurce Description Syntax

P
Y

type-statement.:= daia-type

Sill-type
alignment
switch-type
an'ay-t}pe
. Data-types
data-iype :: = ' dasa-type-specifier (symbolic-declaration | = declaration-consiant |7
data-type-specifier ::= char
string {‘[' length‘1'P?
patring (‘[length'1')?
cstring { ‘[’ length'1'}?
numeric-iype-specifier
point
rect
length::= _ expression
numeric-type-specifier .=
' boolean
{unsigned }?{ radix }? numeric-type
radix .= binary
octal
decimal
hex -
literal
numeric-type ::= byte
integer
longint
_ bitstring ‘{’ length ')’
symboiic-declaration .= range-block[, range-block }*
range-block .= tdentifier { = declaration-constant ¥ { , identifier }*
declaration-constant .= exprression
potntconstant
rect-constant
string
Fill-type
fill-type::= £ill fill-size {'[' expression ‘]’ P
fill-size .= bit | nibble | byte | word ! long
Alignment
alignment ;.= align align-size

Structure of a resource description file 413

align-size.:= nibble | byte | word | long

Swilch-type
switch-type::= switch '{'swiich-body ')’

switch-body = { case case-name : { case-body ; V" I+

case-name ::= identifier _

case-body ::= { type-statement ; |* key-constani-statement ; { type-statement ;

key-comstant-siatement = key data-type-specifier = deciaration-constant
Anay-type '

array-type::= {wide PP array { array-specifier ¥ tpe-body
array-specifier:= array-name
‘'expression']’
array-name:= identifier
type-body = U Uspype-statement L

Resource — specify resource data
resource resource-type ‘(' resource-specifier)’ = data-body

" data-body = ‘U’ { data-statement | , data-statement 1* 2 't
data-statement ;= expression
point-constant
rect-constant
string
identifier
switch-data
array-daia
switch-data -» case-name data-body
array-data = ‘(" { array-element (; array-element }* 2y
array-element ;.= { data-statement { , data-statement }* 1?

S
Preprocessor Directives

The following preprocessor directives are available.

414 Appendix D: Resource Descripfion Syntax

La

)

#define identifier { define-siring 7 newline
#undef {dentifier newlfine

$#if preprocessor-expr

¥elif preprocessor-expr

¥else

#endif

$ifdef identifier

¥ifndef identifier

preprocessor-expr is the same, as expression with the following additional expressions:

defined ‘(’identifier)’
defined idemtifier

Syntax
This section defines the non-terminal symbols used in the pravious sections.

Identifiers |

An identifier may consist of letters (A-Z, a-2), digits (0-9), or the underscore
character (_). identifiers may nor start with a digit; otherwise any mix of leners,
digits, and underscores is acceptable. Identifiers are not case sensitive. An identifier
may be any length. E o

Token delimiters .
token-delimiter ::a {space | 1ab | newitne | comment }+

comment ::= /> { printing-character }* ‘* / g

Compound types

point-constant = ‘'expression , expression '}’
rect-constant ;= ‘['expresston , expression , expression , expression ‘}’

Syntax 415

Expressions

bit-expression =

byte-expression .=
word-expression =
iong-expression .:=

expression =

system-function ::=

expression
expression
expression

expression -

integer-constant
literai-constant
numeric-variable
system-function
expression

- expression

~ expression

! expression

:(v mm l)l .
expression >> expression

 expression << expression

expression’ A expression
expression ‘| | expression
expression && expression
expression ‘|’ expression

expression & - expression

expression != expression
expression == expression
expression >= expression
expression <= expression

$Scountof ‘(' garray-name'}’

Numbers

integer-constart .=

decimal-constant
octal-constant
binary-constant
hexadecimal-constani

416 Appendix D: Resource Description Syntax

decimal-constant .=
octal-constant ;=
hexadecimal-constant =
binary-constant ::=

decimal-marker:=
hex-marker ..w
binary-marker .=

octal-digit .=
hex-digit .=)

binary-digit

iiteral-constant .=

nonzero-digit { digit }*

0 { octal-digtt I*

hex-marker { hex-digit }+
binary-marker { binary-digit }+

od | 0D
Ox10xX1 5§
0b | OB"

0+b1121314151617
0i1112131415i61718191
AlBICIDIEIF!
albtcldlelf

gt ‘

-+ { character}* '

Variables
string-variable ==

numeric-variable .=

' $$Version

$5Date

55Time

$55hell’('"Shell-variable-name™')’
$SResource'('file, resource-id, resourceName-or-il)’

resourceName-or-ID::= resource-id
resource-name

$SHour

‘$5Minute

$5Second
$SYear
$$Month
$S5Day
$5Weekday

Strings

siring =

simple-siring .=

hex-string .=

stmple-string
hex-string
string-variable
stming siring

" n { character}* "

$"{ hex-digit hex-digit }*

Syntax

417

character .= printing-character | escape-character

escape-character .= \ escape-code
escape-code = character-escape-code | numeric-escape-code
character-escape-code = nltlplelElwvi2lNI ™

numeric-escape-code = {octal-digit 3
: decimal-marker { decimal-digit)3
hex-marker { hex-digit 12
binary-marker { binary-digit 18

418 Appendlx D: Resource Description Syntax

- Appendix E

File | Types, Creators, cmd
Suffixes

Files types and creators
Table E-1 lists MPW file types and creators.

Table E-1 : :
File typess and creators

File Type Creator

Appendix.E: Flle Types, Creators, and Suffixes

»

4i¢

MPW Shell 'APPL 'MPS * (MPSspace)

Tools 'MPST 'MPS '
Text files 'TEXT' 'MPS !
Object files '‘OBJ! 'MPS '
Pascal load/dump 'DMPP! 'MPS "
Assembler load/dump 'DMPA’ ‘MPS '
File suffixes

File suffix conventions are as follows.

Text files:

name.a assembly-language source file

name.a.lst Assembler listing file

name.p Pascal source file

name.c C source file

nameh C header file

name.r ' resource description file (Resource Compiler input)

" Text files are identified by their file type (TEXT) rather than by a special suffix.
Several applications (including MacWrite, MDS Edit, and the MPW Shell) can create
and edit files of type TEXT. The creator 'MPS ' indicates 1o the Finder that the MPW
Shell is the application to launch when a text file is opened.

Object files:

name.a.o object file created by the Assembler

name.p.o obiect file created by the Pascal Compiler

name.c.o object file created by the C Compiler

name.o object file (library) created by Lib; cbject files shipped with

MPW

Ccrhpilers add the suffix *.0” to the source file name to construct the object file
name. The language suffix is left in the name in order to prevent name conflicts for
programs whose components are written in several languages. (For example, a
program right have source files MacGismo.a and MacGismo.c and object files
MacGismo.a.0 and MacGismo.c.0.)

420 Appendlx E: File Types, Creaters, and Sutfixes

‘/’H‘\

Appendix F

Writing an MPW Tool

Shell facllities xx

Parameters x
Shell variables x
Standard I/O channels x
/O buffering x
/O to windows and selections x
Signal handling x
Exit processing x
Status codes
Restrictlons xx
Initialization x
Memory management X
Heap x
Stack x

Windews, graphics, and evenis xx

Conventlons xx

Appendix F: Writing an MPW Jool

421

This appendix provides inforrmation specific o writing an integrated MPW to0l,

You'll also need to refer to the following:

B “Putting Together an MPW Tool” in Chapter 7 for information about the
mechanics of linking and installing 2 tool.

® The approprizie MPW language reference manual for details of the Integrated
Environment routines available in the various language libraries. (The

" Integrated Environment is a set of routines, modeled on the C language, that

provide parameter passing, access to variables, and other functions o MPW
tools.)

Shell facilities

Tools running within the MPW Shell environment are provided with many facilities,
including

parameter passing

access to Shell variables

a set of pre-opened files for text-oriented input and output

I/O to windows and selections '

a means for returning status results

signal handling (for user aborts, and so on)

exil processing

Parameters

Parameters are passed to tools by the Shell. Every program is passed at least one
parameter: the name of the program itself. This parameter is always the first
parameter (technically, parameter 0) and is useful for error messages or other
special acton.

The text that follows the command name on the command line is first anaiyzed by
the Shell for any special processing, such as filename generation or variable
substitution. (See “How Commands Are Interpreted” in Chapter 3.) This text is then
split up into individual words and placed in a convenient data structure for
programmatic access: '

422 Appendix F: Writing an MPW Tool

C: In G, the main program is aciually passed two parameters,
named arge, the argument count, and argv, the argument
vector, The value of arge includes the command name
(parameter 0}, and is thus always one more than the number
of parameters to the command. argv is a pointer to a zero-
terminated array of pointers o the parameters, each of
which is in C string (zero- temunated) format
(See Figure F-1.)

Pascal: : In Pascal, the parameters are accessible as the unit global
variables arge and argv from the IntEnv (Integrated
Environment) unit. As in C, the value of argc is one more
than the parameter count; argv is a pointer 0 an array of
Pascal string pointers.

Assembly language: The Integrated Environment routine, _RTInit, can be used
to access the command parameters in assembly language.
The addresses of argv and arge are passed to _RTInit,
which initializes them. See Appendix I of the MPW
Assembler Reference for details about this routine.

C and Pascal examples are shown in Figure F-1,

-C Sample.c -¢ Sample Pascal Sample p ~o Sample

HORDEOO Blusoznon

[Sfa]m].p{f]e]’. fcio} . te|Siaimipll]ef.{pl}

Ig[P[a[s]s!alll
Figure F-1

Parameters in C and Pascal

Shell facilities 423

Environment (Shell) variables

The MPW Shell maintains a set.of state variables that can be made available to tools
with the Export command. When a tool is run, the Shell makes a copy of the names
and string values of all exported variables and passes this list to the program. The
100l can then determine the value of a variable by one of two methods:

8 Doing a linear search of the list of variables until the desired variable name is

found, or -

a Using the getenv function,

Because only a cdpy is passed, a tool cannot alter the Shell's value of a variable.

C:

Pascal:

Assembily language:

Shell variables are accessible in C via the third parameter to
the main program, called envp (the environment pointer).

* envp is a pointer 1o a zero-terminated array of pointers to

name/value C-string pairs. (Each pair is of the form
namdvalud).) The C library provides the getenv routine,
which, given a variable name, looks up'its value,

Pascal programmers are provided with another [ntEnv unit
global variable, also called envp. The structure used is the
same as that for C, except that pointers to strings are forced
to even byte boundaries by zero padding, if necessary. To
facilitate the lookup of values for given Shell variables, a
routine called [EGetEnv is provided in the IntEnv unit.

The Integrated Environment routine, _RTInit, can be used
to access Shell variables in assembly language. The address
of envp is passed to _RTInit, which initializes it. You can
choose Pascal or C strings. You can use getenv for C
strings, or [EGetEnv for Pascal strings (from the PasLib-
library). See Appendix I of the MPW Assembler Reference
for details on calling _RTInit. '

Standard input/output channels

Before starting a tool, the Shell sets up three 1ext /O channels that the tool can use (o
communicate with the cutside world. These are

m standard input

® standard output

m diagnostic output (standard error)

424 Appendix F: Writing an MPW Tool

By default, these channels are connected to the *console” (that is, windows on the
screen). Program input may be typed (or selected) and entered; program output
appears immediately after the command. This input and output may be taken from
‘or directed 1o other files by specifying 1/0 redirection (<, >, >> 2 22) on the
command line. When the Shell encounters the L/O redirection notation, it opens or
creates the necessary files, removes the redirection notaton from the command line
so that it doesn’t appear in the program’s parameter list, and then arranges for the
open files 1o be passed to the program. When the tool finishes, the Shell flushes any
buffered output and closes the files.)

/O buffering

When using 1/0 routines provided by the language libraries, varying degrees of

buffering are expected to occur on the standard O channels:

& Input from the console is buffered until the Enter key is pressed. If there is 3
selection when Enter is pressed, the selected text is used to satisfy the console read

. request; otherwise, the entire line that contains the insertion point is given 1o the
reader. '

Note: The MPW method of reading input creates a difficulty for interactive tools
that write prompting text and pause to read a response entered on the same line:
The tool will receive the prompt back as part of the line read, unless there was a
selection when Enter was pressed. - -

8 When input is taken from 2 file, the L/O package will, by default, read the data from
the disk in 1K blocks. '

® Text written to standard output is also buffered 1K at a time before being sent to a
file or to the console. (As a convenience, when a read request is issued from the
console, all output buffars are flushed so that any prompting text will appear
before the program pauses waiting for input.)

® Text wrilten to the diagnostic channel is buffered one line at a'time, so that error
messages and progress information appear in a timely manner while the program
is executing,

Note that this buffering can cause apparently anomalous behavior: In particular, if
both standard output and diagnostics are being sent to the console, the order of the
output on the screen may not match the order in which the data was wrilten, because
of differences in when the separate buffers are flushed, as illustrated in Figure F-2.
You can circumvent this problem by flushing standard output before writing (o
diagnostic output. '

Shell facilities

on

% Note: Figure F-2 shows the output conventions in C and Pascal. Assembly-
language programmers must do their own buffering, or call C or Pascal routines.

File
— 1K Bulfen

Standard Oulpult 1k Butie] .

Standard Inpu
o _—

Standard Diagnosti

. Console P Cbered temt

Figure F-2

/O buttering

C: The standard 1/O files are available for reading or writing in

C, via the file descriptors 0, 1, and 2, or the StdIO stream
descriptors stdin, stdout, stderr. These descriptors
are fully documented in the MPW C Reference.

Pascal: - In Pascal, the program parameters Input and Ouiprt _
correspond to the standard input and output channels. A
text file variable called diagnostic, which is connected 10
the standard diagnostic channel, is available from the
IntEnv unit. The use of these is documented in detail in the
MPW Pascal Reference.

1/O to windows and selections

The MPW environment also provides tools the ability to read and write to windows or
to selections within windows. No special programming is required to use this feature.
The MPW Shell monitors file system calls, and intercepts those that refer to a file that
is currently open as a window. These calls are redirected automatically to the window
rather than the file. (Thus, any modifications to the file do not become permanent
until the window is saved.)

Accessing selections within windows is equally transparent 10 programs. All that is
required is that the filename contain the selection suffix (.§). Reading from a
selecuon is the same as reading from a file, and the beginning and end of the
selection are treated as the bounds of the file. However, writing to a selection
replaces the selection and has the interesting property that the data written is inserted
into the file, rather than overwriting the data that follows.

426 Appendix F: Writing an MPW Tool

Because window and selection /O is handled automatically by the MPW Shell, tools
should simply assume that they are always dealing with files. '

Signal handling

The MPW environment provides a set of routines to handle signals. A signal is an
event that diverts program control from its normal execution sequence.

% Note: The only signal currently supported is Corhmand-period, the standard
Macintosh command for terminating the execution of an operation.

Signals can be caught, held and released, and ignored. The default action of any
signal is to close ail open files, execute any exit procedures (described below in “Exit
Processing™), and terminate the program. If, however, your program requires
special handling of a signal, or chooses to ignore it, you can usé the procedure
sigset to replace the default signal-handling procedure with your own procedure.
Your program can also temporarily suspend action on a signal (for instance, before
entering a critical section of code) by calling sighold. You can restore the signal by
calling the procedure sigrelease, whereupon the signal-handling procedure will
take affect if the signal was raised during the hold period. Your program may also
pause until one or more signals are raised by calling the procedure sigpause. See
the MPW language reference manuals for the demils on how to use these routines.

- Exit processing.

A program often requires some special processing before terminating. You can use
the procedure onexit to register a procedure 1o be called at program termination or
when the exit procedure is called. This procedure guarantees your program a chance
to do any cleanup before terminating. This is especially useful for cleaning up after
an uncaught signal. '

Status codes

Every tool is expected to return a status code to the Shell when it terminates. The

Shell inspects this result—if the status code is nonzero and if the Shell variable {Exit}
is nonzero (the default), the Shell terminates the execution of the current command
file. The Shell also converts the result to string form and creates a Shell variable
called {Status} with that value. The variable can then be tested with the Shell
command language and action can be taken based on its value.

Shell facilities

L

427

The following conventions are used for status codes:

success

command syntax error

some error in processing

system error or insufficent resources

Wt — O

You may want to return error codes other than these. In that case, you should -
carefully document the numbers and their meanings. '

C Result codes are returned from C tools as the function result
of the procedure main () or by passing them as the
parameter o the C Library exit function:

Pascal: . Pascal programmers must call the IntEnv procedure [Eexit
1o return the status result.

Assembly language: The Integrated Environment routine _RTExit is available to
- assembly-language programmers. _RTExit takes the status
code as a parameter. .

R .
e e e

Restrictions

Tools are similar to desk accessories in that they coexist with znother program (the *
MPW Shell), and many of the same restrictions apply to tools as to desk accessories.
(See “Writing Your Own Desk Accessories” in the Desk Manager chapter of fnside
Macintosh.) - The following sections wouch on some of the considerations in
enabling tools to coexist with the Shell.

428 Appendix F: Writling an MPW Tool

Initializettion

Caution

since tools run with the Shell, most Macintosh Toolbox Initialization calls are not
necessary and should not be called. In particular, you should not make the
following calls:

InitFonts
Initwindows
InitMenus
TEInit
InitBlalogs
MaxApplZone
SetAppilimit
SetGrowZone
initResources
RsrcZoneinit
ExitToShell

{Note that this Is not an Incluslve list)

If your program uses QuickDraw or any routine that uses QuickDraw, be sure to call
the InitGraf routine. This routine is necessary when using QuickDraw, because

. QuickDraw uses register AS-relative global variables, and tools have their own private
. A5 global area. Even a simple call to the QuickDraw function Random will no work

~ properly unless InitGraf is called. :

Memory management

The Shell and tools execute out of the same heap and share the same stack. When a
tool is started, the Shell allocates an arez in the heap for the tool’s globals and jump
table, adjusts the global register AS to point there, and then “calls” the tool. Any
dynamic stack space required is allocated on the same stack, and any heap objects
created go into the same heap. :

Restrictions

429

High Memory

Screen '
4-— A5 - Globals (Shell)
Shell Globals
Stack 4— A6 - Stack Frame Poi
"""" L----—--« 44— A7 - Top of Stack
Heap

Tool Globals 44— A5 - Globals (Tool)

System Stuff

Low Memory

Figure F-3
Memory map

When a tool terminates, the Shell restores the registers to their previous values and
deatlocates the tool’s global area and any other pointers and handles in the heap that
may have been left allocated. The tool's resources, however, are not deallocated
immediately. They are unlocked and made purgeable so that the space can be used if
needed. This practice allows for a quick restart of the tool if it is still in memory, but
with no memory wastage penalty should the space be needed for other purposes.

Heap

Because the Shell and tools share the same heap, some cooperation is necessary (0
ensure its efficient use. Befare a tool is started, the Shell makes many of its heap
objects untocked and purgeable. The Shell's memory-resident code is kept as low in
the heap as possible. The tool's code should be moved as high in the heap as
possible. This is done automatically, if the locked bit is not set on the 100l's code
resources (the default from the Linker). When allocating heap space, tools should
attempt to allocate no more space than is needed so that objects arent needlessly
purged from the heap.

430 Appendix F: Writing an MPW Tool

When there is insufficient memory space to mn a tool, you. can make more space

availabie in several ways: _ o

® f RAM caching is being used, you can reduce the size of the cache.

® You can free up about 45K by running without the debugger (that is, name it
something other.than MacsBug and reboot, or hold down the mouse button while
booting),) ' .

8 You can minimize the number of windows open when the tool is run, (Certain
memory-resident data structures are required for each window.) Directing

program cuiput to 2 file instead of a window will also provide the tool with more
memory.

' ® You can also reduce the stack space by using the Shell resource described in the
next section.

Stack

When the Shell stasts up, i immediately grows the heap to its maximum size based on
the maximum stack size. The default maximum dynamic stack size is 10K bytes.
Because some tocls may requir more stack space or more heap space, 'HEXA!
resource number 128 is available in the Shelf to adjust the maximum stack size.

-_20 Note: Because the stack is shared berween the Shell and the tool, executing tools
from within nested command files resuls in less stack space for the tool. The
Shell uses about 100 bytes of stack per nesting level. :

Windows, graphics, and evants

The creation of windows, use of graphics, and event processing by tools is a largely
unexplored arez in the MPW environment. MPW 4ims to support these types of
tools; however, litde work has been done so far in this arez, and unknown restrictions
may exist.

Conventions

MPW tools adhiere to a certain style that aliows them o work well together in an
integraled fashion:

@ Tools izke thelr inpus a5 command-line paraniess, rather than prompting for
ingiat. This input style allows their execution (o be 2utomated and ailows them to
take advaniage of the Shell's comunand-line pracessing features such as variable
substitution and filename generation.

Conventions

431

® Deviations from 4 tool's standard behavior are specified with command options.
Options may be specified anywhere on the command line and their order is not
significant.

& Tools operate on a list of filename pararneters, not ;ust one, allowing the Shell S
fllename generation feature to be exploited.

® When no file parameters are given, tools take their input from standard input and
write their outpul to standard output. The use of standard /O aliows the piping of
the output of one program into the input of another. For example,

Files | Count -1

This command sends the output of the Files command into the input of the Count
command, vielding the number of files and directories in the current directory.

® Most tools operate silently as they process their input. Visual feedback is provided
by the spinning cursor. If more feedback is desired, a -p {progress) option is
usually provided to send status and summary information to the diagnostic cutput.

B Error messages are in the form of Shell comments or are “executable” so that the
error can be easily located. For example, the language translators report errors in
the form

File "Test.c" ; line 25 ### expected: '";' got: name

This message may directly executed, to open the file and select the offending line.
(See “Executable Error Messages” in Chapter 3.)

See the “Command Prototype” section zat the beginning of Chapter 9 for more
infarmation on MPW command-language conventions.

432 Appendix F: Writing an MPW Tool

F/A\‘

Appendix

G

‘Writing a Desk Accessory or
Other Driver Resource

This appendix documents the DRVRRuntime {ibrary and describes the specifics of
wriling a desk accessory or other driver with the MPW systemn. (A desk accessory is a
special case of a driver; all of the information in this appendix applies 1o both} You

should already be familiar with the following:

u “Writing Your Own Desk Accessories” in the Desk Manager chapter of fnside

- Macintosh

® The Device Maﬁager chapter of Inside Macintosh (for information about 'DRVR'

- resources, and 'so on)

® “Putting Together a Desk Accessory or Driver” in Chapter 7 of this manual

For information about-the actal routines used in Pascal,
see the appropriate MPW language reference manual.

The DRVRRuntime library

C, or assembly language,

Desk accessories have traditicnally been written in assembly Ianguagé, partly

because of the peculiar ‘DRVR' resource format used for desk accessories, Setting up
the 'DRVR' layout header, passing register-based procedure parameters, and coping
with the nonstandard exit conventions of the driver routines have made it difficult to
implement desk accessories in higher-level languages. To overcome these difficulties

and simplify the task of writing a desk accessory in Pascal or C, MPW provides the

following;

8 The library DRVRRuntime.o, which contains the “glue” for setting up your open,

prime, status, control, and close routines.

Appendix G: Writing a Desk Accessory or Other Driver Rescurce

433

m The resource type 'DRVW', declared in {RIncludesiMPWTypes.r. The 'DRVW'
resource is an intermediate form of the 'DRVR' resource, and contains constants
that point to the addresses of the driver routines in DRVRRuntime.o.

The DRVRRuntime library contains a main entry point that overrides the main entry
point in CRuntime.o or in your Pascal or assembly-language source. The
DRVRRuntime entry point contains driver glue that sets up the parameters for you,
calls your routines, and performs the special exit procedure required for a desk
accessory to retrn control to the system. Your routines perform the actions of the
. desk accessory, such as opening a window and responding to mouse clicks in it

The Resource Compiler input (resource description file) for your desk accessory
inctudes the details of your desk accessory header, such as its driver flags, event
mask, menu ID, and driver name. The driver is built by coercing the intermediate
"DRVW' resource 1o a resource of type 'DRVR', which is the format required for desk
" accessories. Your resource description file also specifies resources for strings,
windows, and menus, if used in your desk accessory. (For an example of such a
resource description file, see “The Desk Accessory Resource File® in Chapter 7.)

The advantages of using DRVRRuntime.o are the following:
a No assembly-language source code is required.

» The Resource Compiler is an integral step in the build process, permitting the easy
addition of a desk accessory menu or other owned resources.

® The programmer’s interface to the opem, prime, status, control and close
routines uses standard calling conventions. Each function retumns a result code
- which is passed back to the system.

a The DRVRRuntime glue handles the proper exit conventions. (Drivers have
peculiar exit conventions, requiring immediate calls to exit via an RTS instruction,
but non-immediate calls to jump to the IODone routine-—these exit procedures
cannot be expressed in C or Pascal)

Together, the DRVRRuntime library and the 'DRVW" resource form the dispatch
mechanism to your driver routines. The following section describes the structure of
your driver routines,

What your routines need to do

- To write a driver, you need to write five functions named DRVROpen, DRVRPrime,
DRVRStatus, DRVRControl, and DRVRClose.

434 Appendix G: Writing a Desk Accessory or Cther Driver Resource

** Pascal note: In Pascal, you'll need to write a unit that declares these five
functions in your interface.

Each of these functions is declared to use Pascal calling conventions, so that the
DRVRRuntime library is available for use by both C and Pascal programmers. (See -
the appropriate language reference manual for details.)

The calling sequence for all five driver routines-is the same: the parameter 10P8 is
the pointer to the driver's /O parameter block (passed from the system in register
AQ), and dCt1 is the pointer to the driver's device control entry (from register A1)
The function returns a result code, which DRVRRuntime puts in register DQ. This
result code is a Pascal integer (C short). Desk accessories always return a result code
of Q. .

For example, the following is the Pascal declaration for your DRVROpen routine:

FUNCTION DRVRCpen {ctlPB: ParmBlkPtr:; dCTl: DCt1Ptr): OSErr;

Types ParmBIkPtr and DCUPtr are declared in the file OSIntf.p. Type OSErr is an
INTEGER, and is also defined in OSIntf.p.

In C, you would need to write the routines as follows:

rascal QSErr

DRVROpen (ct1PB,dCtl) -
CntrlParam *ctlPB;
DCtlPtr dCtl;

retu:_ch (resultCode) :
}

Types CatrlParam and DCHPtr are declared in the file Devices.h. Type OSErr is a
" short, and is defined in Types.h. :

Desk accessories onjy

The body of the desk accessory code will reside In your routines DRVROpen.
DRVRControl, and DRVRCiose. Your routines DRVRPrime and DRVRStatus are
never called by the system, but the DRVRRuntime liorary expects them to be
present anyway—they cannot be omitted. It is sutficlent to deciare them and
have them simply retum 0..

Programming hinfs

435

Programming hints
1n'the current release of MPW, global data is not available for use by desk
accessories. That is, variables declared outside of your functions cannot be used. In

particular, the following language constructs reference the global data area and
cannot be used: .

Asm: ~ No DATA directives
Pascal: No UNIT variables
C: No static or extern variables; no string constanis

Also note that QuickDraw globals cannot be used directly. Further, you cannot call
library functions that use any of these things. (Look for the Linker message “No global
data was allocated.”) '

% Note: Apple is investigating the use of AS-based global variables in desk
‘accessories. Currently several Macintosh applications contain trap-override or
ROM hook routines that expect AS to point to the application’s globals, but
without saving, setting, and restoring AS to ensure that this is the case. Such
applications are incompatible with desk accessories that use AS, because the desk
accessory’s calls to the ROM could end up in the application’s trap-override or
hook code.

Typicaily, C and Pascal programmers will allocate global storage from the heap and
use 'STR#' resources for string constants. If you need to allocate global dau from the
heap, you can declare a record containing all of the global variables you need.
Then, in your DRVROpen routine, you should allocate memory from the heap with
the size of this record, and store its pointer (or handle) in the dCtiStorage field of the
device control entry. Then, 1o reference an element in the record, you can use this
pointer (or handie) to reference the global variable that you want to use.

Sample desk accessory

A sample desk accessory, Memory, is included in the Examples folders for assembly-
language, C, and Pascal. This desk accessory has the following features:

a It displays the current amount of free space in both the application heap and the
system heap.

m It displays the number of bytes free on the default volume, along with the name of
the default volume.

m It performs these operalions every five seconds, so that you can see how your
memory conditions change. '

436 Appendix G: Wrlitihg a Desk Accessory of Other Driver Resource

For instructions on building this desk accessory, see the Instructions file in the

Examples folder, or refer to “Putting Together a Desk Accessory or Driver® in
Chapter 7. .

Sample desk accessory 437

\

Appendix H

Object File Format

OCbject file format xx -
Noifation used in this abpondlx xX

Object flle records xx

Pad record x

First recard x

Last record x
Comment record x
Dictionary record x
Module record x-
Entry-point record x
Size record x
Contents record x
Reference record x
Computed-reference record x

This appendix is addressed to programmers who are writing compxlers or assemblers
to run under MPW,

‘Object file format

An object file consists of a sequence of object file records. These records are in the
data fork of the file. There are 11 types of object file records:

The first record in the file must be a first record.

One-byte pad records are used to maintain word alignment
Comment records allow comments to be included in the file.
Dictionary records associate names with unique 1Ds.

Module records define code and data modules.

Entry-point records define entry points in code and data modules.
Size records specify the size of a module.

Contents records specify the contents of a2 module.

Reference records and computed-reference records spedfy locations in modules
that contain references to other modules or entry points.

m The last record in the file must be a last record.

A module is a contiguous region of memory that contains code or static datz. (The
jump table is considered to be code.) A module is the smallest unit of memory that is
included or removed by the Linker. An entry point is a location {offset) within 2
module. (The module itself is treated as an entry point with offset zero.) A segment is
i named collection of modules.

" All modules, entries, and segments are given a unique, positive, 16-bit ID. An ID is a
file-relative number for a module, an entry point, or a segmenyt, identifying the
‘module, entry point, or segment within a single objec file.

Modules and entry points may be local or external. A local module, entry point, or
segment can be referenced only from within the file where it is defined. An external
module, entry point, or segment can be referénced from different files. In addition
to an 1D, each external module or entry point defined or referenced in an object file
must also have a unique name (a string identifier) that identifies it across files. A
module, entry point, or segment without a name is said toc be anonymous,

Object file formct

439

Names and IDs are specified in dictionary records. Local IDs may be anonymous. (If
no dictionary entry is found for it, an ID is considered anonymous.) Local modules
and entries need not have unique names, and an external segment may have the
same name as an external medule or entry point,

At any given point in an object file, there can be one current code module and one
current data module. The beginning of a new code or data module is indicated by a
module record. The current code and data modules are further defined by

entry point, size, contents, reference, and computed-reference records—these
records ‘can occur in any order after the module record. In each of these records, a
flag bit indicates whether the record refers to the code or the data module.

The structure and semantics of each of the record types is defined below.

Notation used in this appendix
Each record type is represented by a diagram such as the following:

r I I I
10 | flags | record size . ID% D2 offsets
B | I | i
) |
gnce l iong data

The first box illustrates the record. Each block represents a byte. The first byte
indicates the record type, in this case, 10. The flags byte is expanded in the second
box. The record size is a signed, 16-bit integer that indicates the total length of the
record (including the record type byte, flags byte, and record size field). Hence, any
one object file record is limited to 32K bytes. (This is not a limit on the size of the
module, because partial contents can be placed in several records.)

The second box represents the flag bits. In this example, they are interpreted as
follows:

Bit - Meaning

0 0 indicates code, and_a 1 indicates data
1,2 must always be O

3 0 indicates short and a 1 indicates long

440 Appendix H: Object Flie Format

4-5 0 indicates 32 bits, 1 indicates 16 bits, and 2 indicates 8 bits
6 always 0
7 1 indicates a difference computation

** All unspecified bits must be zero.

Object file records
This section defines each of the object file record types.

Pad Record

0

A pad record is a single byte that is always zero. A pad record foliows any.record
whose length is an odd number of ‘bytes, in order to maintain word alignment,
(Other than pad records, all records are word-aligned.) '

First record

i
1 flags version

_— 1

The first record in an obiject file must be a first record.

Object file records

441

If the nested bit in the flags field is one, then the Linker interprets all references to
undefined ID-name pairs as external references. If the nested bit is zero, the Linker
will try to match the name of an undefined symbol with a local name before treating
ihe undefined symbol as external.

The version field contains a version number that is 1 for the current definition of the
cbject file format.)

Last record

The last record in an object file must be a last record.

Comment record

i]
3 0 record size comments

I |

A comment record allows comments to be included in an object file, It has no effect
on the semantics of the object file. :

The record size field specifies the total number of bytes in the record.

Dictionary record

] i |
4 0 record size first ID strings

A dictionary record associates a name with an ID (or several names with several IDs).
At most one dictionary record may appear for a given ID in a single object file.

The record size field specifies the total number of bytes in the record.

442 Appendix H: Object Fle Format

./:’-\1

The strings field contains one or more names; each of which is preceded by a length
byte. '

The first name in the strings field is associated with the ID given in the first ID field.
The second name is associated with first ID+1, and so on.

The dictionary record for an ID must appear before the module or entry-point
record that defines the ID, but need not appear before reference or computed-
reference records that refer to the ID. If an ID has no dictionary record or has a name
with 2 length of zero, it's considered anonymous.

Module record .

segment _ID/

5 flags module 1D size

A module record associates an D with 2 module, and makes that module the cui'rent

code or data module. All entry-point, size, contents, reference and computed-
reference records help define the current code or data module.

Modules may contain either code or data:

& For code modules, the segment ID field specifies the segment in which the code is
placed. Segments may be named or anonymous. Named segments are treated as
external; anonymous segments are local. (If the segment is named, the dictionary
record specifying the name must appear before the segment 1D can be used in a
module record.)

m For data modules, 2 nonzero size field specifies the size of the module. In this case
size of contents records are unnecessary. (The size of 2 module can also be
specified by a size record, or implicitly by the offset of the last byte in a contents
record.)

Modules may be either local or external. (Local modules may be anonymous.)

Chject file records

443

- A code module flagged as main becomes the execution starting point of the
program. A data module flagged as main becomes the main program data area, just
below the location pointed to by A5. At most one main code module or entry point
and one main data module may appear in an object file.

References ta a module are considered 10 be references to the first byte of the
module.

Entry-point record

6 flags entrylD offset

/

. local/) code/
main | o imnal 0 0 data
4 3 2 1 o

An entry-point record declares an entuy-point ID. The entry point is in the current
code or data module, as indicated by bit 0 of the flags field.

The offset field gives the byte offset of the entry point relative to the beginning of the
module. The offset of an entry point may be outside the module (for example, a '
virtual base for an array).

Flags: An eniry points may be defined for either a code or a data module. Entry
points may be either local or external. (Local entry points may be anonymous.) A
code entry point flagged as main becomes the execution starting point of the
program. At most one main code module or entry pomt may appear in an object
file,

444 Appendix H: Object File Format

Size record

b | |
7 flags medule size
| L1
code/
data
"0

A size record specifies the size of the current code or data module. The size is in
bytes. The bytes within a module of size N are nurmbered 0, 1, ..., V1. The size of a
module may also be specified in a contents record; or (for data modules) in the
module record. If more than one size is specified, the largest size given is taken as the
size of the module,

“ Note. In allocating records, the Linker rounds the size of a module up to a
multiple of two, to ensure that modules are word-aligned in memory.

Contents record

B i I I
8 flags record size joffset] [repeat] contents
] l]]
repeat partial | 0 0 data
4 3 2 1 0

Centents records specify the contents of the current code or data module,

The record size field specifies the total number of bytes in the record.

Object file records

445

Either complete or partial contents may be specified. If partial contents are -
specified, the first four bytes of the contents field specify the byte offSes of the
contents from the beginning of the module,

The contents may be either the bytes to be placed in the module, or a 2-byte repeat
count followed by the bytes to be repeated. (If both an offset and a repeat count are
specified, the offset comes first) ~

' Multiple contents records per module are permitted, in any order. The offset of the
last byte for which contents are specified determines the module’s total size. (Size
specifications may also appear in the module record, and in size records—if more
than one size is specified, the largest size given is taken as the size of the module.) ‘

Reference record

9 | flags | record size D offsets
\ !
AS5- short/ code/
relative| © 0 {32116 long | 0 9 ‘data
7 6 5 4 3 2. 1 0

A reference record specifies a list of references to an ID. The references are from the .
current code or data module, and may be to either code or data.

The record size ﬁeld specifies the total number of bytes in the record:
The ID {ield specifies the module or entry poiht being referenced.

The offsets field specifies a list of byte offsets from the beginning of the current code
or data module. These offsets may be either short (16 bits) or long (32 bits). The
location modified may be either 32 or 16 bits. Multiple references to the same or
overlapping locations are permitted. References from code may indicate instruction
editing (thal is, whether an offset is AS- or PC-relative). :

References fall into four categories: from code to code, from code to data, from
data to code, and from data to data.

» Code-to-code references; If the A5-relative flag is 1, the AS-relative offset of a
jurnp-table entry associated with the specified module or entry is added to the
specified location. No instruction editing is performed.

444 Appendix H: Object Flle Format

If the AS-refative flag is 0, the Linker selects either PC-refative or AS-relative
addressing. The immediately preceding 16-bit word is assumed to contain a ISR,
JMP, LEA, or PEA instruction, and is modified to indicate either PC-relative or
AS-relative addressing, If the referenced module or entry point and the current
code module are in the same segment, the PC-relative offset of the module or
enury point is added to the contents of the specified location. If they are in)
different segments, the AS-relative offset of a jump-table entry associated with the
specified moduie or entry is added to the specified location.

In either case, the location may be 32 or 16 bits. (32-bit PC-relative and A5-
relative address modes are available for the 68020, but not for the 68000

Code-to-data references: The AS-relative flag must be 1 for code-to-data
references. The AS-relative offset of the specified data module or entry is added to
the contents of the specified location, No instruction editing is performed. The
location may be either 32 or 16 bits. (32-bit AS-relative addressing is available for
the 68020, but not for the 68000.) ' :

-Data-to-code references: If the AS-relative flag is 1, the AS-relative offset of 2
jump-table entry is added to the specified location, which may be either 32 or 16
bits. '

If the AS-relative flag is O, the memory address of a jump-table entry associated
with the specified module or entry is added to the contents of the specified
focation, which must be 32 bits. (Note that this requires 2 run-time operation that
adds the actual value of A5 1o the AS-relative offset.)

Data-to-data references: If the AS-relative flag is 1, the AS-relative offset of the
module or entry is added to the specified location, which may be either 32 or 16
bits. : :

If the AS-relative flag is 0, the memory address of the specified module or entry is
added to the contents of the specified location, which must be 32 bits, (Note that
this requires a run-time operation that adds the actual value of AS to the
AS-relative offset.) '

Computed-reference record
I | I K

10

flags

record size

offsets

e

.]
differ- 0 32116/8 short/ 0 code/
ence | long data
7 6 5 4 3 1 0

Cbject file records

447

A computed-reference record specifies 2 list of computed references based on two
specified iDs.

The record size field specifies the total number of bytes in the record. The references
are from the current code or data module, and may be to either code or data.

The ID7 and /D2 fields specify the modules or entry points being referenced. If ID1
specifies 2 code reference, ID2 must also be a code reference in the same
segment—if 1D1 is a data reference, ID2 must also be a dara reference.

The only computation provided is difference.

The offsets field specifies a list of byte offsets from the beginning of the current code
or data module. These offsets may be either short (16 bits) or long (32 bits). The
location modified may be either 32, 16, or 8 bits (a 0 in bits 4 and 5 indicates 32, 1
indicates 16, and 2 indicates 8). :

The value of the address of ID1 minus the address of TD2 is added to the contents of
the specified location. Multiple references to the same or overlapping locations are
permitted. :

448 Appendix H: Object File Format

P
!

Appendix |

In Case of Emergency

This appendix contains some information that may be useful when serious system
errors ocaur.

%
Crashes _ _ :

If you end up in the debugger (MacsBug) while running MPW, it may be possible to
recover without rebooting and losing your recent changes. The debugger displays the
register contents followed by a > prompt. If 2 tool is being executed, type '

G STOPTOOL and press Return 1o return to the Shell. If the Shell is being executed,
lYyP€ G SYSRECOVER. The Sheil will dttemplt to recover by aborting the current
command, saving the contents of all the windows, and/or retuming 1o the Finder. If
either of these steps fails, type ES to return to the Finder, then shut down the system

‘immediately. _

St :

ack space . _
The MPW Shell and tools that run integrated with the Shell share 2 single stack. The

stack size is determined by the Shell at initialization time. Complex command files,
large links, and other tools may require more stack space than is available. System
errors 28, 2, and 3 are possible indications of this problem. You can increase the
stack size by using ResEdit to modify the only 'HEXA' resource in the file MPW Sheil.
‘The default size is $2710 (10,000 bytes). Doubling this to $4E20 (20,000 bytes) has
been sufficient for the largest cases we've seen, o

“ Note: Increasing the stack size on 2 Macintosh 512K may create other prcblems
because of decreased heap space.

1\11\\1\

Glossary

active window: The frontmost window. The
Shell variable {Active} always contains the name
of the qurrent active window.

alias: An alternate name for a command,
* defined with the Alias command -

application: A prpgmm that runs stand-alone,
outside of the Shell environment. An
application’s file type is APPL.

blank: A space or a tab character (in the context
of separating words in the comymand language).

bﬁﬂd commands: Shell commands that are
output by the Make tool, used to build a program.

built-in comimands: Editing commands,
structured commands, and other Shell
commands that are part of the MPW Shell
-application (as opposed to MPW tools, which are
separate files on-the disk.)

code resource: A resource that contains a
program’s code—most commonly a resource of
type "CODE' {for applications and MPW tools),
but other resource types such as 'DRVR' and
'PDEF' also containi’ code. ' -

command file: An ordinary text file (type
TEXT) containing a seres of commands. The
entire file can be executed by entering the
filename. Also called a script.

command name: The first word of a
command, identifying the name of a built-in
command or the name of a file (tool, command
file, or application) to execute.

command substitution: The replaéement of 2
command by its output. Command substitution
takes place within back quotes C...7).

current selection: The currenily selected lext
in a window. In editing commands, the current
selection in the target window is represenied by
the § metacharacter.

. data fork: The part of a file that contains data

accessed via the Macintosh Fiie Manager.
dependency file: A makefile

desk accessory: A “mini-application,”
implemented as a device driver, that can be run at
the same time as an applicatdon. Desk accessories
are files of type DFIL and creator DMOV, and are
installed by using the Font/DA Mover.

' device driver: A program that controls the

exchange of information between an application
and a device..

diagnostic output: Commands and tocls send
error output to diagnostic output (by defauir, the

“active window). You can redirect diagnostc

output Lo another file, window, or selection with
the 2 and 22 operators.

e¢scape character: The Shell escape character is
d (Option-D), It is used to disable (or “escape™
the special meaning of the character following it,
to contnue commands over more than one line
(dReturn), and to insert invisible, characters into
command [ext. :

external reference: A reference to a routine or
variabie defined in a separate compilation or
assembly, .

filename: A se_queﬁce of up to 31 printing
characters (excluding colons), which identifies a
file. More at pathname.

file type: A four-character sequence, specified
when a file is created, that identifies the type of
file. (Examples: TEXT, APPL, MPST)

Finder information: Information that the
Finder provides to an application upon slarting it,
teling it which documents to open or print.

Font/DA Mover: An application, available on
the System Tools disk, used for installing desk
accessories in the System file.

HFS: “Hierarchical File System® used on 800K .

disks and the Appie Hard Disk 20,

insertion point: An empty selection range; that
is, the character position where text will be
inserted (marked with 3 blinking vertical bar).

interface routine: A routine called from Pascal
whose purpose is to trap to a certain ROM or
library routine.) '

jump table: A 1able that contains one entry for -

every routine in 2n application or MPW tool, and

is the means by which the loading and unlcading
of segments is implemented.

main segment: The segment containing the
main program.

makefile: A file used by the Make command,
which describes dependencies-between the
vanous pieces of a- program, and contains a set of
cummands for building up-to-date: files. The
default makefile is named MakeFile.

MPW Shell: The application that provides the
environment within which the other parts of the
Macintosh Programmer's Workshop operate, The
Shell combines an editor, command interpreter,
and built-in commands.

MPW tool: An executable program (type MPST)

that is integrated with the MPW Shell environmen;
(contrasted with an application, which runs
stand-ailone). :

non-HFS: The'flat* file system, .used on 400K

‘'disks and Macintosh XL hard disks. - .

option: A command-line switch, specifying
some variation from a command’s default
behavior. Options always begin with a dash (-).

pathname: A sequence of up 10 255 characters

that identifies a file or directory. A full pathname
is 2 pathname that conuins embedded colons but
no leading colon. A partial pathname either
contains no colons or has a leading colon.
pattern: A literal text patern (such as
/ABCDEFG/), or a regular expression.

- Panems are a case of selection, and always

appear between the pattern delimiters /.../ or
Y o e
pipe: The command terminator | is the pipe (or
pipeline) symbol. It causes the output of the

- preceding command to be used as the input for

the subsequent command. (See Chapter 3,
Table 3-1.) Lo :
position: In editing' commands, position refers
to the location of the insertion point

- prefix: The directory portion of a fllename.

quotes: A set of characters that literalize the
enclosed characters, used for disabling special
characters. The quote symbols are 't =
and /.../. The escape character, 3, quotes the
character that follows it. © ~ =

regular exﬁteséiohgé' A }ghguége for specifying
text patterns, using a special set of
metacharacters. (See Appendix B, Table B-2.)

Glossary 451

resource: Data or code stored in a resource
file and managed by the Macintosh Resource
Manager.

resource attribute: One of several
characteristics, specified by bils in a resource
reference, that determine how the resource
should be dealt with,

resource compiler: A program that creates
resources from a textual description. The MPW
Resource Compiler is named Rez.

_resource description file: A text file that can
be read by the Resource Compiler and compiled
into a resource file. The Resource Decompiler
disassembles a resource file, producing 2
resource description file as output

resource file: Common usage for the resource
fork of a Macmtosh file.

resource fork: The part of a file that contzins
data used by an apphcauon such as menus,

fonts, and icons. An executable file's code is also

stored in the resource fork.
script. A command file.

segment: One of several parts into which the
code of an application may be divided. Not all
segments need 10 be in memory at the same time.

selection: A series of characters, or a character
position,. at which the next editing operation will
occur. Selected characters are inversely
highlighted in the active window, and outiined in
other windows. A sefection is used as an argument
to most editing commands, and can be spec1ﬁed
by using a special sét of selection operators (See
Appendix B, Table B-1.)

standard error: Diagnostic output. .

Startup file: A special command file containing
commands that are executed each time the Shell
is launched. Stanup executes a second command
file called UserStartup.

452 Glossary

status value: A code returmed by commands in

- the Shell variable {Status). Zero indicates

successful completion of the previous command,
and other values usually indicate an error.

target selection: The current selection in the
warget window, represented by the § character.

target window: The second window from the
top—this is the default target for editing
commands that are entered in the active
window. The Shell varable {Target always
contains the name of the current target window.

tool: An MPW tool

word: A single, blank-separated ‘element in a
command. A command name and each of its
parameters are separate words in the command
language.

AT

MPW & MacApp Bug Report Form

BACKGROUND

Date - Version

AREA: Compiler: C Pascal
Assembler
Library: c Pascal Assembly
MacApp
Shell/Editor

Tool

Performance

BUG DESCRIPTION

CONTACT INFORMATION

Address:

City, State, Zip

Please return completed torm to:
MPW Bug Report; MS 27S; Apple Computer, Inc.; 20525 Mariani Ave.; Cupertino, CA 95014

