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el-written C++ games are often more maintainable and reusable than their
plain C counterparts are—but is it worth it? Can complex C++ programs hope
to match traditional C programs in speed?

With a good compiler and thorough knowledge of the language, it is indeed pos-
sible to create efficient games in C++. This gem describes techniques you can use to
speed up games in particular. It assumes that you're already convinced of the benefits
of using C++, and that you're familiar with the general principles of optimization (see
Further Investigations for these).

One general principle that merits repeating is the absolute importance of profil-
ing. In the absence of profiling, programmers tend to make two types of mistakes.
Firgt, they optimize the wrong code. The great magjority of a program is not perfor-
mance critical, so any time spent speeding it up is wasted. Intuition about which code
is performance critical is untrustworthy—only by direct measurement can you be
sure. Second, programmers sometimes make "optimizations' that actualy dow down
the code. This is particularly a problem in C++, where a deceptively simple line can
actually generate a significant amount of machine code. Examine your compiler's out-
put, and profile often.

Object Construction and Destruction

The creation and destruction of objects is a central concept in C++, and is the main
area where the compiler generates code "behind your back." Poorly designed pro-
grams can spend substantid time calling constructors, copying objects, and generat-
ing costly temporary objects. Fortunately, common sense and a few simple rules can
make object-heavy code run within a hair's breadth of the soeed of C.

» Deday construction of objects until they're needed.
The fastest code is that which never runs, why create an object if you're not
going to use it? Thus, in the following code:

void Function(int arg)
{
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Object obj;
if (arg *= 0)
return;

}

even when argis zero, we pay the cogt of calling Object's constructor and destruc-
tor. Ifargis often zero, and especidly if Object itsdlf alocates memory, this waste
can add up in a hurry. The solution, of course, is to move the declaration of obj
until after the //check.

Be careful about declaring nontrivial objects in loops, however. Ifyou delay con-
struction of an object until it's needed in a loop, you'll pay for the construction
and destruction of the object on every iteration. It's better to declare the object
before the loop and pay these costs only once. If a function is cdled insde an
inner loop, and the function creates an object on the stack, you could instead cre-
ate the object outside the loop and pass it by reference to the function.
Useinitiaizer ligts.

Consider the following class

class Vehicle

éublic:. , _
Vehi cl e(const std::string &ane) // Don't do this!

mName = nane;
i -
private:

std: : stringmNane;
};

Because member variables are constructed before the body of the constructor is
invoked, this code cdls the congtructor for the string mName, and then cdls the
= operator to copy in the object's name. What's particularly bad about this exam-
pleisthat the default constructor for string may well alocate memory — in fact,
more memory than may be necessary to hold the actual name assigned to the
variable in the constructor for Vehicle. The following code is much better, and
avoids the cdl to operator=. Further, given more information (in this case, the
actuad string to be stored), the nondefault string constructor can often be more
efficient, and the compiler may be able to optimize away the Vehicle constructor
invocation when the body is empty:

class Vehicle

{

public: _
Vehi cl e(const std::string &ane) : nmiName(nane)
{

private:



1.1 Optimization for C++ Games 7

std::string mName;
};

* Prefer preincrement to postincrement.

The problem with writingx =y++ is that the increment function has to make a
copy of the origind vaue ofy, incrementy, and then return the origina vaue.
Thus, postincrement involves the construction of a temporary object, while
preincrement doen't. For integers, therés no additiond overhead, but for user-
defined types, this is wasteful. You should use preincrement whenever you have
the option. You dmost dways have the option infor loop iterators.

¢ Avoid operators that return by value.
The canonical way to write vector addition in C++ is this.

Vector operator+(const Vector &vl, const Vector &v2)

This operator must return anew Vector object, and furthermore, it must return
it by value. While this dlows useful and readable expressonslikev=v 1+ z>2, the
cost of atemporary construction and a Vector copy is usually too much for some-
thing caled as often as vector addition. It's sometimes possible to arrange code so
that the compiler is able to optimize away the temporary object (this is known
as the "return vaue optimization™), but in generd, it's better to swalow your
pride and write the dightly uglier, but usualy faster:

void Vector::Add(const Vector &v1, const Vector &v2)

Note that operator+= doesn'thsuffer from the same problem, as it modifies its
first argument in place, and doesn't need to return atemporary. Thus, you should
use operators like += instead of + when possible.

» Use lightweight constructors.

Should the congtructor for the Vector dass in the previous example initiaize its
elements to zero? This may come in handy in a few spots in your code, but it
forces every cdler to pay the price of the initialization, whether they use it or not.

~ In particular, temporary vectors and member variables will implicitly incur the
extra cost.

A good compiler may well optimize away some of the extra code, but why take
the chance? As agenera rule, you want an object's constructor to initialize each of
its member variables, because uninitialized data can lead to subtle bugs. However,
in small dasses that are frequently instantiated, especidly as temporaries, you
should be prepared to compromise this rule for performance. Prime candidatesin
many games are the Vector and Matrix classes. These classes should provide medi-
ods (or aternate condtructors) to set themsdves to zero and the identity, respec-
tively, but the default constructor should be empty.
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As a corallary to this principle, you should provide additional congtructors to
classes where this will improve performance. If the Vehicle class in our second
example were instead written like this:

cl ass Vehicle

éubl ic:
Vehicl e()
{
}

voi d SetNange(const std: :string &nane)

mName = name;
}

private: ,
std: : string m\ame;
¥

wed incur the cost of constructing mName, and then setting it again later via Set-
Name(). Similarly, it's cheaper to use copy constructors than to construct an
object and then cal operator=. Prefer constructing an object this way — Vehicle
vl(v2) —tothisway — Vehicleul; vl = v2;.

If you want to prevent the compiler from automaticaly copyi ng an object for
you, declare aprivate copy constructor and operator= for the object's class, but
don't implement either function. Any attempt to copy the object will then result
in acompile-time error. Also get into the habit of declaring single-argument con-
structors as explicit, unless you mean to use them as type conversons. This pre-
vents the compiler from generating hidden temporary objects when converting

types

Predllocate and cache objects.

A gamewill typicaly have afew cassesthat it dlocates and freesfrequently, such
asweapons or particles. In aC game, you'd typicaly alocate abig array up front
and use them as necessary. With alittle planning, you can do the same thing in
C++. The ideais that instead of continually constructing and destructing objects,
you request new ones and return old ones to a cache. The cache can be imple-
mented as atemplate, so that it works for any class, provided that the class has a
default constructor. Code for a sample cache dass template is on the accompany-
ing CD.

You can ether dlocate objects to fill the cache as you need them, or predlocate
all of the objects up front. If, in addition, you maintain a stack discipline on the
objects (meaning that before you delete object X, you first delete al objects alo-
cated after X), you can alocate the cache in a contiguous block of memory.
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Memory Management _ —

.................................. R p—— SS—

C++ applications generdly need to be more aware of the details of memory manage-
ment than C applications do. In C, dl alocations are explicit though mallocQ and
freeQ, while C++ can implicitly alocate memory while constructing temporary
objects and member variables. Most C++ games (like most C games) will require their
OWN memory manager. '

Because a C++ gameis likely to perform many dlocations, it must be especialy
careful about fragmenting the heap. One option is to take one of the traditional
approaches: either don't alocate any memory at dl after the game starts up, or main-
tain alarge contiguous block of memory that is periodicdly freed (between levels, for
example). On modern machines, such draconian measures are not necessary, if you're
willing to be vigilant about your memory usage.

Thefirst step isto override the globa new and delete operators. Use custom imple-
mentations of diese operators to redirect the gameés most common alocations away
from mallocQ and into preall ocated blocks of memory. For example, if you find that you
have at most 10,000 4-byte dlocations outstanding at any one time, you should alocate
40,000 bytes up front and issue blocks out as necessary. To keep track of which blocks
are free, maintain a. freelist by pointing each free block to the next free block. On dlo-
cation, remove the front block from the list, and on dedllocation, add the freed block to
the front again. Figure 1.1.1 illustrates how the free ligt of smal blocks might wind its
way through a contiguous larger block after a sequence of alocations and frees.

"
|
T
used free used used free free

FIGURE 1.1.1 Alinkedfreelist.

Youll typicaly find that a game has many small, short-lived alocations, and thus
youll want to reserve space for many smal blocks. Reserving many larger blocks
wastes a substantial amount of memory for those blocks that are not currently in use;
above acertain size, you'll want to pass allocations off to a separate large block aloca
tor, or just to mallocQ. :

Vlrtual Functlons

Critics of C++ in games often pomt to V|rtua| functlons as a mysterious feature
that drains performance. Conceptually, the mechanism is simple. To generate avirtua
function cdl on an object, the compiler accesses the objects virtual function table,



retrieves a pointer to the member function, sets up the cal, and jumps to the member
function's address. This is to be compared with a function cdl in C, where the com-
piler sets up the call and jumps to a fixed address. The extra overhead for the virtual
function cdl is die indirection to die virtua function table, because the address of the
cdl isn't known in advance, there can dso be a penalty for missing the processor's
instruction cache.

Any substantial C++ program will make heavy use of virtual functions, so the idea
is to avoid these cdls in performance-critical areas. Hereis atypica example:

class Based ass
éublip: .
virtual char *GetPointer() = 0;
class Qass"! : public Based ass
virtual char *GetPointer();

!
class dass2 : public Based ass

virtual char *GetPointer();
H

void Function(Based ass *pQhj)

{ char *ptr = pOhj ->Cet Pointer();

If FunctionQ is performance critica, we want to change die cdl to GetPointer
from virtual to inline. One way to do this is to add a new protected data member to

BaseClass, which is returned by an inline verson of GetPointerQ, and st the data
member in each dass:

class Based ass

S
public:
inline char *GetPointerFast()

returnnpPoi nter;

}

protected: .
inline void SetPointer(char *pData)
{ npData = pDat a;

private:

char *npDat a;
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}
Il classl and class2 cal|l SetPointer as necessary
I'l'i n menber functions

voi d Function(Based ass *pQhj)

char *ptr = pObj->GetPointerFast();
}

A more drastic measure is to rearrange your dass hierarchy. If Classl and Class2
have only dight differences, it might be worth combining them into a single class,
with aflag indicating whether you want the dass to behave like Class or Class2 at
runtime. With this change (and the remova of the pure virtual BaseClass), the Get-
Pointer function in the previous example can again be made inline. This transforma-
tion is far from elegant, but in inner loops on machines with small caches, you'd be
willing to do much worse to get rid of avirtual function cal.

Although each new virtua function adds only the Sze of a pointer to a per-class
table (usually anegligible cost), theyzrtf virtual function in aclass requires apointer to
the virtual function table on a pet-object basis. This means that you don't want to have
any virtual functions at dl in small, frequently used classes where this extra overhead
is unacceptable. Because inheritance generally requires the use of one or more virtual
functions (avirtual destructor if nothing else), you don't want any hierarchy for small,
heavily used objects.

Code Size

Because memory is limited, and because small is fast, it's important to make your exe-
cutable as smal as possible. The first thing to do is get the compiler on your side. If
your compiler stores debugging information in the executable, disable the generation
of debugging information. (Note that Microsoft Visud C++ stores debugging infor-
mation separate from the executable, so this may not be necessary.) Exception handling
generates extra code; get rid of as much exception-generating code as possible. Make
sure the linker is configured to strip out unused functions and dasses. Enable the com-
piler's highest level of optimization, and try setting it to optimize for sze instead of
speed—sometimes this actually produces faster code because of better instruction
cache coherency. (Be sure to verify that intrinsic functions are still enabled if you use
this setting.) Get rid of dl of your space-wasting strings in debugging print statements,
and have the compiler combine duplicate constant strings into single instances.
Inlining is often the culprit behind suspicioudy large functions. Compilers are
free to respect or ignore your inline keywords, and they may well inline functions
without telling you. This is another reason to keep your constructors lightweight, so
that objects on the stack don't wind up generating lots of inline code. Also be careful
of overloaded operators; a smple expression like ml = m2 * m3 can generate a ton of
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inline code if M2 and m3 are matrices. Get to know your compiler's settings for inlin-
ing functions thoroughly.

Enabling runtime type information (RTTI) requires the compiler to generate
some static information for (just about) every dassin your program. RTTI istypicaly
enabled so that code can cdl dynamic_cast and determine an object's type. Consider
avoiding RTTI and dynamic_cast entirely in order to save space (in addition,
dynamic_cast is quite expensive in some implementations). Instead, when you redly
need to have different behavior based on type, add avirtual function that behaves dif-
ferently. Thisis better object-oriented design anyway. (Note that this doesn't apply to
static_cast, whichisjust like aC-style cast in performance.)

The Standard Template L|brary

T B R s s st i

The Standard Template Library (ST L) isa set of templ ateﬁ that implement common
data structures and agorithms, such as dynamic arrays (cdled vectors), sets, and
maps. Using the STL can save you a great deal of time that you'd otherwise spend
writing and debugging these containers yourself. Once again, though, you need to be
aware of the details of your STL implementation if you want maximum efficiency.

In order to dlow the maximum range of implementations, the STL standard is
silent in the area of memory allocation. Each operation on an STL container has cer-
tain performance guarantees, for example, insertion into a set takes O(log n) time.
However, there are no guarantees on a container's memory usage.

Let's go into detail on avery common problem in game development: you want
to store a bunch of objects (well cal it alist of objects, though we won't necessarily
store it in an STL list). Usualy you want each object to appear in alist only once, so
that you don't have to worry about accidentdly inserting the object into the collection
if it's already there. An STL set ignores duplicates, has O(log n) insertion, deletion,
and lookup—the perfect choice, right?

Maybe. While it's true that most operations on a set are O(log n), this notation
hides a potentially large constant. Although the collection's memory usage is imple-
mentation dependent, many implementations are based on a red-black tree, where
each node of the tree stores an element of the collection. It's common practice to alo-
cate a node of the tree every time an element is inserted, and to free anode every time
an dement is removed. Depending on how often you insert and remove dements, the
time spent in the memory dlocator can overshajow any algorithmic savings you
gained from using a set.

An dternative solution uses an STL vector to store elements. A vector is guaran-
teed to have amortized constant-time insertion at the end of the collection. What this
means in practice is that a vector typically reallocates memory only on occasion, say,
doubling its size whenever it's full. When using a vector to store a list of unique ee-
ments, you first check the vector to see if the element is already there, and if it isn't,
you add it to the back. Checking the entire vector will take O(n) time, but the con-
stant involved is likely to be small. That's because dl of the elements of a vector are
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typicaly stored contiguoudy in memory, so checking the entire vector is a cache-
friendly operation. Checking an entire set may well thrash the memory cache, asindi-
vidual elements of the red-black tree could be scattered al over memory. Also
consider that a set must maintain a significant amount of overhead to set up the tree.
If all you're storing is object pointers, a set can easily require three to four times the
memory of avector to store the same objects.

Deletion from a set is O(log n), which seems fast until you consider that it prob-
ably dso involves a cdl to free(). Deletion from a vector is O(n), because everything
from the deleted element to the end of the vector must be copied over one position.
However, if the elements of the vector are just pointers, the copying can dl be done in
asingle cal to memcpyO, which is typicaly very fast. (Thisis one reason why it's usu-
aly preferable to store pointers to objects in STL collections, as opposed to objects
themselves. If you store objects directly, many extra constructors get invoked during
operations such as deletion.)

If you're till not convinced that sets and maps can often be more trouble than
they're worth, consider the cost of iterating over a collection, specificaly:

for (Collection::iterator it = collection.begin();
it != collection.end(); ++it)

If Collection is avector, then ++it is apointer increment—one machine instruc-
tion. But when Collection is aset or amap, ++itinvolves traversing to the next node
of ared-black tree, arelatively complicated operation that is aso much more likely to
cause a cache miss, because tree nodes may be scattered al over memory.

Of course, if you're storing avery large number of items in a collection, and doing
lots of membership queries, aset's O(log n) performance could very well be worth the
memory cos. Similarly, if youre only using the collection infrequently, the perfor-
mance difference may be irrelevant. You should do performance measurements to
determine what values of n make a set faster. Y ou may be surprised to find that vectors
outperform sets for dl values that your game will typically use.

That's not quite the last word on STL memory usage, however. It's important to
know if a collection actually frees its memory when you cdl the clear() method. If not,
memory fragmentation can result. For example, if you start a game with an empty
vector, add elements to the vector as the game progresses, and then call clear() when
the player restarts, the vector may not actually free its memory at al. The empty vec-
tor's memory could gill be taking up space somewhere in the heap, fragmenting it.
There are two ways around this problem, if indeed your implementation works this
way. First, you can call reserveQ when the vector is created, reserving enough space for
the maximum number of elements that you'll ever need. If that's impractical, you can
explicitly force the vector to free its memory thisway:

vector<int> v; . _
Il ... elenents are inserted into v here
vector<int>().swap(v); // causes v to free its nenory
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Sets, lists, and maps typically don't have this problem, because they allocate and
free each element separately.

Advanced Features

Just because alanguage has a feature doesn't mean you have to use it. Seemingly sim-
ple features can have very poor performance, while other seemingly complicated fea-
tures can in fact perform well. The darkest corners of C++ are highly compiler
dependent — make sure you know the costs before using them.

C++ dtrings are an example of afeature that sounds great on paper, but should be
avoided where performance matters. Consider the following code:

void Function (const std: :string &str)
{
}

Function ("hello");

The cdl to FunctionQ invokes a constructor for a string given a const char *. In
one commercia implementation, this constructor performs amallocQ, astrlenQ, and
a memcpyO, and the destructor immediately does some nontrivial work (because this
implementation’s strings are reference counted) followed by afreeQ- The memory
that's allocated is basically a waste, because the string "hello” is aready in the pro-
gram's data segment; weve effectively duplicated it in memory. If FunctionQ had
instead been declared as taking a const char *, there would be no overhead to the cdl.
That's ahigh price to pay for the convenience of manipulating strings.

Templates are an example of the opposite extreme of efficiency. According to the
language standard, the compiler generates code for a template when the template is
instantiated with a particular type. In theory, it sounds like a single template declara-
tion would lead to massve amounts of nearly identical code. If you have a vector of
Clasdl pointers, and avector of Class2 pointers, you'll wind up with two copies of vec-
tor in your executable.

The redlity for most compilers is usually better. First, only template member
functions that are actually caled have any code generated for them. Second, the com-
piler is dlowed to generate only one copy of the code, if correct behavior is preserved.
You'll generdly find that in the vector example given previoudly, only asingle copy of
code (probably for vector<void *>) will be generated. Given a good compiler, tem-
plates give you dl the convenience of generic programming, while maintaining high
performance.

Some features of C++, such asinitializer lists and preincrement, generally increase
performance, while other features such as overloaded operators and RTTI look
equally innocent but carry serious performance penalties. STL collections illustrate
how blindly trusting in a function's documented agorithmic running time can lead
you astray. Avoid the potentially dow features of the language and libraries, and spend
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some time becoming familiar with the options in your profiler and compiler. Youlll

quickly learn to design for speed and hunt down the performance problems in your
game.
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Inline Functions VVersus Macros

Peter Dalton, Evans & Sutherland
pdalton@xmission.com

ien it comes to game programming, the need for fast, efficient functions cannot

be overstated, especidly functions that are executed multiple times per frame.
Many programmers rely heavily on macros when dealing with common, time-critical
routines because they eliminate the calling/returning sequence required by functions
that are sengtive to the overhead of function cdls. However, using the tfdefine directive
to implement macros diat look like functions is more problematic than it is worth.

Advantages of Inllne Functlons

16
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Through the use of inline funct| ons, many of the mherent disadvantages of macros
can easily be avoided. Take, for example, the following macro definition:

#define max(a,b) ((a) > (b) ? (a) : (b))’

Let's look at what would happen if we cdled the macro with die following para
meters: max(++x,Yy). Ifx = 5andj/ = 3, the macro will return avalue of 7 rather than
the expected value of 6. This illustrates the most common side effect of macros, the
fact that expressions passed as arguments can be evaluated more than once. To avoid
this problem, we could have used an inline function to accomplish die same god:

inline int max(int a, int b) { return (a > b ? a : b); }

By using the inline method, we are guaranteed that al parameters will only be
evaluated once because they must, by definition, follow al the protocols and type
safety enforced on normal functions.

Another problem that plagues macros, operator precedence, follows from die
same problem presented previoudy, illustrated in the following macro:

#define square(x) (x*x)
If we were to cdl this macro with the expression 2+1, it should become obvious

that die macro would return aresult of 5 instead of the expected 9. The problem here
is that the multiplication operator has a higher precedence than the addition operator
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has. While wrapping dl of the expressons within parentheses would remedy this
problem, it could have easily been avoided through the use of inline functions.

The other major pitfall surrounding macros has to ded with multiple-statement
macros, and guaranteeing that al statements within the macro are executed properly.
Again, let's look at asimple macro used to clamp any given number between zero and
one:

#define clamp(a) \
if (@>1.0) a=10; \
if (a <0.0) a=0.0;

If we were to use the macro within the following loop:

for (int ii =0; ii < N; ++ii)
clamp( numbersToBeClamped]ii] );

the numbers would not be clamped if they were less than zero. Only upon termina-
tion of thefor loop when « == Nwould the expression if(numbersToBeClamped[ii] <
0.0) be evaluated. This is dso very problematic, because the index variable « is now
out of range and could easily result is amemory bounds violation that could crash the
program. While replacing the macro with an inline function to perform the same
functionality is not the only solution, it is the cleanest.

Given these inherent disadvantages associated with macros, let's run through the
advantages of inline functions:

« Inline functions follow &l the protocols of type safety enforced on normal func-
tions. This ensures that unexpected or invaid parameters are not passed as
arguments.

« Inline functions are specified using the same syntax as any other function, except
for the inline keyword in the function declaration.

» Expressions passed as arguments to inline functions are evaluated prior to enter-
ing the function body; thus, expressions are evaluated only once. As shown previ-
oudy, expressons passed to macros can be evauated more than once and may
result in unsafe and unexpected side effects.

* |tispossible to debug inline functions using debuggers such as Microsoft's Visua
C++. Thisis not possible with macros because the macro is expanded before the
parser takes over and the program's symbol tables are created.

« Inline functions arguably increase the procedure's readability and maintainability
because they use the same syntax as regular function cals, yet do not modify para-
meters unexpectedly.

Inline functions also outperform ordinary functions by eliminating the overhead
of function cals. This includes tasks such as stack-frame setup, parameter passing,
stack-frame restoration, and the returning sequence. Besides these key advantages,
inline functions dso provide the compiler with the ability to perform improved code
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optimizations. By replacing inline functions with code, the inserted code is subject to
additional optimizations that would not otherwise be possible, because most compil-
ers do not perform interprocedural optimizations. Allowing the compiler to perform
globa optimizations such as common subexpression elimination and loop invariant
removal can dramatically improve both speed and size.

The only limitation to inline functions that is not present within macros is the
restriction on parameter types. Macros dlow for any possible type to be passed as a
parameter; however, inline functions only dlow for the specified parameter type in
order to enforce type safety. We can overcome this limitation through the use of inline
template functions, which adlow us to accept any parameter type and enforce type
safety, yet dill provide dl the benefits associated with inline functions.

When to Use Inllne Functlons

Why don't we make every function an inline functlon’7 Wouldnt this eliminate the
function overhead for the entire program, resulting in faster fill rates and response
-times? Obvioudy, the answer to these questions is no. While code expansion can
improve speed by eliminating function overhead and dlowing for interprocedura
compiler optimizations, thisis dl done at the expense of code size. When examining
the performance of a program, two factors need to be weighed: execution speed
and the actual code size. Increasing code size takes up more memory, which is apre-
cious commodity, and aso bogs down the execution speed. As the memory require-
ments for a program increase, so does the likelihood of cache misses and page faults.
While a cache misswill cause aminor delay, a page fault will dways result in amajor
dday because the virtual memory locetion is not in physicad memory and must
be fetched from disk. On a Pentium I 400 MHz desktop machine, a hard page fault
will result in an approximately 10 millisecond pendty, or about 4,000,000 CPU
cycles [Heller99].

If inline functions are not dways awin, then when exactly should we use them?
The answer to this question really depends on the situation and thus must rely heav-
ily on thejudgment of the programmer. However, here are some guidelines for when
inline functions work well:

» Smadl methods, such as accessors for private data members.
» Functions returning state information about an object.
» Smadll functions, typicdly three lines or less.

« Smadl functions that are called repeatedly; for example, within atime-critica ren-
dering loop.

Longer functions that spend proportionately less time in the calling/returning
sequence will benefit less from inlining. However, used correctly, inlining can greatly
increase procedure performance.
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When to Use Macros

Despite the problems assooated Wlth Macros, there are afew circumstances in which
they areinvaluable. For example, macros can be used to create small pseudo-languages
that can be quite powerful. A set of macros can provide the framework that makes cre-
ating state machines a breeze, while being very debuggable and bulletproof. For an
excellent example of this technique, refer to the "Designing a Genera Robust Al

'Engine" article referenced at the end of this gem [RabinOO]. Another example might
be printing enumerated types to the screen. For example:

tfdefine CaseEnum(a) case(a) : PrintEnum( #a )
switch (msg_passed_in) {
CaseEnum( MSG_YouWereHit );
ReactToHit();
break;
CaseEnum( MSG_GameReset );
ResetGamelogic();
break;

}

Here, PrintEnumQ is a macro that prints a string to the screen. The # is the
stringizing operator that converts macro parameters to string constants [MSDN].
Thus, there is no need to create alook-up table of al enums to strings (which are usu-
ally poorly maintained) in order to retrieve invaluable debug information.

The key to avoiding the problems associated with macros is, firgt, to understand
the problems, and, second, to know the alternative implementations.

Microsoft Specrflcs

Besides the standard |nI|ne keyword Mlcrosofts Vlsud C++ compiler provides sup-
port for two additional keywords. The __inline keyword instructs the compiler to
generate a cost/benefit analysis and to only inline the function if it proves beneficial.
The__ forceinline keyword instructs the compiler to aways inline the function.
Despite using these keywords, there are certain circumstances in which the compiler
cannot comply as noted by Microsoft's documentation [MSDN].
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1.3

Programming with
Abstract Interfaces

Noel Llopis, Meyer/Glass Interactive

nllopis@mgigames.com

he concept of abstract interfaces is simple yet powerful. It dlows us to completely
separate the interface from its implementation. This has some very useful
consequences:

 Itiseasy to switch among different implementations for the code without affect-
ing the rest of the game. This is particularly useful when experimenting with dif-
ferent dgorithms, or for changing implementations on different platforms.

» The implementations can be changed a runtime. For example, if the graphics
Tenderer is implemented through an abstract interface, it is possble to choose
between a software Tenderer or a hardware-accelerated one while the game is
running.

» The implementation detalls are completely hidden from the user of the interface.
This will result in fewer header filesincluded al over the project, faster recompile
times, and fewer times when die whole project needs to be completely recompiled.

» New implementations of existing interfaces can be added to the game effortlesdy,
and potentially even after it has been compiled and released. This makes it possi-
ble to easily extend the game by providing updates or user-defined modifications.

Abstract Interfaces

..... T ——— N T ——

In C++, an abstract mterface is nothlng more than abase class that has only public
pure virtua functions. A pure virtual function is a type of virtual member function
that has no implementation. Any derived class must implement those functions, or
else the compiler prevents instantiaton of that class. Pure virtua functions are indi-
cated by adding = 0 after their declaration.

The following is an example of an abstract interface for a minimal sound system.
This interface would be declared in a header file by itsdf:

/11 n SoundSystemh
class | SoundSyst em {
publ i c:
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virtual ~ISoundSystem() {};
virtual bool PlaySound ( handle hSound )
virtual bool StopSound ( handle hSound )

b

The abstract interface provides no implementation whatsoever. All it does is
define the rules by which the rest of the world may use the sound system. Aslong as
the users of the interface know about | SoundSystem, they can use any sound system
implementation we provide. '

The following header file shows an example of an implementation of the previous
interface: '

/lIn SoundSystemSoftware.h
#include "SoundSystem.h"

class SoundSystemSoftware : public ISoundSystem {
public:
virtual -SoundSystemSoftware () ;
virtual bool PlaySound ( handle hSound ) ;
virtual bool StopSound ( handle hSound ) ;

/I The rest of the functions in the implementation

b

Wewould obviously need to provide the actual implementation for each of those
functions in the corresponding .cpp file.
To use this class, you would have to do the following:

ISoundSystem * pSoundSystem = new SoundSystemSoftware () ;
/I Now we're ready to use it
pSoundSystem->PlaySound ( hSound );

So, what have we accomplished by creating our sound system in this roundabout
way? Almost everything that we promised at the start:

* |t is easy to create another implementation of the sound system (maybe a hard-
ware version). All that is needed is to create a new class that inherits from
| SoundSystem, instantiateit instead of SoundSystemSoftwar eQ, and everythingelse
will work the same way without any more changes.

* We can switch between the two dasses a runtime. As long as pSoundSystem
points to a vaid object, the rest of the program doesn't know which one it is
using, so we can change them at will. Obvioudy, we have to be careful with spe-
cific dassrestrictions. For example, some classeswill keep some state information
or require initialization before being used for thefirst time.

* We have hidden dl the implementation details from the user. By implementing
the interface we are committed to providing the documented behavior no matter
what our implementation is. The code is much cleaner than the equivalent code
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full of //"statements checking for one type of sound system or another. Maintain-
ing the code is dso much easier.

Addlng a Factory

There isone detal that we havent covered yet we ha/ent completely hidden the spe-
cific implementations from the users. After al, the users are till doing a new on the
dass of the specific implementation they want to use. The problem with this is that
they need to #include the header file with the declaration of the implementation.
Unfortunately, theway C++ was designed, when users #include a header file, they can
aso get alot of extrainformation on the implementation details of that class that they
should know nothing about. They will see dl the private and protected members, and
they might even include extra header filesthat are only used in the implementation of
the dass.

To make matters worse, the users of the interface now know exactly what type of
dass their interface pointer points to, and they could be tempted to cast it to its red
type to access some "specid features' or rely on some implementati on-specific behav-
ior. As soon as this happens, we lose many of the benefits we gained by structuring
our design into abstract interfaces, so this is something that should be avoided as
much as possible.

The solution is to use an abstract factory [Gamma95], which is a dass whose sole
purposeis to instantiate a specific implementation for an interface when asked for it.
The following is an example of a basic factory for our sound system:

/'I'l'n SoundSyst enfactory. h
class | SoundSystem

class SoundSystenfactory {
public:
enum SoundSyst enType {
SOUND_SCOFTWARE,
SOUND_HARDWARE,
SOUND_SOMVETHI NGELSE

b

static |SoundSystem * Creat eSoundSyst en( SoundSyst enfype type);
};

/1"l n SoundSyst enfact orP/ cpp
A nclude "SoundSyst enfof tware. h"
A ncl ude " SoundSyst enHar dwar e . h
#i ncl ude " SoundSYst enSonet hi ngH se. h"

| SoundSyst em * SoundSyst enfact ory: : O eat eSoundSyst em ( SoundSyst enflype
_type )

| SoundSystem * pSystem
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switch ( type ) {
case SOUND_SOFTWARE:
pSystem = new SoundSystemSoftwaref);
break;
case SOUND_HARDWARE:
pSystem = new SoundSystemHardwareO;
break;
caseSOUND_SOMETHINGELSE:
pSystem = new SoundSystemSomethingElse();
break;
default:
pSystem = NULL;
}

return pSystem,;

}

Now we have solved the problem. The user need only include SoundSystemFac-
tory. h and SoundSystem.h. As a matter of fact, we don't even have to make the rest of
die header filesavailable. To use a specific sound system, the user can now write:

ISoundSystem * pSoundSystem;
pSoundSystem = SoundSystemFactory::CreateSoundSystem

(SoundSystemFactory::SOUND_SOFTWARE);
/I Now we're ready to use it
pSoundSystem->PlaySound ( hSound );

We need to always include a virtual destructor in our abstract interfaces. If
we don't, C++ will automatically generate a nonvirtual destructor, which
will cause the real destructor of our specific implementation not to be called
(andthat is usually a hard bug to track down). Unlike normal member
functions, wecan'tjust provideapurevirtual destructor, soweneedtocreate
an emptyfunction to keep the compiler happy.

Abstract Interfaces as TraltvsP

B N P T

A dightly different way to thi nk of abstract mterfac& is to consder an interface as a
st of behaviors. If adassimplements an interface, that class is making a promise that

it will behave in certain ways. For example, the following is an interface used by
objects that can be rendered to the screen:

class |Renderable {
public:
virtual -1Renderable() {};
virtual bool Render () = 0;
b

We can design aclass to represent 3D objects that inherits from | Renderable and
provides its own method to render itsdf on the screen. Similarly, we could have a
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terrain cdass that dso inherits from IRenderable and provides a completely different
rendering method.

class GenericSDODbject : public IRenderable {
public:
virtual ~Generic3DObject() ;
virtual bool Render();

/I Rest of the functions here

¥

The render loop will iterate through dl the objects, and if they can be rendered,
it cdls their RenderQ function. The red power of the interface comes again from hid-
ing the real implementation from the interface: now it is possible to add a completely
new type of object, and as long as it presents the |Renderable interface, the rendering
loop will be able to render it like any other object. Without abstract interfaces, the
render loop would have to know about the specific types of abject (generic 3D object,
terrain, and so on) and decide whether to cdl their particular render functions. Cre-
ating a new type of render-capable object would require changing the render loop
along with many other parts of the code.

We can check whether an object inherits from IRenderable to know if it can be
rendered. Unfortunately, that requires that the compiler's RTTI (Run Time Type
I dentification) option be turned on when the code is compiled. Thereisusualy aper-
formance and memory cost to have RTTI enabled, so many games have it turned off
in their projects. We could use our own custom RTTI, but instead, let's go the way of
COM (Microsoft's Component Object Model) and provide a Queryinterface function
[Rogerson97].

If the object in question implements a particular interface, then Querylnterface
casts the incoming pointer to the interface and returns true. To create our own Query-
Interface function, we need to have a base class from which al of the related objects
that inherit from aset of interfaces derive. We could even make that base class itsdlf an
interface like COM's lUnknown, but that makes things more complicated.

class GameObject {
public:
enum GamelnterfaceType {
IRENDERABLE,
IOTHERINTERFACE

b
virtual bool Querylnterface (const GamelnterfaceType type,
void ** pObj );
/I The rest of the GameObject declaration
b

The implementation of Querylnterface for a plain game object would be trivid.
Because it's not implementing any interface, it will aways return false.
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bool Game(hj ect: : Querylnterface (const Ganel nterfaceType type,
void ** pQbj ) {
return fal se;
}

The implementation of a 3D object class is different from that of GameObject,
because it will implement the | Renderableinterface.

classbl?gDObject . public GameObject, public IRenderable {
public:
virtual -3DObject();

virtual bool Querylnterface (const Ganel nterfaceType type,
void ** pQoj ) ;

virtual bool Render();
/1 Some more functions if needed
};

bool SDObject: :Qijerylnterface (const GamelnterfaceType type,

void ** pObj ) {
bool bSuccess = false;
if ( type == GameObject:: IRENDERABLE 2 {
*nObj = static_cast<IRenderable *>(this);
bSuccess = true;

%eturn bSuccess;
}

Itis the responsibility of the 3DObject class to override Querylnterface, check for
what interfaces it supports, and do the appropriate casting.

Now, let's look at the render loop, which is smple and flexible and knows noth-
ing about the type of objects it is rendering.

IRenderable * pRenderable;
- for % al the objects we want to render ) {

if ( pGameObject- >Quer?llnterface (GameObject: : IRENDERABLE,
8/0|d** )&pRenderable)

t pRenderable->Render () ;
}
}

Now were ready to ddiver the last of the promises of abstract interfaces listed at
the beginning of this gem: effortlessy adding new implementations. With such a ren-
der loop, if we give it new types of objects and some of them implemented the IRen-
derableinterface, everything would work as expected without the need to change the
render loop. The easest way to introduce the new object types would be to simply re-
link the project with the updated libraries or code that contains the new classes
Although beyond the scope of this gem, we could add new types of objects at runtime
through DLLs or an equivalent mechanism available on the target platform. This
enhancement would alow us to release new game objects or game updates without
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the need to patch the executable. Users could aso use this method to easily create
modifications for our game.

Notice that nothing is stopping us from inheriting from multiple interfaces. All it
will mean is that the dass that inherits from multiple interfaces is now providing dl
the services specified by each of the interfaces. For example, we could have an [Coll-
idable interface for objects that need to have collison detection done. A 3D object
could inherit from both IRenderable and ICollidable, but a dass representing smoke
would only inherit from IRenderable.

A word of warning, however: while using multiple abstract interfaces is a power-
ful technique, it can dso lead to overly complicated designs that don't provide any
advantages over designs with single inheritance. Also, multiple inheritance doesn't
work wel for dynamic characterigics, and should rather be used for permanent char-
acterigtics intrinsic to an object.

Even though many people advise staying away from multiple inheritance, thisisa
cae where it is useful and it does not have any major drawbacks. Inheriting from at
most one real parent class and multiple interface functions should not result in the
dreaded diamond-shaped inheritance tree (where the parents of both our parents are
the same class) or many of the other usua drawbacks of multiple inheritance.

Everythlng Has a Cost

=TT T X

So far, we have seen that abstract mterfaces have many attractlvefeatures However, al
of these features come at a price. Mot of the time, the advantages of using abstract
interfaces outweigh any potential problems, but it is important to be aware of the
drawbacks and limitations of this technique.

First, the design becomes more complex. For someone not used to abstract inter-
faces, the extra classes and the querying of interfaces could look confusing at first
sight. It should only be used where it makes a difference, not indiscriminately al over
the game; otherwise, it will only obscure the design and get in the way.

With the abstract interfaces, we did such a good job hiding al of the private
implementations that they actualy can become harder to debug. If dl we have is a
variable of type |Renderable*, we won't be able to see the private contents of the rea
object it points to in the debugger's interactive watch window without a lot of tedious
casting. On the other hand, most of the time we shouldn't have to worry about it.
Because the implementation is well isolated and tested by itself, all we should care
about is using the interface correctly.

Another disadvantage is that it is not possible to extend an existing abstract inter-
face through inheritance. Going back to our first example, maybe we would have
liked to extend the SoundSystemHardware dass to add a few functions specific to the
game. Unfortunately, we don't have access to the class implementation any more, and
we certainly can't inherit from it and extend it. It is still possible either to modify the
existing interface or provide anew interface using aderived class, but it will dl have to
be done from the implementation side, and not from within the game code.
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Finally, notice that every single function in an abstract interface is avirtual func-
tion. This means that every time one of these functions is called through the abstract
interface, the computer will have to go through one extra leve of indirection. This is
typicaly not a problem with modern computers and game consoles, as long as we
avoid using interfaces for functions that are caled from within inner loops. For exam-
ple, creating an interface with a DrawPolygonQ or SetScreenPointQ function would
probably not be a good idea.

Conclusion___ N

Abstract interfaces are apowerful technique that can be put to good use with very lit-
tle overhead or structural changes. It is important to know how it can be best used,
andwhen it is better to do things adifferent way. Perfect candidates for abstract inter-
faces are modules that can be replaced (graphics Tenderers, spatiad databases, Al
behaviors), or any sort of pluggable or user-extendable modules (tool extensions,
game behaviors).
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Exporting C++ Classes from DLLs

Herb Marselas, Ensemble Studios
hmarselas@ensemblestudios.com

Exporti ng a C++ class from a Dynamic Link Library (DLL) for use by another
application is an essy way to encapsulate instanced functionality or to share
derivable functionality without having to share the source code of the exported class.
This method is in some ways similar to Microsoft COM, but is lighter weight, easier
to derive from, and provides a simpler interface.

Exporting a Function

At the most basic Ievel there is I |ttIe dlfference between export| ng afunction or aclass
from a DLL. To export myExportedFunction from a DLL, the value BUILDING _
MY _DLL is defined in the preprocessor options of the DLL project, and not in the
projects that use the DLL. This causes DLLFUNCTION to be replaced by
__decbpec(dllexport) when building the DLL, and __deckpec(dllimport) when build-
ing the projects that use the DLL.

#ifdef _BUILDING_MY_DLL
tfdefine DLLFUNCTION _declspec(dllexport) // defined if building the
/I DL

#else

tfdefine DLLFUNCTION _declspec(dllimport) // defined if building the
// application

#endif

DLLFUNCTION long myExportedFunction(void);

Exportlng a Class

Exporting a C++ das from a DLL is sllghtly more compllcated because there are sev-
eral dternatives. In the simplest case, the class itsalf is exported. As before, the DLL-
FUNCTION macro is used to declare the class exported by the DLL, or imported by
the application.

28
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tfifdef _BUILDING_MY_DLL

tfdefine DLLFUNCTION _ declspec(dllexport)
#else

tfdefine DLLFUNCTION __ declspec(dllimport)
tfendif

class DLLFUNCTI ON CMyExportedd ass

publ i c:
CWExportedd ass(void) : miwalue(Q { }

voi d set Val ueélo.n dwval ue) { nmdwval ue = dwval ue; }
long get Val ue(void) { return miwval ue; }
long cl ear Val ue(voi d) ;

private: -
long ndwval ue;
}s

If the DLL containing the class is implicitly linked (in other words, the project
links with the DLL's lib file), then using the dass is as Smple as declaring an ingtance
of the class CMyExportedClass. This dso enables derivation from thisdassasif it were
declared directly in the application. The declaration of a derived cdlass in the applica-
tion is made normally without any additional declarations.

class CMyApplicationClass : public CMyExportedClass

public:
CMyApplicationClass (void )
{

}
B

There is one potential problem with declaring or dlocating a dass exported from
aDLL in an application: it may confuse some memory-tracking programs and cause
them to misreport memory allocations or deletions. To fix this problem, helper func-
tions that dlocate and destroy instances of the exported class must be added to the
DLL. All users of the exported class should cal the alocation function to create an
ingance of it, and the deetion function to destroy it. Of course, the drawback to this
is that it prevents deriving from the exported dass in the application. If deriving an
application-side class from the exported dass is important, and the project uses a
memory-tracking program, then this program will either need to understand what's
going on or be replaced by a new memory-tracking program.
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#ifdef _BUILDING_MY_DLL

#define DLLFUNCTION _declspec(dllexport)
#else

#define DLLFUNCTION _declspec(dllimport)
#endif

class DLLFUNCTION CW/Exportedd ass

publ i c:
CWExportedd ass(void) : ndwalue(Q { }

voi d set Val ueEI ong dwval ue) { ndwval ue = dwval ue; }
| ong get Val ue(void) { return miwal ue; }
l'ong cl earVal ue(void);

private:
l'ong ndwval ue;
CM/Export edC ass *creat eM/Export edQ ass(void) {
return new OWExportedd ass; }

voi d del et eMyExportedC ass( CM/Export edd ass *pcl ass) {
del ete pclass; }

Exporting Class Member Functions

Even with the helper functions added, because the class itsdf is being exported from
the DLL, it is still possible that users could create instances of the class without calling
the createMyExportedCLtss hel per function. This problem is easily solved by moving the
export specification from the class levd to the individual functions to which the users
of the dass need access. Then the agpplication using the class can no longer create an
instance of the class itself. Instead, it must cal the createMyExportedCLtss hel per func-
tion to create an instance of the class, and deleteMyExportedClass when it wishes to
destroy the class.

class CWExport edd ass

public:
CWExportedd ass(void) : miwalue(Q { }

DLLFUNCTI ON voi d set Val ue(long dwval ue) { ndwval ue = dwval ue; }
DLLFUNCTI ON | ong get Val ue(voi d) { return miwval ue; }
I ong cl ear - Val ue(voi d);

private:
long miwval ue;

CWExportedd ass *creat eM/Exportedd ass(void) {
return new CM/Exportedd ass; }

voi d del et eM/Export edd ass(COM/Exportedd ass *pclass) {
del ete pclass; }
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It should aso be noted that although CMyExportedClass::clearValueis a public
member function, it can no longer be cdled by users of the dass outside the DLL, as
it is not declared as dllexported. This can be a powerful tool for a complex class that
needs to make some functions publicly accessible to users of the class outside the
DLL, yet dill needs to have other public functions for use indde the DLL itsdf. An
example of this strategy in practice is the SDK for Discregt's 3D Studio MAX. Most
of the dasses have a mix of exported and nonexported functions. This dlows die user
of the SDK to access or derive functionality as needed from the exported member
functions, while enabling the developers of the SDK to have their own sat of inter-
naly available member functions.

Exporting Virtual Class Member Functions

One potentlal problem should be noted for users of Mlcrosoft Visud C++ 6. Ifyou
are attempting to export the member functions of a class, and you are not linking
with the lib file of the DLL that exports the dass (you're using LoadLibrary to load
the DLL at runtime), you will get an "unresolved external symbol" for each function
you reference if inline function expansion is disabled. This can happen regardless of
whether the function is declared completely in the header. One fix for this is to
change the inline function expansion to "Only___inline" or "Any Suitable." Unfortu-
nately, this may conflict with your desire to actually have inline function expansion
disabled in a debug build. An dternate fix is to declare the functions virtual. The vir-
tual declaration will cause the correct code to be generated, regardless of the setting of
the inline function expansion option. In many circumstances, youll likdy want to
declare exported member functionsvirtual anyway, so that you can both work around
the potential Visua C++ problem and alow the user to override member functions as

necessary.
classCMyExportedClass

public:
OWExportedd ass(void) : miwalue(Q { }

o D.LI;U\ICFICN virtual void setValue(long dwvalue) { ndwalue =
al ue;

DLLFUNCTION virtual long getVal ue(void) { return miwval ue; }
long clearVal ug(void);

private:
[ ong nmdwval ue;

With exported virtual member functions, deriving from the exported class on the
application side is the same as if the exported dass were declared completely in the
application itself.
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class OWApplicationd ass . public CM/Exportedd ass

public:
CMyApplicationClass (void) { }

virtual void setValue(long dwValue);
virtual long getValue(void) ;

b

Summary

Export| ng adass from aDLL isan eeby and powerful way to share functionality with-
out sharing source code. It can give the application dl the benefits of astructured C++
dass to use, derive from, or overload, while adlowing the creator of the dass to keep
internal functions and variables safely hidden away.



Protect Yourself from DLL Hell
and Missing OS Functions

Herb Marselas, Ensemble Studios

hmarselas@ensemblestudios.com

ynamic Link Libraries (DLLs) are a powerful feature of Microsoft Windows.

They have many uses, including sharing executable code and abstracting out
device differences. Unfortunately, relying on DLLs can be problematic due to their
standalone nature. If an application relies on a DLL that doesn't exist on the user's
computer, attempting to run it will result in a "DLL Not Found" message that's not
helpful to the average user. If the DLL does exist on the user's computer, there's no
way to tell if the DLL is valid (at least as far as the application is concerned) if it's
automatically loaded when the application starts up.

Bad DLL versions can easily find their way onto a system as the user installs and
uninstalls other programs. Alternatively, there can even be differencesin sysem DLLs
among different Windows platforms and service packs. In these cases, the user may
either get the cryptic "Dynalink Error!" message if the function being linked to in the
DLL doesn't exist, or worse yet, the application will crash. All of these problems with
finding and loading the correct DLL are often referred to as "DLL Hell." Fortunately,
there are several ways to protect against falling into this particular hell.

Implicit vs. Epr|C|t Llnklng

The first line of defense in protectl ng agal nst bad DLLs is to make sure that the nec-
essary DLLs exist on the user's computer and are a version with which the application
can work. This must be done before attempting to use any of their functionality.
Normally, DLLs are linked to an application by specifying their eponymous lib
filein thelink line. Thisis known asimplicit DLL loading, or implicitlinking. By link-
ing to the lib file, the operating system will automatically search for and load the
matching DLL when a program runs. This method assumes that the DLL exists, that
Windows can find it, and that it's a verson with which the program can work.
Microsoft Visua C++ dso supports three other methods of implicit linking. First,
including aDLL's lib file directly into a project isjust like adding it on the link line.
Second, if a project includes a subproject that builds a DLL, the DLL's lib file is

33
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automatically linked with the project by default. Finally, a lib can be linked to an
application using the #pragma comment (lib "libname™) directive.

The remedy to this situation of implicit linking and loading is to explicitly load
the DLL. Thisis done by not linking to the DLL's lib file in the link line, and remov-
ing any #pragma comment directives that would link to a library. If a subproject in
Visua C++ buildsaDLL, the link property page of the subproject should be changed
by checking the "Doesn't produce .LIB" option. By explicitly loading the DLL, the
code can handle each error that could occur, making sure the DLL exists, making sure
the functions required are present, and so forth.

Loadlerary and GetProcAddress

______ T AR e i s

When aDLL isimplicitly loaded usmg allbflle the functlons can be cadled directly
in the application's code, and the OS loader does dl the work of loading DLLs and
resolving function references. When switching to explicit linking, the functions must
instead be called indirectly through a manually resolved function pointer. To do this,
the DLL that contains the function must be explicitly loaded using the LoadLibrary
function, and then we can retrieve a pointer to the function using GetProcAddress.

HMODULE LoadLibrary(LPCTSTR IpFileName);
FARPROC GetProcAddress(HMODULE hModule, LPCSTR IpProcName);
BOOL FreeLibrary(HMODULE hModule);

LoadLibrary searches for the specified DLL, loads it into the applications process
space if it is found, and returns a handle to this new module. GetProcAddressis then
used to create a function pointer to each function in the DLL that will be used by the
game. When an explicitly loaded DLL is no longer needed, it should be freed using
FreeLibrary. After callingFreeLibrary, the module handleisnolonger considered valid.

Every LoadLibrary cdl must be matched with aFreeLibrary cdl. Thisis necessary
because Windows increments a reference count on each DLL per process when it is
loaded either implicitly by the executable or another DLL, or by calling LoadLibrary.
This reference count is decremented by caling FreeLibrary, or unloading the exe-
cutable or DLL that loaded this DLL. When the reference count for a given DLL
reaches zero, Windows knows it can safely unload the DLL.

Guardlng Against DirectX

e — e S

One of the problems we have often found is that the required versions of DirectX
components are not installed, or the install is corrupt in some way. To protect our
game against these problems, we explicitly load the DirectX components we need. If
we were to implicitly link to Directlnput in DirectX 8, we would have added the din-
putSlib to our link line and used the following code:
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I DirectlnputS *pDl nput;

HRESULThr =Di r ect | nput 8Cr eat e( hl nst ance, DI RECTI NPUT_VERSI QN,
[ID IDrectlnput8,
(LA D*) &pDinput, 0);

if (FAILED(hr))

// handle error - initialization error

}

The explicit DLL loading cese effectively adds two more lines of code, but the
application is now protected againgt dinput8.dil not being found, or of it being cor-
rupt in some way.

typedef HRESULT (WINAPI* Directinput8Create_ PROC)

(HINSTANCE hinst, DWORD dwVersion, REFIID riidltf,
LPVOID* ppvOut,
LPUNKNOWN punkOuter);

HMODULE hDInputLib = LoadLibrary("dinput8.dil") ;
if (! hDinputLib)

. /I handle error - Dinput 8 not found. Is it installed incorrectly
Il or at all?

}

Directlnput 8Create PROC di Oreate;
di Create = (Directnput 8Creat e PROC)
Get ProcAddress(hDinput Li b, "Direct!nput SCreate") ;

if (!diQeate)

/1 handl e error - Dinput 8 exists, but the function can't be
{1 found.

}

HRESULT hr = (diCreate) (hinstance, DIRECTINPUT_VERSION,
I ID_IDirect Inputs,

(LPVOID*) &mbDirectinput, NULL);
if (FAILED(hr))

[/ handl e error - initialization error
}

Firg, a function pointer typedefis created that reflects the function Direct-
InputSCreate. The DLL is then loaded using LoadLibrary. If the dinput8.dll was
loaded successfully, we then attempt to find the function DirectlnputSCreate using
GetProcAddress. GetProcAddress returns a pointer to the function if it is found, or
NULL if the function cannot be found. We then check to make sure the function
pointer is vaid. Findly, we cdl DirectlnputSCreate through the function pointer to
initialize Directlnpuit.
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If there were more functions that needed to be retrieved from the DLL, a func-
tion pointer typedefand variable would be declared for each. It might be sufficient to
only check for NUL L when mapping thefirst function pointer using GetProcAddress.
However, as more error handling is usually not a bad thing, checking every Get-
ProcAddressfor asuccessful non-NULL returnis probably agood thing to do.

Another issue that explicit DLL loading can resolve is when an gpplication wants to
take advantage of a specific API function ifit is available. There is an extensive num-
ber of extended functions ending in "Ex" that are supported under Windows NT or
2000, and not available in Windows 95 or 98. These extended functions usudly pro-
vide more information or additiona functionality than the origina functions do .

An example of this is the CopyFileEx function, which provides the ability to can-
cel along file copy operation. Instead of caling it directly, kernel32.dll can be loaded
using LoadLibrary and the function again mapped with GetProcAddress. If we load
kernel32.dll and find CopyFileEx, we useit. If we don't find it, we can use the regular
CopyFilefunction. One other problem that must be avoided in this case is that Copy-
FileExis really only a #define replacement in the winbase.h header file that is replaced
with CopyFileExA or CopyFileExwif compiling for ASCII or wide Unicode charac-
ters, respectively.

typedef BOOL (WINAPI *CopyFileEx_PROC) (LPCTSTR IpExistingFileName,
LPCTSTR IpNewFileName , LPPROGRESS_ROUTINE IpProgressRoutine, LPVOID
IpData, LPBOOL pbCancel, DWORD dwCopyFlags) ;

HMODULE hKerne!32 = LoadLibrary("kernel32.dH") ;
if (lhKernel32)
L Il handle error - kernel32.dIl not found. Vow That's really bad

¥

CopyFi | eEx_PRCC pf nCopyFi | eEx;
pfnCopyFil eEx = (CopyFileEx PROCD)  Get ProcAddress(hKernel 32,
" CopyFi | eExA") ;

BOCL bReturn;
if (pfnCopyFil eEx)

I I use CopyFileEx to copy the file o
bReturn = pfnCopyFlIeExg/(pEX|st|ngF|Ie, pDestinationFile, ...);
}
else

Il use the regular CopyFile function
bRet urn = CopyFi | ef pExi stingFile, pDestinationFile, FALSE);
}
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The use of LoadLibrary and GetProcAddress can also be applied to game DLLs.
One example of this is the graphics support in agame engine currently under devel-
opment at Ensemble Studios, where graphics support for Direct3D and OpenGL has
been broken out into separate DLLs that are explicitly loaded as necessary. If
Direct3D graphics support is needed, the Direct3D support DLL is loaded with
LoadLibrary and the exported functions are mapped using GetProcAddress. This setup
keeps the main executable free from having to link implicitly with either dddS.lib or
opengl32.lib.

However, the supporting Direct3D DLL links implicitly with dddSlib, and the
supporting OpenGL DLL links implicitly with opengl32.lib. This explicit loading of
the games own DLLs by the main executable, and implicit loading by each graphics
subsystem solves severd problems. Firdt, if an attempt to load either library fails, it's
likely that that particular graphics subsystem files cannot befound or are corrupt. The
main program can then handle the error gracefully. The other problem that this
solves, which is more of an issue with OpenGL than Direct3D, is that if the engine
were to link explicitly to OpenGL, it would need a typedef and function pointer for

every OpenGL function it used. The implicit linking to the support DLL solves this
problem.

Summary

Explicit linking can act as a barrier againg a number of common DLL problems that
are encountered under Windows, including missing DLLs, or versons of DLLs that
aren't compatible with an application. While not a panacea, it can at least put the
application in control and adlow any error to be handled gracefully instead of with a
cryptic error message or an outright crash.
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A s developers continue to embrace object orientation, the systems that power
games are growing increasingly flexible, and inherently more complex. Such sys-
tems now regularly contain many different types and classes, counts of over 1000 are
not unheard of. Coping with so many different types in a game engine can be a chal-
lenge in itself. A type can redlly mean anything from a class, to a struct, to a standard
data type. This gem discusses managing types effectively by providing ways of query-
ing their relations to other types, or accessing information about their type at runtime
for query or debug purposes. Toward the end of the gem, an approach for supporting
persistent objects is suggested with some ideas about how the method can be
extended.

Introducmg the Dynamlc Type Information Class

In our efforts to harness the power of our types effectively, weII be turning to the aid
of one dass in particular: the dynamic type information (DTI) dass This dass will
store any information that we may need to know about the type of any given object or
gructure. A minimal implementation of the dass is given here:

class dtidass

S
private:
char * szNane;
dti d ass* pdt| Parent ;
public:
dti dass();
dti dass( char* szSet Nane, dtid ass* pSet Parent );
virtual -dtidass();

const char* Get Nane();
bool Set Name( char* szSetNane );

dtidass* Cet Parent8
bool SetParent( dtidass* pSetParent );
I
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In order to ingtill DT into our engine, dl our classes will need adtiClass as a sta-
tic member. It's this class that dlows us to access a class name for debug purposes and
query the dtiClass member of the classs parent. This member must permeate the class
tree dl the way from the root dass down, thus ensuring that al game objects have

A\ J) access to information about themselves and their parents. The implementation ofdti-
ONTHICO Class can be found in the code on the accompanying CD.

Exposing ar and Querylng the DTI

Let's see how we can begln to use DTI by |mplement|ng avery smple cass tree as
described previoudy. Here is a code snippet showing a macro that helps us define our

stetic dtiClass member, a basic root dass, and simple initialization of the dasss type
info:

#define EXPOSE_TYPE \
public: \
static dtiClass Type;

class CRootClass

é)ublic:
EXPOSE_TYPE;
CRootClass() {};
virtual -CRootClass() {};

}
dtiClass CRootClass::Type( "CRootClass", NULL );

By including the EXPOSE_TYPE macro in dl of our dass definitions and initial-
izing the static Type member correctly as shown, weve taken the first step toward
instilling dynamic type info in our game engine. We pass our class name and a pointer
to the dasss parent's dtiClass member. The dtiClass constructor does the rest, setting
up the szName and pdti Parent members accordingly.

We can now query for an object's class name at runtime for debug purposes of
other type-related cases, such as saving or loading a game. More on that later, but for
now, here's a quick line of code that will get us our class name:

/I Let's see what kind of object this pointer is pointing to
const char* szGetName = pSomePtr->Type.GetName();

In the original example, we passed NULL in to the dtiClass constructor as the
classs parent field because this is our root class. For classes that derive from others, we
just need to specify the name of the parent dass For example, if we were to specify a
child class of our root, a basic definition might look something like this:

class CChildClass : public CRootClass

EXPOSE TYPE;



/I Constructor and virtual Destructor go here

¥
dtiClass CChildClass::Type( "CChildClass", &CRootClass::Type );

Now we have something of a dass tree growing. We can access not only our dasss
name, but the name of its parent too, as long as its type has been exposed with the
EXPOSE_TYPE macro. Here's a line of code that would get us our parent's name:

/I Let's see what kind of class this object is derived from
char* szParentName = pSomePtr->Type.GetParent()->GetName();

Now that we have a smple dass tree with DTI present and know how to use that
information to query for dass and parent names at runtime, we can move on to
implementing a useful method for safeguarding type casts, or simply querying an
object about its roots or general type.

Inheritance Means "IsA"

Object orientation gave us the power of inheritance. With inheritance came polymor-
phism, the ability for al our objects to be just one of many types at any one time. In
many cases, polymorphism is put to use in game programming to handle many types
of objects in a safe, dynamic, and effective manner. This means we like to ensure that
objects are of compatible types before we cast them, thus preventing undefined
behavior. It dso means we like to be able to check what type an object conforms to at
runtime, rather than having to know from compiler time, and we like to be able to do
al of these things quickly and easily.

Imagine that our game involves a number of different types of robots, some
purely eectronic, and some with mechanica parts, maybe fuel driven. Now assume
for instance that there is a certain type of weapon the player may have that is very
effective against the purely eectronic robots, but less so againgt their mechanical
counterparts. The dasses that define these robots are very likdy to be of the same
basic type, meaning they probably both inherit from the same generic robot base
dass, and then go on to override certain functionality or add fresh attributes. To cope
with varying types of specidist child dasses, we need to query their roots. We can
extend the dtiClass introduced earlier to provide us with such aroutine. Well cdl the
new member function IsA, because inheritance can be seen to trandate to "is a type
of." Here's the function:

bool dtiClass::IsA( dtiClass* pType )

{
dtiClass* pStartType = this;
while( pStartType )

if ( pStartType == pType )
{
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return true;

}
else

pStartType = pStartType->GetParent();
} ;
} E
return false;
}

If we need to know whether a certain robot subclass is derived from a certain root
class, we just need to cdl IsA from the object's own dtiClass member, passing in the
static dtiClass member of the root class. Here's a quick example:

CRootClass* pRoot;
CcChildClass* pChild = new CChlIdCIass()
if ( pChild->Type.IsA( &CRootClass::Type ) )

pRoot = (CRootClass*)pChild;

We can see that the result of a quick 1sA check tdls us whether we are derived,
directly or indirectly, from a given base class. Of course, we might use this fact to go
on and perform a safe casting operation, as in the preceding example. Or, maybe well
just use the check to filter out certain types of game objects in a given area, given that
their type makes them susceptible to a certain weapon or effect. If we decide that a

_ safe casting operation is somethi ng well need regularly, we can add the following
n— 1~ function to the root object to simplify matters. Here's the definition and a quick
example; the function's implementation is on the accompanying CD:

/| SafeCast member function definition added to CRootClass
void* SafeCast( dtiClass* pCastToType );

/I How to simplify the above operation
pRoot = (CRootClass*)pChild->SafeCast( &CRootClass::Type );

If the cast is not safe (in other words, the types are not related), dien the vaue will
evaduae to nothing, and pRoot will be NULL.

Handling Generlc Objects

a— T —— -

Going back to our smple game example Iets consder how we might cope with so
many different types of robot effectively. The answer starts off quite simple; we can
make use of polymorphism and just store pointers to them dl in one big array of
generic base class pointers. Even our more specialized robots can be stored here, such
as CRobotMech (derived from CRobof), because polymorphism dictates that for any
type requirement, a derived type can dways be supplied instead. Now we have our
vadt array of game objects, dl stored as pointers to a given base class. We can iterate
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over them safely, perhaps calling virtual functions on each and getting the more spe-
cidized (overridden) routines carried out by default. This takes us halfway to han-
dling vast numbers of game objects in afast, safe, and generic way.

As part of our runtime type info solution, we have the IsA and SafeCast routines
that can query what general type an object is, and cast it safely up the dass tree. This
is often referred to as up-casting, and it takes us halfway to handling vast numbers of
game objects in a fast, safe, and generic way. The other half of the problem comes
with down-casting—casting a pointer to ageneric base class safely down to amore spe-
cidlized subclass. If we want to iterate alist of root class pointers, and check whether
each really points to a specific type of subclass, we need to make use of the dynamic
casting operator, introduced by C++.

The dynamic casting operator is used to convert among polymorphic types and is
both safe and informative. It even returns applicable feedback about the attempted
cad. Herée's the form it takes:

dynamic_cast< type-id >(expression)

The first parameter we must pass in is the type we wish expression to conform to
after the cagt has taken place. This can be a pointer or reference to one of our classes.
Ifit'sapointer, the parameter we passin as expression must be apointer, too. If we pass
areference to a class, we must pass a modifiable [-value in the second parameter. Here
are two examples:

/I Given a root object (RootObj), on pointer (pRoot) we

/I can down-cast like this

CChildClass* pChild =dynamic_cast<CChildClass*>(pRoot);
CChildClass& ChildObj = dynamic_cast<CChildClass&>(RootObj);

To gain access to these extended casting operators, we heed to enable embedded
runtime type information in the compiler settings (use the /GR switch for Microsoft
Visua C++). If the requested cast cannot be made (for example, if the root pointer
does not really point to anything more derived), the operator will smply fail and the
expression will evauate to NULL. Therefore, from the preceding code snippet,

(f js**% pChild would evaluate to NULL IfpRoot redly did only point to a CRootClass object.
ONmea> Ifthecast of RootObj failed, an exception would be thrown, which could be contained
with atry | catch block (exampleisincluded on the companion CD-ROM).

The dynamic_cast operator lets us determine what type is redly hidden behind a
pointer. Imagine we want to iterate through every robot in a certain radius and deter-
mine which ones are mechanica modds, and thus immune to the effects of a certain
weagpon. Given aligt of generic CRobot pointers, we could iterate through these and
perform dynamic casts on each, checking which ones are successful and which resolve
to NULL, and thus exacting which ones were in fact mechanical. Finaly, we can now
safely down-cast too, which completes our runtime type information solution. The
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code on the companion CD-ROM has a more extended example of using the

“onmCD  dynamiccasting operator.

’_ C II)
‘mmco

Now that our Ob] ects no Ionger have an |dent|ty criss and We're managing them effec-
tively at runtime, we can move on to consider implementing a persistent object solu-
tion, thus extending our type-related capabilities and allowing us to handle things
such as game saves or object repositories with ease. The first thing we need is a bare-
bones implementation of a binary store where we can keep our object data. An exam-
ple implementation, CdtiBin can be found on the companion CD-ROM.

There are a number of utility member functions, but the two important points
are the Stream member function, and the friend « operators that alow us to write
out or load die basic data types of the language. Well need to add an operator for each
basic type we want to persist. When Streamis called, the datawill be either read from
the file or written, depending on the vaues of m_bLoading and m_bSaving.

To let our classes know how to work with the object repositories we need to add
the Serialize function, shown here:

virtual void Serialize( CdtiBin& ObjStore );

Note that it is virtual and needs to be overridden for dl child dasses that have
additional data over their parents. If we add a smple integer member to CRootClass,
wewould writethe Serializefunction like this:

void CRootClass::Serialize( CdtiBin& ObjStore )

ObjStore « iMemberint;

}

Wewould have to be sure to provide the friend operator for integers and CdtiBin
objects. We could write object settings out to afile, and later load them back in and
repopulate fresh objects with die old data, thus ensuring a persistent object solution
for use in a game save routine. All types would thus know how to save themselves,
making our game save routines much eader to implement.

However, child dasses need to write out their data and that of their parents.
Instead of forcing the programmer to look up al data passed down from parents and
adding it to each dasss Serialize member, we need to give each dass access to its par-
ent's Serialize routine. This alows child classes to write (or load) their inherited data
before their own data. We use the DECLAREJSUPER macro for this:

#define DECLARE_SUPER(SuperClass) \
public: \
typedef Superclass Super;
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class CChildd ass

DECLARE_SUPER( CRoot dl ass) ;
(-
}

This farther extends our type solution by alowing our classes to cdl their imme-
diate parents' versions of functions, making our class trees more extensible.

CRootClass doesn't need to declare its superclass because it doesn't have one, and
thus its Serialize member only needs to cope with its own data. Here's how CChild-
Class:: Serialize cals CRootClass: Serialize before dealing with some of its own data
(added specifically for the example):

void CChildClass::Serialize( CdtiBin& ObjStore )
Super::Serialize( ObjStore );

ObjStore « fMemberFloat « iAnotherint;
}

A friend operator for the float data type was added to support the above. Note
that the order in which attributes are saved and loaded is dways the same. Code
showing how to create a binary store, write a couple of objects out, and then repopu-
late the objects attributes can be found on the companion CD-ROM.

Aslong as object types are seriadlized in the same order both ways, their attributes
will remain persistent between saves and loads. Adding the correct friend operators to
the CdtiBin class adds support for basic data types. If we want to add user-defined
structures to our class members, wejust need to write an operator for coping with that
struct. With this in place, dl objects and types in the engine will know precisely how
to save themselves out to a binary store and read themselves back in.

Applying Persistent Type Information to a Game
Save Database

As mentioned previoudy, objects need to be seridized out and loaded back in the
same order. The quickest and easiest method is to only save out one object to the
game saves, and then just load that one back in. If we can define any point in
the game by constructing some kind of game state object that knows precisely how to
seridize itself either way, then we can write al our game data out in one hit, and read
it back in at any point. Our game state object would no doubt contain arrays of
objects. Aslong as the custom array type knows how to serialize itself, and we have dll
the correct CdtiBin operators written for our types, everything will work. Saving and
loading a game will be a smple matter of managing the game from a high-level, dl-
encompassing containment class, caling just the one Serialize routine when needed.
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Conclusmn

There is stlll more that could be done than Just the sol utlon described here. Support-
ing multiple inheritance wouldn't be difficult. Instead of storing just the one parent
pointer in our static dtiClass, we would store an array of as many parents a class had,
specifying the count and a variable number of type dasses in a suitable macro, or by
extending the dtiClass constructor. An object flagging system would also be useful,
and would alow us to enforce specia cases such as abstract base classes or objects we
only ever wanted to be contained in other classes, and never by themselves (“con-
tained classs").
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A Property Class for Generic
C++ Member Access
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acticaly every game has a unique set of game objects, and any code that has to

manipulate those objects has to be written from scratch for each project. Take,
for example, an in-game editor, which has a smple purpose: to create, place, display,
and edit object properties. Object creation is almost dways specific to the game, or
can be handled by a dass factory. Object placement is specific to the visualization
engine, which makes reuse difficult, assuming it is even possble to visudly place an
object on the map. In some cases, a generic map editor that can be toggled on and of f
(or possibly superimposed as a heads-up display) can be reused from game to game.
Therefore, in theory, it should be possible to develop a core editor module that can be
reused without having to rewrite the same code over and over again for eech project.
However, given that dl games have unique objects, how does the editor know what to
display for editing purposes without rewriting the editor code?

What we need is agenera object interface that dlows access to the internals of a
dass Borland's C++ Builder provides an excellent C++ declaraion type caled ~prop-
erty that does this very thing, but das, it is a proprietary extenson and unusable out-
side of Borland C++. Interestingly enough, C# Microsoft's new programming
language developed by the creator of Borland C++ Builder, contains the same feature.
Microsoft's COM interface dlows runtime querying of an object for its members, but
it requires that we bind our objects to the COM interface, making them less portable
than straight C++. This leaves a "roll-your-own" solution, which can be more light-
weight than COM, and more portable than proprietary extensions to the C++ lan-
guage. This will alow code modules such as the in-game editor to be written just
once, and used across many engines.

The interface is broken into two classes. aProperty dass and aPropertySet dass. Prop-
erty is a container for one piece of data. It contains a union of pointers to different
data types, an enumeration for the type of data, and a string for the property name.
The full source code can be found on the companion CD.



class Property

ér ot ect ed:

union Data

int* mint;
float* mfloat;
std::string* mstring;
bool * m bool ;

}s

enumType

I NT,

FLQAT,

STRING

BOAL,

EMPTY
b

Data m_data;
Type m_type;
std:: string m_name;

prot ect ed:

voi d EraseType() ;

voi d Regi st erp nt* value);

voi d Registertfloat* value);

voi d Registerfstd: :string* newstring);
voi d Regi sterfbool * val ue);

publ i c:
Property() ;
Property(std: :string const& name);
Property(std: :string const& name, int* value);
Property(std:: string const& name, float* value);
Property(std:: string const& name, std::string* value);
Property(std:: string const& name, bool * val ue);

};

-Property() ;

bool Set UnknownVal ue(std: :string consté& val ue);
bool Set (int val ue) ;

bool Set(float value);

bool Set(std: :string const& val ue);

bool Set(bool val ue);

voi d Set Namefstd: :string const& nane);
std:: string GetNane() const;

int Getlntg);

float CGetFloatf);
std:: str|n? GetString();
bool GetBool () ;
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The example code shows basic data types being used and stored, although these
could be easily expanded to handle any datatype. Properties store only apointer back
to the originad data. Properties do not actudly declare their own objects, or dlocate
their own memory, so manipulating a property's data results in the origina datas
memory being handled. Setting a value viathe Set function automatically defines the
type of the property.

Properties are constructed and manipulated through a PropertySet class. The
PropertySet dass contains the list of registered properties, the registration methods,
and the lookup method.

class PropertySet

prot ect ed: _
HashTabl e<Property>m properties;

publ i c:
PropertySet();
virtual = -PropertySet();

voi d Register(std::string const& nanme, int* value);

voi d Register(std::string const& nane, float* val ue);

voi d Register(std::string const& name, std::string* value);
voi d Register(std::string const& nanme, bool* val ue);

/1 Took up a property
Property* Lookup(std::string const& name);

/1 get a list of available properties

bool SetVal ue(std::string const& nanme, std::string* value);
bool Set(std::string const& name, std::string consté& val ue);
bool Set(std::string const& name, int value);

bool Set(std::string const& name, float value);

bool Set(std::string const& name, bool value);

bool Set(std::string const& name, char* val ue);

};

The PropertySet is organized around a HashTable object that organizes dl of the
... stored properties using a standard hash table algorithm. The HashTableitsdlf is a tem-
Sh plate that can be used to hash into different objects, and is included on the compan-
ONIHfCD ion f’l‘-rjj

We derive the game object from the PropertySet class:

class GameObject : public PropertySet
{

%

Any properties or flagsthat need to be publicly exposed or used by other objects
should be registered, usudly at congtruction time. For example:

int m_test;

Register("test_value",&m_test);
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Cdling obj ects can use the Lookup method to access the registered data.
void Update(PropertySet& property_set)

Property* test val ue property=

property set. Lookup( test value");
int test value = test val ue_property->Getint();
Il etc

}

As dl of the game objects are now of type PropertySet, and as dl objects are usu-
aly stored in a master update lig, it is a ssimple matter of handing the list pointer off
to the in-game editor for processing. New derived object types simply have to register
their additional properties to be handled by the editor. No additional coding is neces-
sary because the editor is not concerned with the derived types. It is sometimes help-
ful to specify the type in a property name (such as "Type') to asss the user when
visually editing the object. It's dso useful to make the property required, so that the
editor could, for example, parse the property list into a "treg" style display.

This process dso provides the additional benefit of decoupling the data from its
name. For instance, internally, the data may be referred to as m_colour, but can be
exposed as "color.”

Addltlonal Uses

Th&e dasses were deggned around a concentrlc rmg desgn theory. The PropertySet
cannot be used without the Property dlass. However, the Property dass can be used on
its own, or with another set type (for example, MultiMatrixedPropertySef) without
rewriting the Property dass itsdf. This is true of the HashTable ingde the PropertySet
dass aswdl. Smadler classes with distinct and well-defined purposes and uses are much
more reusable than large classes with many methods to handle every possible use.

The Property dass can aso be used to publicly expose methods that can be caled
from outside code via function pointers. With a smal amount of additional coding,
this can dso be used as a save dtate for asave game feature aswell. 1t could also be used
for object messaging via networks. With the addition of a Send(std:: string xml) and
Receive(std: : stringxml), the PropertySet could easily encode and decode X ML messages
that contain the property values, or property vaues that need to be changed. The
Property! PropertySet classes could aso be rewritten as templates to support different
property types.

Isolating the property data using "get” and "set* methods will dlow for format
conversion to and from the internal stored format. Thiswill free the using code from
needing to know anything about the data type of the property, making it more versa-
tile at the cost of a small speed hit when the types differ.
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A Game Entity Factory
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n recent years, scripting languages have proven invaluabl e to the game devel opment

community. By isolating the elaboration and refinement of game entity behavior
from the core of the code base, they have liberated level designers from the code-
compile-execute cycle, speeding up game testing and tweaking by orders of magni-
tude, and freed senior programmers' time for more intricate assignments.

However, for the data-driven development paradigm to work wel, the games
engine must provide flexible entity construction and assembly services so that the
scripting language can provide individual entitieswith different operational strategies,
reaction behaviors, and other parameters. This is the purpose of this gem: to describe
a hierarchy of C++ cdlasses and a set of techniques that support data-driven develop-
ment on the engine sde of things.

This simple framework was designed with the following goas in mind:

» A sgparation of logical behavior and audio-visual behavior. A single Door class
can support however many variations of the concept as required, without concern
for size, number of key frames in animation sequences, €tc.

» Rapid development. Once a basic library of behaviors has been defined (which
takes surprisingly little time), new game entity classes can be added to the frame-
work with a minimum of new code, often in 15 minutes or less.

» Avoiding code duplication. By assembling bits and pieces of behavior into new
entities at runtime, the framework avoids the "code bloat" associated with script-
ing languages that compile to C/C++, for example.

Severd of the techniques in this gem are described in terms of patterns, detailed
in the so-cdled "Gang of Four's' book Design Patterns [GoF94].

The gem is built around three major components. flyweight objects, behaviora
casses and an object factory method. We will examine each in turn, and then look at
how they work together to equip the engine with the services required by data-driven
development. Finally, we will discuss advanced ideas to make the system even more
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flexible (at the cost of some code complexity) if a full-fledged scripting language is
required by the project.

Flywelght BehaV|or and Exported Classes i

Before we go any further we must make a dlstlnctl on between the three types of
"dases' to which a game entity will belong in this framework: its flyweight, behav-
ioral, and exported classes. :

The flyweight class is the look and feel of the entity. In the code, the relationship
between an entity and its flyweight dass is implemented through object composi-
tion: the entity owns a pointer to aflyweight that it uses to represent itself audio-
visudly.

The behavioral class defines how the object interacts with the rest of the game
world. Behaviora dasses are implemented as atraditional inheritance hierarchy,
with dass Entity serving as abstract superclassfor dl others.

The exported class is how the object represents itself to the world. More of a con-
venience than a requirement, the exported dass is implemented as an enum con-
stant and alows an entity to advertise itself as severd different object classes
during its lifetime.

Let us now look at each in turn.

Flywelght Objects

_____ # T S s Pt

[GoFA] descrlbes flywelghts as Obj ects deprlved of therr context so that they can be
shared and used in avariety of situations simultaneoudly; in other words, as atemplate
or mode for other objects. For a game entity, the flyweight-friendly information con-
dstsof:

Media content: Sound effects, 3D models, textures, animation files, etc.
Contrd gructure Finite state machine definition, scripts, and the like.

As you can g, this is just about everything except information on the current

status of the entity (position, health, FSM state). Therefore, in agaming context, the
\& i\ flyweight is rather unfortunate, because the flyweight can consume megabytes of
memory, while the context information would be small enough to fit within a crip-
pled toaster's core memory.

SAMMy, Where Are You?

Much of a game entltys flnlte State machl ne deds with animation loops, deciding
when to play a sound byte, and so forth. For example, after the player character is
killed in an arcade game, it may enter the resurrecting state and beflagged asinvulner-
able while the "resurrection” animation plays out; otherwise, an overeager monster

S e
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might hover about and score another kill during every frame of animation until the
player resumes control over it. | cadl the part of the flyweight object that deas with
this the Sate And Media Manager, or SAMMy for short:

class StateAndMediaManager

{ Il The various animation sequences available for the famly
[lof entities
Ani nBequenceDescriptionStruct * sequences;
int numini nBequences;

/I Atable of animation sequences to fire up when the entity's FSM
/I changes states out of SAMM/'s control

int * stateToAninTransitions;

int nunBtateToAni nilransitions;

public:

/1 Construction and destruction

/I StateAndMedi aManager is always constructed by its owner entity,

Il which is in charge of opening its description file. Therefore,

/I the only paraneter the constructor needs is a reference to an

Il input streamfromwhich to read a set of animation sequence

Il descriptions.

St at eAndMedi aManager () : sequences( 0 ), numAni mSequences( 0 ),
nuntt at eToAni nifransitions ( 0 ), stateToAninfransitions( 0 ) {}

St at eAndMedi aManager ( istream&is ) ;

virtual -StateAndMedi aManager () ;

void O eanup() ;

1 Input-output functions
void Load( istreamé&is ) ;
voi d Save( ostream& os ) ;

Il Look at an entity's current situation and update it according
Il to the description of its animtion sequences
void FC UpdateEntityStatef EntityStateStruct * state );

[ 1f the entity's FSMhas just forced a change of state, the media
/1 manager nust follow suit, interrupt its current animation

/1 sequence and choose a new one suitable to the new FSM state

void FC AlignWthNewFSMBtate( EntityStateStruct * state );

|8

Typically, SAMMy is the product of anentity-craftingtool, andit is|oadedinto
(L*.A A the enginefromafile when needed. The sanpl e on t he conpani on CD- RQOMIi s bui | t
NTBC into a text file for simplicity. _

SAMMy can be made as powerful and versatile as desired. In theory, SAMMy

could take care of dl control functions: launching scripts, changing strategies, and so

forth. However, this would be very awkward and require enormous effort; we will

instead choose to delegate most of the high-level control structure to the behavioral

class hierarchy, which can take care of it with a minute amount of code. (As a side
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effect of this sharing of duties, asingle behaviora classlike SecurityGuard, Door or
ExplosionFX will be able to handle entities based on multiple rel ated flyweights, mak-
ing the system more flexible.)

Behaworal Class H|erarchy

__________ SR e BN N S JeE e G

These are the actua C++ dasses to WhICh our entltleswnl belong. The hierarchy has
(at least) two levels.

» An abstract base class Entity that defines the interface and commonalities
» Concrete subclasses that derive from Entity and implement actual objects

Hereisalook at Entity's interface:
class Entity
/1 Some application-specific data

/1 Flyweight and Exported dass information
int exportedd asslD
St at eAndMedi aManager  *  sammy;

publ i c:
[/ Constructors

Il Accessors

int GetExporteddass() { return exportedC assID; }

St at eAndMedi aManager * Get Flywei ght () { return samy; }

void SetExporteddass( int newal ) { exporteddassID = newal; }
voi d SetFl yweight( StateAndMedi aManager * ns ) { sammy = ns; }

/1 Factory nmethod
static Entity * EntityFactory( int exportedd assRequested );

virtual Entity * ConeEntityO = 0;
virtual bool Uddateself()

/1 Do generic stuff here; looping through animations, etc.
return true;

¥

virtual bool Handlelnteractions( Entity * target ) = O;

}

As you can see, adding a new dlass to the hierarchy may require very little work:
in addition to constructors, at most three, and possibly only two, of the base dass
methods must be overridden—and one of them is a one-liner.

» Clone() isasmple redirection cdl to the copy constructor.

» UpdateSelf () runsthe entity'sinternal mechanics. For some, this may be as sm-
ple as caling the corresponding method in SAMMYy to update the current anima-
tion frame; for others, like the player character, it can be far more eaborate.
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» Handlelnteractions() is caled when the entity is supposed to determine

- whether it should change its internal state in accordance to the behaviors and
positions of other objects. The default implementation is empty; in other words,
the object is inert window-dressng.

W AJ The companion CD-ROM contains examples of Entity subclasses, including one
mmco  faplayer character driver.

Using the Template Method Pattern for
Behavior ASS|gnment

N e A T T

If your game featur% several rel ated behavloral dass& whose differences are essy to
circumscribe, you may be able to benefit from a technique known as the Template
Method pattern [GoF94]. This consists of a base dass method that defines an ago-
rithm in terms of subclass methods it cals through polymorphism.

For example, dl types of PlayerEntity objectswill need to query an input device
and move themselves as part of their UpdateSelf () method, but how they do it may
depend on the input device being used, the character type (a FleetingRogue waks
faster than aOnelL eggedBuddha), and so forth. Therefore, the PlayerEntity dass may
define UpdateSelf () in terms of pure virtual methods implemented only in its sub-
classs.

class PlayerDevice : public Entity

{

/1
voi d UpdateYourseIf() _ e .
v0|d Queryl nput Devi Ce0 =0; // No i npl enentation in PlayerDevice

class JoystickPlayerDevice : public PlayerDevice

.
v0|d QuerylnputDewceO

void Pl ayerDevice:: Updat eYoursel f ()
{

/1 do stuff common to all types of player devices
Queryl nput Devi ceG,

/1 do nore stuff

}

voi d JoystickPl ayer Devi ce:: Queryl nput Devi ce()
{ [ 1 Do the actual work

}

Used properly, the Template Method pattern can help minimize the need for the
dreaded cut-and-pasteprogramming, one of the most powerful "anti-patterns’ leading
to disaster in software engineering [Brown98]!
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Exported Classes

s s e T

The exported dass is aconvenience trick that you can use to make your entities inter-
na state information transparent to the script writer. For example, let's say that you
are programming Pac-Man'sHandl el nteractions() method. Y ou might start by look-
ing for a collison with one of the ghosts; what happens if one is found then depends
on whether the ghost is afraid (it gets eaten), returning to base after being eaten
(nothing happens at al), or hunting (Pac-Man dies).

void PacMan: :Handlelnteractions( Entity * target )
{
if ( target->GetClass() == GHOST && target->GetState() == AFRAID )

score += 100;
target->SendKillSignal() ;
}
}

However, what if you need to add dtates to the Ghost object? For example, you
may want the ghost's SAMMYy to include a " Getting Scared" animation loop, which is
active for one second once Pac-Man has run over a power pill. SAMMy would handle
this cleanly if you added a GettingScared state. However, you would now need to add
atest for the GettingScared state to the event handler.

void PacMan: :Handlelnteractions( Entity * target )

{ if ( target->GetClass() == GHOST &&
( target->GetState() == AFRAID ||
target->GetState() == GETTINGSCARED ) )
{

,
}

This is awkward, and would likely result in any number of updates to the event
handlers as you add states (none of which introduce anything new from the outside
world's perspective) to SAMMy during production. Instead, let's introduce the con-
cept of the exported class, a value that can be queried from an Entity object and
describes how it advertisesitsdlf to theworld. Thevalue is maintained within Update-
Self () and can take any number of forms; for smplicity's sake, let's pick an integer
constant selected from an enum list.

enum { SCAREDGHOST, ACTIVEGHOST, DEADGHOST }

There is no need to export any information on transient, animation-related states
like GettingScared. To Pac-Man, a ghost can be dead, active, or scared — period.
Whether it has just become scared two frames ago, has been completdy terrified for a
while, or is dowly gathering its wits back around itself is irrelevant. By using an
exported class instead of an actual internal FSM state, a Ghost object can advertise
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itself as adead ghost, scared ghogt, or active ghost, effectively shape-shiftinginto three
different entity classes at will from the outside world's perspective, al for the cost of
an integer. Pac-Man's interaction handler would now look like this:

void PacMan: :Handlelnteractions( Entity * target )
t if ( target ->GetExportedd ass() == SCAREDGHOST )

score += 100;
target->SendKillSignal () ;
}
}

The result is cleaner and will require far less maintenance work, as the number of
possible exported classes for an Entity is usually small and easy to determine early on,
while SAMMYy's FSM can grow organically as new looks and effects are added to the
object during development.

A leve filewill contain severa entity declarations, each of which may identify the
entity's behaviora dlass, flyweight dass exported dass darting position and velocity,
and any number of class-specific parameters (for example, hit points for monsters, a
starting timer for a bomb, a capacity for the players inventory, etc.) To keep things
simpler for us and for the level designer, let's make the fairly safe assumption that,
while a behavioral class may advertise itself as any number of exported classes, an
exported class can only be attached to asingle behaviora class. Thisway, we eliminate
the need to specify the behavioral classin the leve file, and isolate the class hierarchy
from the tools and level designers. A snippet from alevd file could therefore look like:

<ENTITY Blinky>
<EXPORTEDCLASSActiveGhOSt>
<XYZ_POSITION ...>
PARAMETERS ...>

</[ENTITY>

Now, let's add afactory methodto the Entity class.

A factory is a function whose job consists of constructing instances of any num-
ber of dasses of objects on demand; in our case, the factory will handle requests for dl
(concrete) members of the behavioral class hierarchy. Programmatically, our factory
method isvery simple:

* It owns aregistry that describes theflyweightsthat have aready been loaded into
the game and alist of the exported dasses that belong to each behaviord dass.

It loadsflyweightswhen needed. If a request for an instance belonging to a fly-
weight dass that hasn't been seen yet is recelved, the first order of business is to
create and load a SAMMYy object for this flyweight.
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» Iftherequest isfor an additiona instance of an aready-loaded flyweight class, the
factory will clonethe existing object (which now serves as aPrototype; yes, another

Gang of Four pattern!) so that it and its new brother can share flyweights effec-
tively.

Here is a snippet from the method:
Entity * Entity::EntityFactory( int whichType )

Ent ity *
swi t ch( Wﬁl chType

{case SCAREDCHOST:
Btr ; new Ghost (  SCAREDGHCST ) ;
reak;

case ACTI VEGHCOST:
Btr ; new Chost ( ACTI VEGHOST );
reak:

T S

}
return ptr;
}

Simple, right? Calling the method with an exported class as parameter returns a
pointer to an Entity subclass of the appropriate behaviora family.

Entity * newEntity = Entity::EntityFactory( ACTIVEGHOST );

The code located on the companion CD-ROM dso implements a simple trick
used to load levels from standard text files: an entity's constructor receives the leve file
" an ] stream Parameter, and it can read its own class-specific parameters directly from
it. The factory method therefore does not need to know anything about the internals
of the subclasses it is responsible for creating.

Selecting Strategies at Runtime

T e ey

The techniques described so far work flne when a game contains a small number of
behavioral cdasses, or when entity actions are easy enough to define without scripts.
However, what if extensive tweaking and experimentation with scripts is required?
What if you need away to change an entity's strategy at runtime, without necessarily
influencing its behaviora classmates? This is where the Srategy pattern comes into
play. (Itsthelast one, | promise. | think.)

Let's assume that your script compiler produces C code. What you need is away
to connect the C function created by the compiler with your behaviora class (or indi-
vidua entity). This iswhere function pointers come into play.
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Using Function Pointers within C++ Classes

The simplest and best way to plug amethod into adass at runtime is through afunc-
tion pointer. A quick refresher: A C/C++ function pointer is a variable containing a
memory address, just like any other pointer, except that the object being pointed to is
atyped function defined by a nameless signature (in other words, areturn type and a
parameter list). Here is an example of a declaration of a pointer to a function taking
two Entity objects and returning a Boolean vaue:

bool (*interactPtr) (Entity * source, Entity * target);

Assuming that there is afunction with the appropriate signature in the code, for
example

;Jool TypicalRabbitinteractions( Entity * source, Entity * target )

} :
then the variable interactPtr can be assigned to it, and the function caled by deref-
erencing the pointer, so that the following snippets are equivaent:

Ok = TypicalRabbitinteractions( BasilTheBunny, BigBadWolf );

and

interactPtr = TypicalRabbitInteractions;
Ok = (*interactPtr) ( BasilTheBunny, BigBadWolf );

Using function pointersinside classesis alittle trickier, but not by much. The key
idea is to declare the function generated by the script compiler to be afriend of the
class, so that it can access its private data members, and to pass it the specid pointer
this, which represents the current object, as itsfirst parameter.

class SomeEntity : public Entity

;/ The function pointer .
void ( * friendptr )( Entity * me, Entity * target );

public:

/I Declare one or more strategy functions as friends,
friend void Strategy! ( Entity * me, Entity * target );

1 The actual operation .
void Handl el nteractions( Entity * target )
(*friendptr) ( this, target );
H
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Basicdly, this is equivaent to doing by hand what the C++ compiler does for you
when cdling class methods: the C++ viable secretly adds "this' as afirst parameter to
every method. Because any modern compiler will inline the function cdls, there
should be no performance differential between caling a compiled script with this
scheme and calling a regular method.

Note that picking and choosing strategies at runtime through function pointersis
adso a good way to reduce the number of behavioral classes in the hierarchy. In
extreme cases, asingle Entity class containing nothing but function pointer derefer-
ences for strategy elements may even be able to replace the entire hierarchy. This,
however, runs the risk of obfuscating the code to a point of total opacity—jproceed
with caution.

Findly, if an entity is alowed to switch back and forth between severd aternative
grategies depending on runtime considerations, this scheme dlows each change to be
implemented through a simple pointer assignment: clean, fast, no hasses.

Flnal No'_[__es

T S S T O R T T R ey

In S|mple Cases, the technlques deﬂ:rlbed in thls gem can even provide a satisfactory
alternative to scripting altogether. Smaller projects that do not require the full power
of a scripting language and/or cannot afford the costs associated with it may be able to
get by with a set of hard-coded strategy snippets, a ssimple GUI-based SAMMy editor,
and alinear level-description file format containing key-value tuples for the behaviors
attached to each entity.

<EntityName BasilTheBunny>
<ExportedClass Rabbit>
<StrategyVsEntity BigBadWolf Avoid>
<HandleCollision BigBadWolf Die>

The companion CD-ROM contains several component classes and examples of
T the techniques described in this gem. You will, however, have to make significant
ONTHEco moadificationsto them (for example, add your own 3D models to SAMMY) to turn
them into something useful in your own projects.

Findly, the text file formats used to load SAMMYy and other objects in the code
are assumed to be the output of a script compiler, level editor, or other associated
tools. As such, they have arather inflexible structure and are not particularly human
friendly. If they seem like gibberish to you, gentle readers, please take a moment to
commiserate with the poor author who had to write and edit them by hand. ;-)
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Adding Deprecation Facilities
to C++

Noel Llopis, Meyer/Glass Interactive
nllopis@mgigames.com

uring the lifetime of a piece of software, function interfaces are bound to change,
become outdated, or be completely replaced by new ones. This is especidly true

for libraries and engines that are reused across multiple projects or over severa years.
When a function that interfaces to the rest of the project changes, the game (or todls,
or bath!) may not compile any more. On ateam working on alarge project, the situa-
tion is even worse because many people could be breaking interfaces much more often.

There are different ways of dealing with this situation:

Don't do anything about it. Every time something changes, everybody has to
update the code that calls the changed functions before work can proceed. This
might befinefor aone-person team, but it's normally unacceptablefor larger teams.
Don't change any interface functions. This is not usually possible, especiadly in
the game industry where things change so quickly. Maybe the hardware changed,
maybe the publisher wants something new, or perhaps the initid interface was
just flawed. Trying to stick to this approach usually causes more harm than good,
and ends up resulting in functions or dasses with names completely unrelated to
what they really do, and completely overloaded semantics.

Create new interface versons. This approach sticks to the idea that an interface
will never change; instead, anew interfacewill be created addressing dl the issues.
Both the original and the new interface will remain in the project. This is what
DirectX does with each new version. This approach might be fine for complete
changesininterface, or for infrequent updates, but it won't work well for frequent
or minor updates. In addition, this approach usualy requires maintaining the full
implementation of the current interface and a number of the older interfaces,
which can be a nightmare.

In modern game development, these solutions are clearly not ideal. We need

something else to ded with this problem.
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Theldeal Solutlon

What we reaIIy want is to be abIe to wr|te anew mterface functlon but keep the old
interface function around for a while. Then the rest of the team can start using the
new function right away. They may change their old code to use the new function
whenever they can, and, after awhile, when nobody is using it anymore, the old func-
tion can be removed.

The problem with this is how to let everybody know which functions have
changed and which functions they are supposed to use. Even if we dways tell them
this, how are they going to remember it if everything compiles and runs correctly?
This is where deprecating a function comes in. We write the new function, and then
flag the old function as deprecated. Then, every time the old function is used, the
compiler will generate a message explaining that a deprecated function is being cdled
and mentioning which function should be used in its place.

i iy

Java has a bUIIt—In way to do exactly what we want However most commercia games
these days seem to be written mostly using C++, and unfortunately C++ doesn't con-
tain any deprecation facilities. The rest of this gem describes a solution implemented
in C++ toflag specific functions as deprecated.

Let's start with an example of how to use it. Say we have a function that every-
body is using caled FunctionAQ. Unfortunately, months later, we redize that the
interface of FunctionAQ has to change, so we write a new function called NeiviFunc-
tionAQ. By adding just one line, we can flag FunctionAQ as deprecated.

int FunctionA ( void )

t DEPRECATE ( "FunctionA()", "NewFunctionA()" )
/I Implementation

}
int NewFunctionA ( void )

/1 I'nplenmentation

}

The line DEPRECATE("FunctionA()", "NewFunctionAQ") indicates that Func-
tionAQ is deprecated, and that it has been replaced with NewFunctionAQ.
The users of FunctionAQ don't have to do anything specia at all. Whenever users

use FunctionA() they will get the following message in the debug window when they
exit the program:

A A AR TNk hh ek ke d Ak hd bk dhwahhhdd

WARNING. You are using the following deprecated functions:
- Function FunctionA() called from 3 different places.
Instead use NewFunctionA().

dhkkhhhhhhh kbbb hdhhbdhdbdbhdhhbhbhdhdbbdthhdddbrhhddbbhhddbddhhdd
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Implementlng Deprecation in C++

Everything is implemented in one smple smgleton dass [Gamma95] Deprecation-
Mgr. The full source code for the class along with an example program is included on
("rs* >N ] the companion CD-ROM. In its simplest form, &l DeprecationMgr does is keep alist
onma>  of the deprecated functions found so far. Whenever the singleton is destroyed (which
happens automatically when the program exits), the destructor prints out areport in

the debug window, listing what deprecated functions were used in that session.

class DeprecationMyr

éubllc .
static DeprecationMyr * Getlnstance ( void ) ;
-DeprecationMyr ( void );

bool AddDeprecat edFunction (const char * QO dFunctionNane,
const char * NewFunctionNane,
unsigned int CalledFrom) ;
Il Rest of the declaration here
}i

Usually, we won't have to dedl with this dass directly because the DEPRECATE
macro will do al of the work for us.

#ifdef DEBUG
#define DEPRECATE( a, b) { \
void * fptr; \

_asm{ nov fptr, ebp} \
DeprecationMyr: : Getlnstance()->AddDepr ecat edFunction(a, b, fptr);

\
;el se

#define DEPRECATE(a, b)
#endi f

Ignoring thefirst few lines, al the DEPRECATE macro does is get an instance to
the DeprecationMgr and add the function that is being executed to the list. Because
DeprecationMgr is asingleton that won't be instantiated until the GetlmtanceQ func-
tion is called, if there are no deprecated functions, it will never be created and it will
never print any reports at the end of the program execution. Internally, Deprecation-
Mgr keeps a small structure for each deprecated function, indexed by the function
name through an STL map collection. Only thefirgt cdl to a deprecated function will
insert a new entry in the map. -

The DeprecationMgr class has one more little perk: it will keep track of the num-
ber of different places from which each deprecated function was cdled. Thisis useful
so we know at a glance how many places in the code we need to change when we
decide to stop using the deprecated function. Unfortunately, because this trick uses
assembly directly, it is platform specific and only works on the x86 family of CPUs.
The first two lines of the DEPRECATE macro get the EBP register (from which it is
usudly possible to retrieve the return address), and pass it on to AddDeprecatedFunc-
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tionQ. Then, if afunction is caled multiple times from the same place (in aloop for
example), it will only be reported as being caled from one place.

There is a potential problem with this approach for obtaining the return address.
Typicaly, the address [ EBP-4] contains the return address for the current function.
However, under some circumstances the compiler might not set the register EBPto its
expected value. In particular, this happens under V C++ 6.0, when compiler optimiza-
tions are turned on, for particularly simple functions. In this case, trying to read from
[EBP-4] will ether return an incorrect value or crash the program. There will be no
problems in redease mode, which is when optimizations are normally turned on,
because the macro does no work. However, sometimes optimizations are aso used in
debug mode, so inside the function AddDeprecatedFunctionQ we only try to read the
return address if the address contained in [EBP-4] is readable by the current process.
This is accomplished by either using exception handling or caling the Windows-
specific function IsBadReadPtrQ. This will produce an incorrect count of functions
that deprecated functions were called from when optimizations are turned on, but at
least it won't cause the program to crash, and al the other functionality of the depre-
cation manager will till work correctly.

What Could Be Improved’?

One mgjor problem remains: the deprecatl on warnings are generated at runtime, not
at compile or link time. This is necessary because the deprecated functions may exist
in a separate library, rather than in the code that is being compiled. The main draw-
back of only reporting the deprecated functions at runtime is that it is possible for the
program to till be using a deprecated function that gets caled rarely enough that it
never gets noticed. The use of the deprecated function might not be detected until it
is finally removed and the compiler reports an error.
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With the increasing complexity of game programming, the minimum memory
requirements for games have skyrocketed. Today's games must effectively ded
with the vast amounts of resources required to support graphics, music, video, anima
tions, models, networking, and artificia intelligence. As the project grows, so doesthe
likelihood of memory leaks, memory bounds violations, and alocating more memory
than is required. This iswhere a memory manager comes into play. By creating afew
simple memory management routines, we will be able to track al dynamicaly dlo-
cated memory and guide the program toward optimal memory usage.

Our god is to ensure a reasonable memory footprint by reporting memory lesks,
tracking the percentage of alocated memory that is actually used, and derting die pro-
grammer to bounds violations. We will dso ensure that die interface to die memory
manager is seamless, meaning that it does not require any explicit function cdls or dass
declarations. We should be gble to take diis code and effortlesdy plug it into any other
module by including die header file and have everything d<e fall into place. The disad-
vantages of creating amemory manager include die overhead time required for die man-
ager to dlocate memory, dedlocate memory, and interrogate die memory for Satistical
information. Thus, thisis not an option that we would like to have enabled for the fina
build of our game. In order to avoid these pitfalls, we are going to only enable the mem-
ory manager during debug builds, or if the symbol ACTIVATE_ MEMORY_MANAGER
isdefined.

Getting Started _

The heart of the memory manager centers on overloading the standard new and delete
operators, as well as using #define to create afew macros that alow usto plug in our
own routines. By overloading the memory alocation and dedllocation routines, we
will be able to replace the standard routines with our own memory-tracking module.
These routines will log the file and line number on which the alocation is being
requested, aswell as statistical information.
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Thefirst step is to creste the overloaded new and delete operators. As mentioned
earlier, we would like to log the file and line number requesting the memory dloca-
tion. This information will become priceless when trying to resolve memory lesks,
because we will be able to track the alocation to its roots. Here is what the actual
overloaded operators will look like:

inline void*
operator new(size_t size, const char *file, int line);
inline void*
operator new[](size_t size, const char *file, int
line);
inline void operator delete( void *address );
inline void operator delete[]( void *address );

It's important to note that both the standard and array versions of the new and

- delete operators need to be overloaded to ensure proper functionality. While these dec-

larations don't look too complex, the problem that now lies before us is getting al of

the routines that will use the memory manager to seamlesdy pass the new operator the
additional parameters. This is where the #define directive comes into play.

#define new new(_FILE_ ,_ LINE_)
tfdefine delete setOwner(_FILE_,_LINE_) .false ? setOwner("",0)
. delete
#define  malloc(sz) AllocateMenory(_FILE , _LINE_, sz, WM MALLOC)
tfdefinecalloc(num sz
A | ocat eMenory(_FILE 5 LINE, sz*num MM CALLCOC)

#define reaIIoc(ptr 4] AIIocateMam)ry( FILE -, LINE , sz,
REALLCIZ V\,é
tfdefine free(sz) deAIIocate nmry(  FILE , LINE , sz,

MM _FREE )

The #define new statement will replace al new calswith our variation of new that
takes as parameters not only the requested size of the allocation, but dso the file and
line number for tracking purposes. Microsoft's Visual C++ compiler provides a set of
predefined macros, which include our required _ FILE_ and__ LINE__ symbols
[MSDN]. The #define delete macro is alittle different from the #define new macro. It
is not possible to pass additional parameters to the overloaded del ete operator without
cregting syntax problems. Instead, the setOwnerQ method records the file and line
number for later use. Note that it is dso important to create the macro as a condi-
tiona to avoid common problems associated with multiple-line macros [DaltonQOl].
Findly, to be complete, we have dso replaced the mallocQ, callocQ, reallocQ, and the
freeO methods with our own memory alocation and deallocation routines.

The implementations for these functions are located on the accompanying CD.

¢ | TheAllocateMemoryO and deAllocateMemoryO routines are solely responsible for al
“onmCD memory alocation and deallocation. They dso log information pertaining to the
desired alocation, and initidize or interrogate the memory, based on the desired
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action. All this information will then be available to generate the desired datidtics to
analyze the memory requirements for any given program.

Memory Manager Logging

Now that we have provided the neoessary framevvork for replaung the standard mem-
ory alocation routines with our own, we are ready to begin logging. As stated in the
beginning of this gem, we will concentrate on memory legks, bounds violations, and
the actual memory requirements. In order to log al of the required information, we
must first choose a data structure to hold the information relevant to memory aloca
tions. For efficiency and speed, wewill use achained hash table. Each hash table entry
will contain the following information:

struct MenmoryNode

size t actual Si ze;

size t reportedSze;

voi d *act ual Addr ess;
voi d *report edAddr ess;
char sour ceFi | e[ 30] ;

unsi gned short  sourceline;
unsi gned short  paddingSi ze;

char opti ons;

[ ong predef i nedBody;
ALLCC TYPE al | ocati onType;
Menor yNode *next, *prev;

h

This structure contains the size of memory dlocated not only for the user, but
also for the padding applied to the beginning and ending of the alocated block. We
aso record the type of allocation to protect against allocation/deallocation mis-
matches. For example, if the memory was alocated using the new[] operator and deal-
located using the delete operator instead of the delete]] operator, a memory leak may
occur due to object destructors not being called. Effort has dso been taken to mini-
mize the dze of this structure while maintaining maximum flexibility. After al, we
don't want to create a memory manager that uses more memory than the actual appli-
cation being monitored.

At this point, we should have dl of the information necessary to determine if
there are any memory leaks in the program. By creating a MemoryNode within the
AllocateMemoryO routine and inserting it into the hash table, we will create a history
of al the alocated memory. Then, by removing the MemoryNode within the deAllo-
cateMemoryO routine, we will ensure that the hash table only contains a current ligt-
ing of dlocated memory. If upon exiting the program there are any entries left within
the hash table, a memory leak has occurred. At this point, the MemoryNode can be
interrogated to report the details of the memory leak to the user. As mentioned previ-
oudy, within the deAllocateMemoryO routine we will adso validate that the method



used to alocate the memory matches the deallocation method; if not, we will note the
potential memory lesk.

Next, let's gather information pertaining to bounds violations. Bounds violaions
occur when applications exceed the memory dlocated to them. The most common
place where this happens is within loops that eccess array information. For example, if
we alocated an array of size 10, and we accessed array location 11, we would be exceed-
ing the array bounds and overwriting or accessing information that does not belong to
~us. Inorder to protect against this problem, we are going to provide padding to the front
and back of the memory dlocated. Thus, if aroutine requests 5 bytes, the AllocateMem-
oryOroutinewill actualy alocate5 + sizeofllong)* 2* paddmgS zebytes. Notethat weare
using longsfor the padding because they are defined to be 32-bit integers. Next, we must
initialize the padding to a predefined value, such as OXDEADCODE. Then, upon dedl-
location, if we examine the padding and find any value except for the predefined value,
we know that a bounds violation has occurred. At this point, we would interrogate die
corresponding MemoryNode and report die bounds violation to the user.

The only information remaining to be gathered is the actual memory require-
ment for the program. Wewould like to know how much memory was allocated, how
much of the dlocated memory was actually used, and perhaps peak memory dloca
tion information. In order to collect this information we are going to need another
container. Note that only the relevant members of the class are shown here.

class Menor yManager

{

public:
unsigned int m_totalMemoryAllocations;
unsigned int m_totalMemoryAllocated; /lln bytes
unsigned int m_totalMemoryUsed; /In bytes
unsigned int m_peakMemoryAllocation;

H

Within the AllocateMemoryO routine, we will be able to update al of the Memo-
ryManager information except for the m_totalMemoryUsed variable. In order to deter-
mine how much of the allocated memory is actually used, we will need to perform a
trick similar to the method used in determining bounds violations. By initializing the
memory within the AllocateMemoryO routine to a predefined value and interrogating
the memory upon deallocation, we should be able to get an idea of how much mem-
ory was actually utilized. In order to achieve decent results, we are going to initialize
the memory on 32-bit boundaries, once again, using longs. We will dso use a prede-
fined value such as OXBAADCODE for initialization. For al remaining bytes that do
not fit within our 32-bit boundaries, we will initialize esch byte to OxE or
static_cast<char>(OxBAADCODE). While this method is potentially error prone
because there is no predefined vaue to which we could initidize the memory and
ensure uniqueness, initializing the memory on 32-bit boundaries will generate far bet-
ter results than initializing on byte boundaries.
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Reportmg the I Informatlon

Now that we have dl of the statlstlcal mformatlon Iets address the issue of how
we Should report it to the user. The implementation that is included on the CD
records dl information to alog file. Once the user has enabled the memory manager
and run the program, upon termination alog file is generated containing alisting of
dl the memory lesks, bounds violations, and the final statistical report.

The only question remaining is. how do we know when the program is terminat-
ing so that we can dump our log information? A simple solution would be to require
the programmer to explicitly cdl the dumpLogReport() routine upon termination.
However, this goes againgt the requirement of creating a seamless interface. In order
to determine when the program has terminated without the use of an explicit func-
tion call, we are going to use a static dass instance. The implementation is as follows:

ON THE CD

class Initialize

{ public: Initialize() { InitializeMemoryManager(); } };
static Initialize InitMemoryManager;

bool InitializeMemoryManager() {
static bool hasBeenlnitialized = false;

if (sjhanager) return true;
else if (hasBeenlnitialized) return false;
else {

s_manager = (MemoryManager*)malloc(sizeof(MemoryManager));
s_manager->intialize();

atexit( releaseMemoryManager );

hasBeenlntialized = true;

return true;

}

voidreleaseMemoryManager(){
NumAllocations = sjnanager->m_numAllocations;

s_manager->release(); /I Releases the hash table and calls
free( sjnanager ); /I the dumpLogReport() method
sjnanager = NULL,;

}

The problem before us is to ensure that the memory manager is the first object to
be created and the very last object to be dedlocated. This can be difficult due to the
order in which objects that are gtatically defined are handled. For example, if we cre-
ated a static object that dlocated dynamic memory within its constructor, before the
memory manager object is alocated, the memory manager will not be available for
memory tracking. Likewise, if we use the ::atexit() method to cal afunction that is
responsible for releasing allocated memory, the memory manager object will be
released before the ::atexit() method is cdled, thus resulting in bogus memory lesks.

In order to resolve these problems, the following enhancements need to be added.
First, by creating the InitMemoryManager object within the header file of the memory
manager, it is guaranteed to be encountered before any datic objects are declared.
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This holds true as long as we #include that memory manager header before any static
definitions. Microsoft dates that static objects are dlocated in the order in which they
are encountered, and are dedllocated in the reverse order [MSDN]. Second, to ensure
that the memory manager is dways available we are going to cal the InitializeMemo-
ryManager () routineevery timewithintheAll ocateMemoryO and Deal locateMemoryQ
routines, guaranteeing that the memory manager is active. Finaly, in order to ensure
that the memory manager is the last object to be deallocated, we will use the ::atexit()
method. The ::atexit() method works by calling the specified functions in the reverse
order in which they are passed to the method [MSDN1]. Thus, the only restriction
that must be placed on the memory manager is that it is the first method to cdl the
;:atexit() function. Static objects can still use the ::atexit() method; they just need to
make sure that the memory manager is present. If, for any reason, the InitializeMem-
oryManager Q function returnsfalse, then thislast condition has not been met and asa
result, the error will be reported in the log file.

Given the previous restriction, there are a few things to be aware of when using
Microsoft's Visua C++. The ::atexit() method is used extensively by internal VC++
procedures in order to clean up on shutdown. For example, the following code will
cause an ::atexit() to be caled, although we would have to check the disassembly to
*eit.

void Foo() { static std::string s; }

While this is not a problem if the memory manager is active before the declara-
tion of sis encountered, it is worth noting. Despite this example being completely
V C++ specific, other compilers might differ or contain additional methods that cal
;:atexit() behind the scenes. The key to the solution is to ensure that the memory
manager isinitidized first.

Things to Keep in Mind

Besides the additional memory and time required to perform memory tracking, there
are a few other details to keep in mind. The first has to deal with syntax errors that
can be encountered when #induding other files. In certain situations, it is possible to
generate syntax errors due to other filesredefining the new and delete operators. This
is especidly noticeable when using STL implementations. For example, if we #include
"MemoryManager.h"a.ndthen#include<map>, wewill generateal typesof errors. To
resolve this issue, we are going to be using two additiona header files: new_on.h and
new_off.h. These headers will simply #define and #undefine the new!'delete macros that
were created earlier. The advantage of this method includes the flexibility that we
achieve by not forcing the user to abide by a particular #include order, and avoids the
complexity when dealing with precompiled headers.

tfinclude"new of f.h"
#incl ude <map>



Ainclude <string> .
#include <ALl other headers overloading the new del ete operators>
#include "new on.h"

Ninclude "MemoryManager.h" // Contains the Memory Manager Module
tfinclude "Custom header files"

Another issue we need to address is how to handle libraries that redefine the new
and delete operators on their own. For example, MFC has its own system in place for
handling the new and delete operators [MSDNZ2]. Thus, we would like to have MFC
classes use their own memory manager, and have non-MFC shared game code use our
memory manager. We can achieve this by inserting the #indude "new off.h" header
file right after the #//2& /'crested by the ClassWizard.

#ifdef DEBUG

Ninclude "new_off.h" /I Turn off our memory manager
tfdefine new DEBUG_NEW

tfundef THIS_FILE

static char THIS_FILE[]] = _FILE__;

#endif

This method will dlow us to keep the advantages of MFC's memory manager,
such as dumping CC%>rt-derived classes on memory leaks, and till provide the rest
of the code with a memory manager.

Findly, keepin mindthe requirementsfor properly implementing'thesetOwnerQ
method used by the delete operator. It is necessary to redlize that the implementation
is more complicated than just recording the file and line number; we must create a
stack implementation. This is a result of the way that we implemented the delete
macro. Take, for example, the following:

File 1: line 1: class B { B() {a = new int;} ~B() {delete a;} };
File 2: line 1: B *objectB = new B;
File 2: line 2: delete objects;

The order of function cdls is as follows:

1. new( objects, File2, 1 );
2. new( a, Filel, 1); -
3. setOmer( File2, 2);

4. setOmner( Filel, 1);

5 delete( a);

6. delete( objects );

As should be evident from the preceding listing, by the time the delete operator is
called to dedllocate objectB, wewill no longer have thefile and line number informa-
tion unless we use a stack implementation. While the solution is straightforward, the
problem is not immediately obvious.
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Further Enhancements

e S R e

. ¢, Within the implementation prowded on the CD accompanying this book, there are

“onmCD  severa enhancementsto theimplementation discussed here. For example, thereisthe
option for the user to set flags to perform more comprehensive memory tests.
Options dso exig for setting breakpoints when memory is deallocated or redllocated
so that the programs stack can be interrogated. These are but afew of the possibilities
that are available. Other enhancements could easily be included, such as alowing a
program to check if any given address isvalid. When it comes to memory control, the
options are unlimited. '
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his gem describes the architecture and implementation of a profiling module for

low-overhead, real-time analysis that supports performance counter organization
s0 that many consumers can work together in harmony. It is designed from a game
engine perspective, with many of its requirements specifically pertaining to things
typically found in games. At the time of this writing, the described module is in use
by a commercially available game engine.

Profiling the performance of agame or engine is one of those things that everyone
agrees is important, but just as often as not guesswork or quick hacks are substituted
for area game system that can gather solid data. In the long run, the time it takes to
implement aclean profiling system is awise investment. And, aswith everything dse,
the earlier we plan for it, the easier it will be.

The basic profiling mechanism is simple; take a timestamp at the beginning of the
code of interest and again at the end. Subtract the first from the second, and vaila,
that's how long the code took to run. We need a high-resolution counter - the Win-
dows multimedia timer and its millisecond resolution will not cut it. If the platform
isWindows on aPC, there are two high-resolution APl cals we can use: QueryPerfor-
manceCounter and QueryPerformanceFrequency. However, because the overhead of
these functions is fairly high, we will roll our own, which only reguires a few lines of
inline assembly:

void CWin32PerfCounterMgr::GetPerfCounter(
LARGE_INTEGER SdCounter) {
DWORD dwLow.dwHigh;
_asm{
rdtsc
mov dwLow, eax
mov dwHigh, edx

?Counter.QJadPart = ((unsigned int64)dwHgh « 32
(unsigned int64)dwow, }
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To convert this number into seconds, we need to know the counter frequency. In
this case it is equal to the CPU cycles per second. We can measure it once when the
counters are enabled — take a time sample, deep for at least 500ms, and then take
another sample. Note that similar counters are available if the target platform is a
game console.

Commercially Avallable Tools

.................... 4 TSR ke

Performance tuning is deflnltely acasewhere choosmg the right tool for the job can
make al the difference. There are many time-tested commercid tools available for the
PC that sample an application as it runs, then offline alow profile data to be viewed
module-by-module, function-by-function, and just about any other imaginable way.
Intel® VTune™ and Metrowerks® Anaysis Tools both make use of the built-in
CPU hardware counters to generate post-processed profiles of runtime sections of a
game. Tuning assembly code by instruction ordering or pairing prediction is defi-
nitely a strength of VTune™.

The Intel® Graphics Performance Toolkit (GPT) provides some powerful scene
andysis tools. It hooks in and snoops traffic at the layer between your application and
Direct3D/OpenGL. Knowing exactly what is being drawn can at times be very help-
ful. Changing the order or the way in which the game renders can sometimes signifi-
cantly affect performance. However, the GPT is written to a specific version of
DirectX, s0 its releases usually trail that of DirectX. Also, taking any significant scene
datawill dow down the application, so relying on the performance characteristics of
data taken when using the GPT can be dangerous.

Statistics-gathering drivers for graphics cards and hardware counters can be
invaluable. Nvidia releases specid drivers and a real-time data viewing application
that hooks al of the function entry points of the drivers. If the graphics driver is tak-
ing a significant percentage of CPU time, this application will alow us to look inside
and break it down further. Intel® provides counters in its drivers and hardware for its
i740 chip, allowing optimization for stalls al the way down to the graphics chip levd.
Some of the game consoles aso provide this ability. It can be very useful, asiit is the
only way to break down performance at this low level. It does, however, require afair
amount of knowledge about how the drivers and chips operate, and what the counters
really mean.

Why Roll Our Own’? _

Reason one: framebased andyss Gamaa typlcally have afal rly high frame-to-frame
coherency, but in just a matter of seconds can drastically change. Imagine a 3D
shooter—a player starts facing awall, runs down along corridor, then endsit dl in a
bloody firefight with five Al-driven enemies. The game engine is running through
many potentially different bottlenecks that can only redly be identified with aframe-
by-frame analysis. Looking at a breakdown of an accumulated sample over the entire
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interval gives an inaccurate view of what is realy going on. Frame-based analysis
allows focusing on one problem at atime.

Reason two: it can be done anytime and anywhere. At the end of a PC game
development cycle, someone will probably be faced with performance problems that
only manifest themselves on someone's brother's machine, on odd Tuesdays. There
are typicaly a significant number of these types of problems. They can cost alot of
time and can very easly dip the release date. Although this type of problem is unique
to PC games, console games till have to ded with the "shooting a missile in the cor-
ner of level three grinds the game to adow crawl" types of problems. Once the prob-
lem is understood, figuring out the solution is usualy the essy part. If we could walk
over to that test machine and pop up a few counter groups, we would quickly nail
down the culprit.

Reason three: customizability. Modern game engines are complicated. The ability
to ignore al the other modules in the engine except for the one being working on is

powerful. In addition, the only person that can organize the data exactly how they
want it is the engineer actually doing the work.

R s

Requirement one: alow users to qwckly and accurately proflle the application.

Requirement two: be non-obtrusive (that is, have very low overhead). When the
cod for taking samples and displaying the results becomes a significant portion of die
frame time, it can actually change the application’s behavior within the system. In gen-
era, dowing down the CPU will tend to hide stalls caused by graphics cards. While
even avery smal percentage can in some rare cases drastically change game perfor-
mance, as a genera rule, when the profiler is enabled, it should take less than five per-
cent of the total CPU cycdles. When disabled, it should be much less dian one percent.

Requirement three: alow multiple users to work independently on their respec-
tive systems without having to worry about other engine modules.

Requirement four: when it's not needed, it should be well out of the way.

Archltecture and Implem_entatlon

........... A

A performance counter manager (| PerfCounter Man) k%ps track of dl active and inac-
tive counters. The counters are organized into groups of similar type (for example,
model render, world render, Al, physics) that are enabled and disabled together. This
supports the notion of multiple groups working independently in an easy to under-
stand grouping concept. Groups are useful for two reasons: for quickly determining if
a counter needs to be sampled, and for enabling and disabling groups of counters to
be displayed. We will make use of four-character codes (FourCC's) for the group 1D
and full text strings for counter names.

The entire system is organized into a module with an interface to the rest of the
system. The basic component is a counter that is identified by a group ID (its
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FourCC) and its string name. Each counter is given an integer ID on creation that
uniquely identifies it. In typical usage, the game code creates counters on initializa
tion and puts start/stop counter cals around the code to be profiled.

The basic functional unit interface for the module is as follows:

class IPerfCounterMan {
public:
/I Add new counter (returns the ID, 0 is failure)
int32 AddCounter(uint32 CounterGroup,
const char* szCounterName);

/I Forget your counter's ID? (Zero is failure)
int32 GetCounterID(uint32 CounterGroup,
const chan* szCounterName);

/I Delete the counter
bool DeleteCounter(uint32 Counter-ID);

/I Start and Stop a counter.
void StartCounter(uint32 Counter-ID);
void StopCounter(uint32 CounterID);

/I Draw the Counters onto the Screen (to be called once
/I per frame near the end of the scene)

void DrawCounters();
h

SopCounter calculates the difference between the SartCounter and SopCounter
cdls and keeps a running total. On DrawCounters, al the running counters are
cleared. A maximum value is dso maintained and is s&t a the end of the frame in
DrawCounters. Let's assume that our engine has a debug console that accepts text
commands. It is avery convenient way to enable and disable counter groups and to
dlow customization of the display.

It is very helpful to alow as much configuration in the counter display as possi-
ble. We will most likely not want to refresh the counter display every frame (updates
every 30 frames should be sufficient), but depending on what is being debugged, the
ability to customize the refresh time can be very handy. In addition, displaying both
the current percentage and the maximum percentage since last displayed is useful.

A bar graph is agood way to display the result. It gives the consumer a quick feel
for the numbers and isn't hard to code. The ability to switch from percentage to actual
time (in milliseconds), display the time or percentage as text values, and auto-scale the
axesis aso very useful. Be careful about switching the axis scde very often, especially
without some kind of warning, because it will likely just confuse people.
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Implementation Details

The interface to the performance counter manager should beerX| bleand easy to use.
Consumers of the profile manager will often find it easier to simply cal Add-
Counter(...) with the full string, get the ID, and start it up al a once instead of sav-
ing the counter 1D at some one-time initialization point. Providing this mechanism
can help out when doing some quick profiling. However, it's not as efficient, and call-
ing it many times in a frame will add up quickly. Also, supplying a dass that can be
placed at the beginning of a function that cdls SartCounter in the constructor and
SopCounter in the destructor (when it goes out of focus) can be a handy way to
instrument the counters.

When writing the profiling manager, it's best to provide some kind of #define
macro that completely removes the profiler. When it comes down to getting peak per-
formance out of agame, profiling code is often one of the first things to go. We need
to provide macros for AddCounter, StartCounter, and StopCounter that completely
compile out on an #ifdefdnan%t.

Also, it's best to use colors for visua cues. When the counters are being displayed,
it's eesier to read if we use different colors on each line.

Data Analysis

Be sure to profile the relm bqu because it can have avery different set of bottle-
necks from the debug version. If the target platform is the PC, it is dso agood idea to
pick two or three typica system configurations (low to high end) and profile each of
them. Bottlenecks can vary greatly across system configurations.

The game should be profiled in the areas that have performance problems as well
as during typical game play. We must bresk the problem down, try to focus on one
thing at atime, and focus on the areas that will give the biggest bang for the buck. Just
because a function is caled the most often or takes the most CPU time doesn't mean
it is the only place we should focus our efforts. Often, the only thing we can compare
our cyce times with is our expectations, and redigtic expectations are usualy gained
only through experience.

The profiler itself should dso be profiled. If the act of profiling is intrusive, it
changes the behavior of your game. There should be a counter around the profiler's
draw routines.

Implementation Notes

The deecn bed module has been |mplemented across muIt| ple platforms. However,
parts of it require platform-dependent functions. The actual timestamp query and the
draw functions will mostly likely need to be implemented in platform-dependent
code, o it's best to design alevd of abstraction around those functions. The described
implementation uses a set of debug geometry and text (which has a platform-
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dependent implementation) in the draw code so that it can be platform independent.
You may need to write a macro to create your four character code values, as many
compilers do not have support for them.

This same system can be used to take long running profiles of a game server to
detect problems. All the counters go through one source, so data can eedily be filtered
down and saved to disk.
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Linear Programming Model for "
Windows-based Games

Javier F. Otaegui, Sabarasa Entertainment
jJavier@sabarasa.com.ar

I n the past, when DOS ruled the earth, we programmed our games in a mosily lin-
ear fashion. Then it was time to port our creations from DOS to DirectX, and this
was a big jump because of the Windows message pump. Its architectureis simply not
adequate for game programming. In this gem, we will cover an effective way to encap-
sulate the message pump, provide alinear programming modd and, as a very desir-
able sde effect, dlow correct "alt-tab" application switching. We will dso cover
correct recovery of logt surfaces.

importanceof themethodintroducedinthisgem. If your experienceingame
programming startedwithWindows, thenyou might find themessage pump
anatural environment for gameprogramming, butonceyoutrylinear pro-
gramming, you will never go back to the messagepump. It isfar clearer and
easier tofollow and debug than a huge finite state machineis. You can savea
lot of design, programming, debuggingtime, andthinkingifyoustartwork-
ing in a more linear way.

If you havepreviously programmed linearly, you will easily understand the

MOTE

Modern games often have some sort of UpdateWorld function, located in the heart of
the application in the message pump, and invoked whenever it is not receiving any
messages. In afirg attempt, coding an UpdateWorldfunction can be very smple: dl
the gpplication variables, surfaces, and interfaces have dready been initidized, and
now we just have to update and render them. That should be an easy task, but only if
we plan that our game will have only one screen, no cut-scenes, no menus, and no
options.

The problem is that UpdateWorld must eventualy finish and return to the mes-
sage pump so we can process messages from the system. This prevents us from staying
in a continuousfor loop, for example. As old DOS games didn't have to return con-
stantly to a message pump to process system requests, we could linearly program
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them, and our subroutines could have dl the loops they needed, or delays, or cut-
scenes. We simply had to insert the corresponding code into the subroutine. Now,
however, with the message pump, which requires constant attention, we must return
on every loop. As stated previoudy, the problem of returning in every single loop is
when attempting to maintain several game screens.

The way to work around this is to make every subroutine of the application a
finite state machine. Each subroutine will have to keep track of its interna state, and,
according to this dtate, it must invoke several other subroutines. Each of these other
subroutines is dso a finite state machine, and when it finishes its execution (that is, it
has no more gtates to execute), it must return avalue to inform the invoking subrou-
tine that it can proceed with its own following state. Of course, each subroutine,
when it finishes, must reset its state to 0, to dlow the application to invoke it again.

Now if we imagine 30 or 40 of these subroutines, each with a couple dozen dtates,
wewill be facing avery big monster. Trying to debug or even follow this code will be
difficult. This finite-state programming modd is far more complicated that the sm-
ple modd achieved by old linear DOS programs.

The Solution: Multlthreadlng

Here is asmple multithreadi ng model that fre& the game programmer from the mes-
sage pump and its potentially undesirable finite-state programming model.

Windows supports multithreading, which means that our application can run
several threads of execution simultaneoudly. The ideais very simple - put the message
pump in one thread and the game into another one. The message pump will remain
in the initial thread, so we can take out the UpdateWorld function from the message
pump and return it to its smplest form (alinear programming scheme). Now we just
need to add to the dolnit function the code necessary to initiate the game thread.

HANDLE hMainThread; /I Main Thread handle

static BOOL
dolnit( ... )

t Il Initialize DirectX and everything else

DWORD ti d;

hMai nThr ead=Cr eat eThr ead( O,
01
&Mai nThr ead,

0,
&id);
return TRUE
}

MainThread is defined by:
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DWORD WINAPI
MainThread( LPVOID argl )

RunGame() ;
Post Message( hwnd, WM CLCSE, 0, 0);
return 0;

b

MainThreadwill invoke our RunGame function, and when it is finished, we just
post a WM_CLOSE message to tell the message pump thread to finish execution.

Initialization Code

Now we must choose whether to include initialization code (including the DirectX
initialization code) in the dolnit function or directly into our RunGame function. It
may be more degant to include it in the dolnit function, as long as we include dl ter-
minating code in the response to WM_CLOSE in our message handler. On the odier
hand, we could include al the initialization code in the RunGame function, which
means that we will handle al of the important parts of the code directly in our new
linear game-programming function.

The "Alt-Tab" Problem

Making agame truly multitasking under Windows is perhaps one of the most hazardous
issues in game programming. A wel-behaved application must be able to correcdy switch
to other gpplications. This means alowing the user to alt-tab away from the application,
which some games attempt to disalow, but wewill try to make things work correcdy.

We could try using the standard SuspendThread and ResumeThreadfunctions, but
it's nearly impossible to get this to work properly. Instead, wewill use amultithreaded
communication tool: events. Events work like flags that can be used to synchronize
different threads. Our game thread will check if it must continue, or ifit must wait for
the event to be set.

On startup, we must create a manual-reset event. This event should be reset
(cleared) when the program is deactivated, and set when the program is reactivated.
Then, in the main loop, wejust have to wait for the event to be sat.

To create the event, we need this globd:

HANDLE task wakeup_event;

To create and set the event, we need to include the following code during initial-
ization:

task_wakeup_event =

CreateEvent(
NULL, /INo security attributes
TRUE, /I Manual Reset ON
FALSE, /I Initial state = Non signaled

NULL /' No name
|
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Most games have afunction in their main loop that is called every time the game
needs to render a new screen; this is typically where DirectX is asked to flip the pri-
mary and back buffers. Because this function is called constantly, thisis an idea loca
tion to make the thread wait for the event in an idle state, using this code:

WaitForSingleObject( task_wakeup_event, INFINITE );

We must suspend the thread every time the operating system switches the active
application. To do this, we must have our WindowProc function, and upon receiving
an APP_ACTIVATE message, check whether the application is active. If the applica
tion has gone to an inactive state, we must suspend the game execution, which
requiresthiscal:

ResetEvent( task_wakeup_event );

and to resume it:

SetEvent( task_wakeup_event );

With this ssmple implementation, when the user hits alt-tab, the game will tem-
porarily stop execution, freeing all the processor's time to enable die user to do other
tasks. If the world update must continue executing even if the application loses focus,
then we can just suspend the rendering pipeline, and continue updating the world.
This event model can be used with any number of threads that the application may
require, by inserting new events for each new thread.

Handling Lost Surfaces

If we use video memory surfaces, we will face the problem of losing the surface infor-
mation when the application loses focus. The problem that we now face is that with
our new linear programming model, a program can be caught in the middle of a sub-
routine with al its surfaces lost.

There are many possible solutions to this situation, one of which is the Com-
mand pattern [GoF94]. Unfortunately, it obscures our code, and the main god of this
gem is to make things more clear. We can use agloba stack of pairs of callback func-
tions and If Voids, which will be called when the surfaces need to be reloaded. When
we need to restore the surfaces, we would invoke callback function( IpVoid). The
IfVoid parameter can include pointers to dl the surfaces that we need, so we can keep
the surfaces local to our new linear subroutines.

Let's suppose that we have a subroutine called Splash that displays a splash screen
in our game, which is a surface loaded from afile. If the user hits alt-tab while the
splash screen is displayed and then comes back, we want our application to show the
splash screen again (let's assume that the surface was lost while the application was
inactive). Using our proposed method, we must do something like this:

int LoadSplashGraphi.es ( Ipvoid Params )
{
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Surface *pMSurface;
pM/Surface = (Surface *) Parans;

T s
/I (load the graphic from the file)
return 1,
}
int Splash()
{
Surface MySurface;
/I Push the function
gReloadSurfacesStack.Push( &LoadSplashGraphics, &MySurface );
// D o not forget to load graphics for the first time
LoadSplashGraphics( &MySurface );
/I ... the subroutine functionality.
/I Pop the function
gReloadSurfaceStack.Pop();
}

We are using a stack so that each nested subroutine can add dl the surface load-
ing and generation code that it might need. The implementation could easly be
changed to another collection dlass, but this is a classc stack-oriented problem due to
its nested functionality, and so a stack works best here.
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Listing

Stack winding

Bryon Hapgood, Kodiak Interactive
bryonh57@hotmail.com

winding is a powerful technique for assembly programmers that dlows us to

odify an application's stack to do weird and wonderful things that can be

extended into C/C++ with very little work. While the days of writing every line of

game code in hand-optimized machine language are over, sometimes it is worth the

effort to dip into the realm of the arcane to get that extra bit of speed and degance in
agame.

In this gem, we cover one particular type of stack winding that | cdl the "tempo-
rary return.” This is the bare minimum form that we will build upon in subsequent
examples until we have a thunked temporary return. The code examples have been
tested with Microsoft's MASM and Visual C++ compiler. | have personally used stack
winding in a number of projects for the GameBoy Color, PC, and Xbox.

TempRet

Stack winding, as its name implies, is atechniqué for modifying the stack to make it
do unexpected things. The term stack winding comes from the idea of inserting values
in an existing stack frame to change its normal and expected behavior.

1131 The TempRet routine

T ey

0O .58

1 nodel flat

2 .data

3 buffer dd ?

4 file handle dd ?
5 filesize dd ?

6 .code

=

8 _TenpRet Eg:

9

10 call fnO
11 call fnl
12 )

13 i bef ore
14

15 pop  edx

85
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16 call edx
17 s

18 o after
19 »

20 call fn2
21 call fn3
22 ret

23

24 A call _TenpRetEg
25 ret

26

27 end

In Listing 1.13.1, we see the first building block of stack winding: the TempRet rou-
tine. Let's take a function (cdl it MyFunc) and say it cdls _TempRetEg. The latter
then cdlls two functions: fnO and fnl. It then hits the lines:

0 edx
gaPI edx

Now we know that the way the CPU handles the assembly CALL instruction on
line 24 is to push the address of the next line (25) and execute aJUMP to line 8. Line
15 pops that address off the stack and gores it in a CPU register. Now we CALL that
address. This pushes line 20 onto the stack and executes aJUMP to line 25. The lat-
ter does nothing but execute a CPU return, which pops an address off the stack and
jumps there.

Therest of _TempRetEg then continues and when it returns, we do not return to
MyFunc but to whatever function caled MyFunc in thefirst place. It is an interesting
little trick, but why would it be important? The power comes when we consider the
functions FNO through FN3.

Let's say that FNO opens a file, FN1 alocates a buffer and reads the file into
memory, FN2 frees that memory, and FN3 doses the file. Thus, MyFunc no longer
has to worry about the release steps. 1t doesn't have to close the file or worry about
freeing up the memory associated with the file. Functionally the process of opening a
file, reading it into memory, freeing that memory, and closing thefileis al contained
within asingle block of code. MyFunc only has to cal _TempRetEg, use the buffer,
and return.

TempRet Chains_

The TempRet example comes of age when we chain functions together. Let's take a
classic problem: the initialization and destruction of DirectX 7. This usualy takes a
number of geps, but it's incredibly important to redease the components of DX in
reverse order, which can sometimes become horribly complicated.

S0, let's expand our first example to illustrate this:
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Listing 1.13.2 Winding multiple routines onto the stack

0O .56

1 .nodel flat

2 .code

3

4 TenpRet macro

5 po’o edx

6 call edx

é TenpRet endm

9 createWndow

10 ; open the w ndow
11 TenpRet

12 : close it

13 net

14 set Cooperat i velLevel :
15 ;. set to exclusive
16 TenpRet

17 : restore

18 ret

19 changeDi spl ayMde:
20 ; set 640x480 16 bpp

21 TenpRet

22 © restore

23 ret

24 createSurfaces:

25 ; Create primary surface
26 ; get attached back
27 TenpRet

28 . release primary
29 ret

30  Set u?DX7:

31 cal creat eW ndow

32 call  setCooperativelLevel
33 call  changeDi spl ayMde

34 call createSurfaces
35 jmp _SomeUser RunFunc
36

37

38 end

By performing numerous TempRets in succession we effectively have woundfour
routines onto the stack so that when _SomeUserRunFunc returns, we will bounce
back through createSurfaces, changeDisplayMode, setCooperativelLevel, and cre-
ateWindow at the line after the TempRet in reverse order.

So far, weve been using assembly language, but it's not necessary to write assem-
bly modules to use this technique. We will cover two mechanisms in Microsoft's
Visud C++ in the fina section that ad us in stack winding: inline assembly and
naked functions.



88_ o Sectlon 1 General Programmlng

Thunklng

The ideas dlscussed 0 far need to betransl ated |nto C/C++ As stated previoudly, Visua
C++ has a handy mechanism for doing diis, but what about other compilers? If naked
functions are not supported, then we will have to dip into assembly language because
the presence of agtack frame really complicates things. It is not impossible, just difficult.

Thunking is a technique popularized by Microsoft for dlipping a piece of code
between two others. In effect, program flow is hurtling along through our code until
thunk!—it crashes into that layer. Thunks are a great way of implementing a stack-
winding paradigm in C++. Let'slook at an example that performs the same task of set-
ting up DirectX aswe saw earlier:

Listing 1.13.3 Visual C++ example using TempRet

#defl ne TeerRet\ ...........

_asm{pop edx}\
__asm{call edx}

tfdefine NAKED voi d _ decl spec(naked)
tfdefine JUWP _asmjnp
tfdefi neRET _asnret

static NAKED creat eWndow(){
/' open the w ndow
TenpRet
/] close it
RET

}

static NAKED set CooperativeLevel (){
/1 set to exclusive
TenpRet
/] restore
RET

}

static NAKED changeD spl ayMde(){
/] set 640x480 16bpp
TenpRet
/] restore
RET

}

static NAKED createSurfaces(){
/] create primary surface
/1 get attached back
TenpRet
/] restore
RET
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Recursion

NAKED SetW
creat ndo
set Cooper atlveLeveI ();
changeDi spl ayMde() ;
createSurfaces();
JUWP run

~ recurS|on

:rmdel flat
. code

public SafeEnter, Saf eExi t

. struct SAFE
; voi d*_reg[ 8];
voi d* " ret;

)

; assenbly for SafeEnter routine

_SafeEnter:

pop edx ; return address
nov eax, [esp] ; safe

l

;

nmov [eax].safe. ret,edx
mov | eax].safe. —ebx. ebx
njov [eax].safe. —ebp, ebp
nov [eax|.safe. _esp, esp
nmov [eax|.safe. — esi,esl
nov [eax].safe. —edi.edi

E)op eax ; safe pointer
pop edx ; call tunction
push eax ; safe pointer

Listing 1.13.4 The SafeEnter and SafeExit functions that aid

8

Asafinad example of the power of stack wi nd| ng, we WI|| explore asolution for adas
sic problem with recursive searching: how to roll back die recursion. In regular C we
would simply return repeatedly, walking back through the stack until we reach the
top. If our recursion is over 100 cals deep, however, this might take alittle time. To
fix this, hereisapair of utility functions called SafeEnter. Incidentaly, the code works
just aswell from a C++ object asaglobal function.



nov ebp, eax

call edx
mov  eax, ebp
jm sex

Saf eExi t
pop edx
pop eax

mov  edi, [ eax
mov esi, | eax
mov  esp, [ eax
mov  ebp, [ eax
mov  ebx, | eax
mov  edx, [ eax
mv eax, [ eax

jmp  edx

end

return
regs context

.safe.
.safe.
.safe.
.safe.
.safe.
.safe.
.safe.

edi

T esi

“esp
“ebp
“ebx
“ret

_eax

—aon 1, Ceneral Brogramiming

SafeEnter works by saving off to a SAFE structure a copy of crucial CPU regis-
ters. It then cdls our recursive function. As far as the function is concerned, no extra
work is necessary. Now the cool part comes when we find the piece of data were |ook-
ing for. We simply cal SafeExit() and pass it the register context we built earlier. We
are instantly transported back to the parent function.

Now, if the unthinkable happened and the search routine did not meet its search
criteria, then the function can smply return in the normal way, all theway up the chain.

L|st|[1g 1. 13 5 Recursive example usmg SafeEnter and SafeEX|t

~static void search(SAFE&saf e, voi d*v W{

i f(<neets_requirement>)
Saf eExi tgsaf e);

/1 do st uf

search(safe,v);

return;

int main(){
SAFE safe;
Saf eEnt er (
saf e,
sear ch,

<SONe_poi nter>)

s e i s i
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Self-Modifying Code

Bryon Hapgood, Kodiak Interactive
bryonh57@hotmail.com

S;—modifying code, dso known as "RAM-code" is a fascinating technique that
ually dlows a program to alter its own code as it executes. It has been used in
everything from genetic algorithms to neural networks with amazing results. In games
it can be used as apowerful optimization technique. Recently | used this technique on
a GameBoy Color title Test Drive Cycles to decompress artwork on the fly at 60 fps,
decode 14 palettes of color information (instead of the standard eight), and enable
multiple levels of parallax scrolling. In this gem, we will cover how to write self-
modifying applications.

The PrlnC|pIes of RAM- Code

RAM-code is asmple idea, but one that can take an |n0rd| naIe amount of time to get
just right. It iswritten for the most part in hexadecimal and can be difficult to debug.

Let's look at a very simple case. We want to load a pointer from a 16-hbit variable
stored somewhere in RAM.

getjil:
Id hl,ptr_var Load HL register with the address ptr_var
Id a,(hI D) ; Load A register with [ow byte
; and increment HL
[d h,(hl) ; Load L register with high byte of ptr_var
ld |,a ; Save low byte into L
ret : Return

This example can be improved by writing it as

getjil:
db $2a ; Id hi,...
ptr_var
dw $0000 ;. ...ptr_var
ret

These two routines are logicdly no different from each other, but can you see the
difference? The second example is stating the variable that stores the address to be
loaded in HL as an immediate vaue! In other words, instead of physically going out
and loading an address, we just load HL. It's quicker to load an immediate value than

91
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to access main memory, and because there are fewer bytes to decode, the code runs
much faster. We can take that idea much further when it comes to preserving regis-
ters. Instead of pushing and popping everything, which can be expensive, we simply
write the value ahead into the code. For example, instead of writing:

get_hl:
Id hl,ptr_var
Id a,(hli)
id 1,(hD
Id h,a
Id a,(hi)

push af ; Save A register
[; do sonething with A

Lop af ; Restore A register
ret

this code can be optimized down to:

getjil:
db $2a ; Id hi, ...
ptr_var
dw ptr_var ; ...ptr_var
Id a, (hi)

Id (varl),a
i
; do something with A

do  $2F . 1d a,...
varl db $00 ; ...saved register value
ret

Thisis not a huge saving, but it illustrates the point.

In many games |t is often crucu’:i to convert from one plxel format to another, such as
from 16-bit (565) RGB to 24-bit RGB. Whether this is done in some offline tool or
within the game itsdlf can be satisfied with this one routine. We can define a structure
(cdl it BITMAP) that contains information about an image. From this, our blitter
can then use RAM-code techniques to construct an execute-buffer—a piece of code
that has been alocated with malloc and filled with assembly instructions.

The blitter works by taking a routine that knows how to read 16-bit (565) RGB
pixels and convert them to 32-bit RGBA vaues, and a routine that knows how to
write them in another format. We can paste these two functions together, once for
images with odd widths, or multiple times in succession to effectively unroll our loop.
The example shown next takes the former approach.

So, let's define our bitmap structure and associated enumerated types.
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enum Format{

|

RGB_3x8=0 ,
RGB_565=4,
RGB_555=8,
RGB_4x8=12,
RGB_1x8=16

struct BITMAP{

};

void *pixels;
u32 w, h,depth;
TRIPLET *pal;
Format pxf;
u32 stride;
u32size;
BITMAP();
BITMAP (int , int , int, Format , int n=1) ;
void draw(int, int, BITMAP&, int, int, int, int) ;
operator bool(){
return v!=NULL,;
}

-

Now, it's redly important that we have the same structure defined on the assem-
bly side of things.

Bl TMAP Struct

pixels dd ?
W

h

a
Bxf

stride dd
size dd

deFt h dd

dd
dd

dd
dd

RS RIORIG EIO RIC ELO RIS |

BI TMAP ends

PF BQR 3x8 = (O

PF_BGR 565
PF_BGR 555
PF_BGR 4x8
PF_BGR_1x8

04h
08h
Ch
10h

The next step is to define our execute buffer.

execute_buffer db 128 dup(?)

For this code to work in C++, we must use a mangled C++ name for the member
function BITMAP: :draw. After that comes some initialization code:

?draw@BITMAP@<aQAEXHHAAU1 @HHHH@Z:

Push ebp

ea ebp, [ esp+8] ; get arguments address
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push ebx
push edi
push esi
mov edi,ecx ;dst bitmap
movesi,[ebp+8] ;src bitmap

mov eax,[esi].bitmap.pxf

The first thing we must decide is whether we need to do a conversion at all.
Therefore, we test to see if the two pixe formats of the bitmap objects are the same. If
s0, we can further ask whether they are the same size. If that is the case, we can just do
afast string copy from one to the other. If not, but they're the same width, then we
can still do the string copy. If the two have different widths, then we can do string
copieslineby line.

mov edx,[edi].bitmap.pxf
cmp eax,edx
jne dislike

; like copy

mov ecx,[esi].bitmap. size

cnp ecx, [edi]. bitnmap. _size

je
mov  ecx,[edi].inage.stride
mov edx,[esi].image.stride
cnp edx, ecx

jne @
© same wdifferent h

mov edx, [[edi ]‘ i mge. h
nmov eax, [ esi].image. h
chp eax, edx
il k2

mov eax, edx
k2: ml ecx
MoV ecX, eax
k3: mov esi,[esi].imge.lfb
nmov edi,[edi].image. Ifb
shr ecx, 2
rep movsd

jnp ou

ee: ;
: find smallest h -> ebx
rrmv eax,l[edii .image. h
mov ebx, [esi].image. h
cnp ebx, eax
il
mov ebx, eax
ee: -
:calc strides



a@:

ou:

]
add
mv
mul
nmov
sub
sub
i

i

push
push
push
cal
pop
pop
pop
H
shr
mov
rep
lea
lea
mov
dec
jne
pop
pop
pop
pop
ret

ebp, 12

eax, [ebp].rectangle.w
[esi].imge.depth; edx corrupts
edx, [esi].image.stride

ecx, eax

edx, eax

calc offsets with intentional reg swap

eax
ecx
edx
cal c_esd
edx
eax
ecx

edx=dest pad

ecx, 2
ebp,ecx
movsd
edi,[edi+eax]
esi,[esi+edx]
ecx,ebp

ebx

@

esl

edi

ebx

ebp

1ch

If the two bitmaps have completely different pixel formats, we have no choice but
to convert every single pixel from one format to the other. The following code shows
this in action. There's another way to further improve this routine by unrolling the
loop—this would be as simple as repeating the build step four or more times.

dislike

‘lea
add
push
push
push
push
push
mov
mov
;

;
mov
stosb
mov

eax,execute_buffer

ebp,12

ou

eax

edi

es

ebp

ebx,edi ; destination image
edi,eax

write "mov ebx,h"
al,0BDh

eax,[ebp].rectangle.h



ea:

stosd
5

]

mov
stosb
mov
stosd
H

H

mv
mv
nmv
nmv

| odsd
mv
add
rep

nov
nov
| odsd
nov
add
rep

nnvh
pus
sub

shl

nov
stosd
nov
push
nov
mul
sub
JZ

- .

dec
nov

Sectlon 1 General Programmlng

write "mov ecx.w"
al,0B9h

eax,[ebp].rectangle.w

get read

edx , 2

ebp esi; source
[eb | . i mge. pf

e5| , rthl conv?eax]

ecx, eax
edx , ecx
nmovsh

put wite

eax, [ebx] . i mge. pf
esi ,whl conv[eax]

ecx , eax
edx , ecx
nmovsbh

wite tai

ecx, [esp]
edx

dl, 19

d

edx , 16

edx , 080D07549n
eax , edx

eax,[ecx] . rectangl e. w
eax

[ebp] .inage. depth
ecx , eax

@

nov al, 3B6h
stosh

mv eax, ecx
stosd

) mp nq

modi fy outer branch
edi

eax , [ espt4]

ecx febp] .image. stride

; start of exec_tail
i args

y source



sub
nov
0
il
nov

sub
jz

pq:

ea: gﬁg
Inc
shi
or

pr:

eax, 6

[espH4] , eax

gax

[ebx] .image. depth

ecx, [ebx] .immage. stride ; dest

ecx, eax

mov  ax, OBF8Dh
St osw

nmv eax, ecx
stosd

pop  eax
Jmppr

eax

eax, 6

a

al

eax, 16

eax, QC300754Ch
st osd

pop  ebp

pop  esl

pop ed

Another important step in this blitter is to correctly calculate the x and y offsets
into the source and destination images. This routine does exactly that.

calc_esdi:

3

; Destination

ﬁnv eax,{ebp-lZ].point.x ; get dx

nul [edi].imge. depth ; mltiply by d

nmv  ecx,eax ; store result

mov  eax, [ebp-12]. point.y ; get dy

mul [edll.lnage.strlde ; multiple by stride
nmov edi,[edi].image.lfb ; get target pixels
add  edi,ecx ; add x

add edi , eax ; add y

; Sour ce

nov eax, [ ebp] . rectangl e. x ; get sx

nul [esi].image.depth ; multiply by d

nmv  ecx, eax ; store result

nov eax, [ ebp] . rectangl e.y ; get sy

mul [esi].image.stride ; multiple by stride
nmov edx, esi].inage.pal ; palette info

mov  esi,|esi]|.image. Ifb ; get target pixels
add esi, ecx ; add x

add  esi, eax ; add y

ret
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For this whole RAM-code idea to work, we need some initialization that gets
placed at the top of the RAM-code buffer. It smply loads the ECX register with the
number of scan lines to copy.

exec_head dd s

3 (size)
db  0B9h, 0OCh, OCCh, OOCh, OCCh

: mov ecx,0

The next few routines are the actual read and write routines (RC and WC). The
first byte tells us how many bytes make up the code in each subroutine.

RC_BGR_1x8 dd 18 1 (size)
db 033h,0COh Xor eax,eax
db OACh lodsb

db  08Bh,0D8h
do  003h,0COh
db  003h,0C3h
db  003h,0C2h
db 08Bh,000h
db 025h,0FFh,OFFh,OFFh,000h

mov ebx.eax
add eax,eax
add eax,ebx
add eax,edx
mov eax,[eax]
and eax,-1

A e e s s s W W W

RC_BGR_3x8 dd 7 ; (size)
db OADh ; lodsd
db  025h,0FFh,OFFh,0FFh,000h ; and eax,-1
db  04Eh ; dec esi

RC_BGR_ 4x8 dd 1 | (size)
db  OADh ; lodsd

RC_BGR_ 565: dd 1 ; (size)
lodsw

RC_BGR_ 555: dd 1 ; (size)
lodsw

WC_BGR_3x8 dd 6 3 (size)
db  OAAh . stosb
db  OC1h,0E8h,008h ; shr eax,8
db  066h,0ABh 5 stosw

W B&R 555 dd 28 ; (size)
db  033h, CDBh ; Xxor ebx, ebx
db  OCCh, CE8h, 003h ; shr al,3
db  Q0Ch, CECh, 003h ; shr ah, 3
db  08Ah, CDCh ; mov bl.ah
db  066h, OClh, CE3h, 005h ; shl bx,5
db  Q0Ah, CD8h ; or bl.al
db OClh, CE8h, 013h ; shreax,|3h
db  066h, OClh, CECh, CCAh ; shl ax, OAh
db  066h, OBh, QC3h ; or o ax, bx
db  066h, QABh ; stosw

W BGR 565 dd 3 (size)

28
db  033h, CDBh ; Xor ebx, ebx



WC_BGR_4x8

dd
db

OCOh,0E8h,003h
OCOh,0ECh,002h

08Ah, ODCh
066h,0C1h,0E3h,005h
OO0Ah,0D8h
OC1h,0E8h,013h
066h,0C1h,0EOh,00Bh
066h,00Bh,0C3h

066h, OABh

1
OABh

shr al,3
shr ah,2
mov bl.ah
shl bx,5
or bl,al
shr eax,13h
shl  ax.OBh
or ax.bx
stosw

(size)
stosd

Finally, we have a table that tells us which routine to use for every pixel format in

BITMAP: :pf.

rtbl_conv

wtbl_conv

RC_BGR_ 3x8
RC_BGR_ 565
RC_BGR_555
RC_BGR_4x8
RC_BGR 1 x8

WC_BGR_ 3x8
WC_BGR_ 565
WC_BGR_ 555

WC_BGR_ 4x8
?
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File Management Using
Resource Files

Bruno Sousa, Fireworks Interactive
gems2@fireworks-interactive.com

s games increase in size (I think the grand prize goes to Phantasmagoria with

seven CDs), there is aneed for organization of the game data. Having 10filesin
the same directory as the executable is acceptable, but having 10,000 is not. More-
over, there is the directory structure, sometimes going five or more levels deep, which
isapain to work with. Because our gameswill hardly resemble Windows Explorer, we
need to find a clean, fast way to store and organize our data. This is where resource
files come into play. Resourcefiles give us the power to encapsul ate filesand directo-
ries into a gngle file, with a useful organization. They can dso teke advantage of
compression, encryption, and any other features we might need.

a Resource File?

rin T, T — R TR IR -

We dready use resource fI|eS al the time in our daly work—examples of these are
WinZip, the Windows installer, and backup programs. A resource file is nothing
more than a representation of data, usualy from multiple files, but stored in just one
file (see Listing 1.15.1). Using directories, we can make aresourcefilework just like a
hard drives file sysem does

Listing 1.15.1 Resource file structure.

100

SE/-\LRFGNU + 10
1.0
58
19

Signature

Versi on

Nunmber of Fles
COfset of First File

File 1

File 2

Fle 3

File .

File .

Fle .

File Number O Files - 1]
File Nunber O Files]
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Each lump (we will start caling files "lumps' from now on) in the resource file
has its own structure, followed by dl of the data (see Listing 1.15.2).

Listing 1.15.2 File Iump structure..

Design

T R A e e e e

File Sze = 14340

Filenane = /bnp/ Bob. bmp" + "\0'
FH ags = COMPRESSED

Fl agsl nfo = xF34A400B

Byte 1

Byte 2

Byte 3

Byte .

Byte .

Byte . _
Byte File Sze - 1]
Byte File Sz

sr— e S T SRS et s i R

Before we do anythl ng else, WeII need to name our resource system. We can then use
the name to give each component a special naming scheme, one that will differentiate
it from the other parts of the game. Let's cdl this system the "Sed Resource File Sys
tem," abbreviated to SRFS, and use "s" for class prefixes.

First, we need a resource file header. By looking at Listing 1.15.1, it's easy to see
that we are keeping our system simple. However, that doesn't mean it isn't powerful, it
means that it was designed to accommodate the most-needed features and il retain
afairly understandable syntax and structure.

Our resource file header gives us dl the rdevant information about the system.
Multiple file types are used in games, and for each type, there is usualy afile header
that contains something unique to differentiate it from other file types. SRFS is no
different, so the first data in its header is the file signature. This is usually a 5- to 10-
character string, and is required so that we can identify thefileasavalid Sea resource
file. The version information is pretty straightforward—it is used to keep track of the
file€'s verson, which is required for a very smple reason: if we decide to upgrade our
system by adding new features or sorting the lumps differently, we need away to ver-
ify if the file being used supports these new features, and if so, use the latest code.
Otherwise, we should go back to the older code—backward compatibility across ver-
sions is an important design issue and should not be forgotten. The next field in the
header is for special flags. For our first version of the file system, we won't use this, so
it must aways be NULL (0). Possible uses for this flag are described in the For the
Future section. Following this is the number of lumps contained in the resource file,
and the offset to the first lump. This offset is required to get back to the beginning of
the resource file if we happen to get lost, and can aso be used to support future ver-
sions of this system. Extra information could be added after this header for later ver-
sions, and the offset will point to the first lump.
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We now move to our lump header, which holds the information we need to start
retrieving our data. We start with the lump size in bytes, followed by name and direc-
tory, stored as a fixed-length, NULL-terminated string. Following this is the flags
member, which specifies the type of algorithm(s) used on the lump, such as encryp-
tion or compression. After that is information about the algorithm, which can con-
tain achecksum for encryption or dictionary information for compression (the exact
details depend on the algorithms). Findly, after dl of this comes the lump informa-
tion stored in abinary form.

Our system has only two modules: aresource filemodule and alump module. To
be able to use alump, we need to load it from the resource file and possibly decrypt or
decompress it into ablock of memory, which can be accessed normally. Some systems
prefer to encapsulate dl functionality into the resource file module, and even alow
direct access to lump data from within this module. This approach certainly has
advantages, but the biggest disadvantage is probably that we need to have the whole
resource in memory at once, unlesswe use only raw data or complicated algorithmsto
dynamically uncompress or decrypt our lump data to memory. This is a difficult
process and beyond the scope of this gem.

We need functions to open the resource file, read the header, open individual
lumps, read information from lumps, and get data from lumps. These are covered in
the Implementation section.

Implementation

The sample code included in the CD is written in C++, but for the text, we will use
pseudocode so it will be essy to implement in any language.

The sICLump Module

Our lump moduleis similar tofilestreamsin C++ or other language implementations
of filesin that we can write to it. Unfortunately, updating the resource file with a
lump is very troublesome due to the nature of C++ streams. We can't add data to the
middle of the stream—we can only replace it—and we cant modify the parent

resourcefile.
DWORD dwLumpSize;
STRING szLumpName;
DWORD dwLumpPosition;

BYTE [dwLumpSize] abData;

The variable dwLumpSize is a double word (32 bits) that specifies the size of the
lump, sz umpNameis astring describing die lump's name, dwLumpPosition keepsthe
lump's pointer position, and abData is an array of bytes with the lump information.

Here are the sICLump modul e functions:

DWORD  GetLumpSize (void);
STRING GetLumpName (void);



DWORD Read (BYTE [dwReadSize] abBuffer, DWORD dwReadSize);
DWORD Werite (BYTE [dwReadSize] abBuffer, DWORD dwWriteSize);
DWORD  Seek (DWORD dwSeekPosition, DWORD dwSeekType);
BOOLEAN IsValid (void);

GetLumpSizeO retrieves the lump's size, and GetLumpName() retrieves the lump's
name. Read() reads dwReadSize bytes into sbBuffer, and Write() does the exact
opposite, writingdwWriteSizebytestosbB uffer. Seek () movesthelump'spointer by
agiven number from a seek position, and | sValid () verifiesif the lump isvalid.

The sICResourceFile Module

This module has dl the functionality needed to load any lump inside the resource.
The module members are nearly the same as those in the resource file header.

DWORD dwVersion;

DWORD  dwFlags;

DWORD dwNumberOfLumps;
DWORD dwOffset;

STRING szCurrentDirectory;
FILE fFile;

The use of these members has aready been described, so here is a brief definition
of each. dwVersion is adouble word that specifies thefileversion, dwFlagsis adouble
word containing any special flagsfor the lump, dwNumber OfLumpsis the number of
lumps in the resource, dwOffiet gives us the position in bytes where the first lump is
located, szCurrentDirectory is the directory we are in, and fFile is the actua C++
stream.

Now for the real meat of our system, the slCResourcefile functions—those that
we use to access each lump individualy.

void  OpenLump (STRING szLumpName, sICLump inOutLump);
void IsLumpValid (STRING szLumpName);

void SetCurrentDirectory (STRING szDirectory);
STRING GetCurrentDirectory (void);

Each of these functionsisvery smple. IsLumpV alid() checksto seeif afilewith a
given szLumpName exists in the resource. SetCurrentDirectory () sets the resource file
directory to szDirectory. This directory name is prepended to each lump's name
when accessing individual lumps within the resourcefile. GetCurrentDirectory()
returns the current directory.

Now for our Open function. This function opens a lump within the resource file,
and the logic behind the algorithm is described in pseudocode.

Check flags of Lump
if Compressed
OpenLumpCompressed (szLumpName, inOutLump)
if Encrypted
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OpenLumpEncrypted (szLumpName, inOutLump)
if Compressed and Encrypted
OpenLumpCompressedEncrypted (szLumpName, inOutLump)
else
OpenLumpRaw (szLumpName, inOutLump)
end if

T Depending on the lump type, the appropriate function to open the lump is
€D caled, thus maintaining anice design and simple code. The source of each functionis
included in the CD.

ON THE CD

Last Words about the Implementation

R

Some support functions that are used to open theflleor to keep track of information

that can't be called directly are not represented in the preceding text. It is advisable to

A'Ch5?  check the source code on the CD, which is well commented and essy to follow The

ONmeca agorithmsfor compression and encryption are simple RLE compression and bit-wise

encryption, the actual implementations of which are beyond the scope of this gem

and must be researched separately. Information about useful public domain ago-
rithmsisat [WotsitOO], [WhederOQ], and [GilliesOg].

Conclu3|on

...... S R M e e e

Th|s wstem can be easly upgraded or adapted to any project. Some possibilities
include supporting date and time validation, copy protection algorithms, checksums,
adata pool, and better compression and encryption agorithms. There is no limit.
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Game Input Recording and
Playback |

Bruce Dawson,Humongous Entertainment
bruced@humongous.com

he eighteenth-century mathematician and physicist Marquis Laplace postulated

that if there was an intelligence with knowledge of the position, direction, and
velocity of every particle of the universe, this intelligence would be able to predict by
means of a single formula every detail of the total future as wel as of the total past
[ReeseSQ]. Thisisdeter minism.

Chaos theory, Heisenberg's uncertainty principle, and genuine randomness in
quantum physics have combined to prove determinism wrong. However, in the sm-
plified universe of agame, Laplace's determinism actually works. .

If you carefully record everything that can affect the direction of your game uni-
verse, you can replay your record and recreate what happened.

Game input recording is useful for more things than many people redize: reproduc-
ing rare bugs, replaying interesting games, measuring optimizations, or creating game
movies.

Reproducing Bugs

Computer programs are deterministic and completely predictable, yet we frequently
hear about people encountering bugs that are difficult to reproduce, and therefore dif-
ficult to fix. If computers are deterministic, how can bugs be difficult to reproduce?

Occasionally, the culprit is the hardware or OS. The timing of thread switching
and the hard drive is not completely consistent, so race conditions in your code can
lead to rare crashes. However, the rare crashes are most frequently caused by a partic-
ular combination of user input that happens to be very rare. In that case, the bug is at
least theoretically reproducible, if only we can reproduce the exact input sequence
again.

Videotaping of testing helps track some of these bugs, but it doesn't help at al if
the timing is critical. Why don't we put that computer predictability to work, by hav-
ing the computer program record al input and play it back on demand?

105
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The crucia step hereisthat ifwe are to use input recording to track bugs, we have
to make sure that the input is recorded even when the game crashes—especially when
the game crashes On Win32, this is typicaly quite easy. By setting up a structured
exception handler [Dawson99], we can arrange for our input buffer to be saved when-
ever the game crashes.

If we add an option to our game engine to "fast-forward" through game input
(only rendering afraction of the frames), we can get to the crash more quickly. 1f we
aso add an option to render frames at the exact same points in the game update loop,
we can easily reproduce what are likely to be the relevant portions of the crash
scenario.

Reproducing bugs is the one time when you will want to record and playback all
of the user input, including the interactions with menu screens. Menu code is not
immune to tricky bugs.

Replaying Interesting Games

The most common use of game input recording is for players to record interesting
games. These recordings are used to demonstrate how to play the game, to make tuto-
rials, to test the performance of new computer hardware, or to share games.

The most important thing about recording games for users to play back later is
that the recording must always be enabled. It is unredlistic to expect users to decide at
the beginning of the game whether they want to record the game for posterity; they
should be asked a the end whether they want to permanently store the recorded
game.

Measuring Optimizations

The most important thing to do when optimizing is to measure the actual perfor-
mance, both before and after. Failing to do this leads to a surprisingly frequent ten-
dency to check in "optimizations' that actually dow the code.

Measuring the performance of a game is tricky because it varies so much. Polygon
count, texture set, overdraw, search path complexity, and the number of objects in the
scene dl affect the frame rate. Timing any single frame is meaningless, and a quick
run-through is hopelesdy unscientific.

Game input playback is a great solution. If you run the same playback multiple
times, recording detailed information about game performance, you can chart your
progress after each change to see how you're doing and where you ill need work.
Recording the average and worst-case frame rate and the consistency of the frame rate
becomes easier and much more meaningful. ;

Testing optimizations with game input playback doesn't always work because
your changes might affect the behavior—your wonderful new frame rate might just
mean the player has walked into a doset. Therefore, when using game input playback
for optimization testing, it is crucia that you record critical game state and check for
changes on playback. :



116 Game Input Recording and Playback _ . A

Creating Game Movies

To create a demo reel, you can hook a VCR up to avideo capable graphics card and
play the game; however, the results will not be pretty. The VCR, the video encoder,
and the variable frame rate of the game will lead to ablurry, jerky mess.

With game input recording, it's trivial to record an interesting game, and then
play it back. With some trivial modifications to the engine you will be able to tdl the
game engine when you are at an interesting part of the playback, at which point you
can switch from real-time playback to movie record playback. In this mode, the
engine can render precisely 60 frames for each second of game play, and record each
one to disk. The frame rate may drop to an abysmd two frames per second, but it
doesn't matter because the canned inputs will play back perfectly.

Implementing Multiplayer

A number of games—X-Wing vs. TIE Fighter, and Age of Empires—have used input
recording and playback for their networking model [Lincroft99]. Instead of transmit-
ting player status information, they just transmit player input. This works particularly
well for strategy games with thousands of units.

What Does ItJTake?

Game input recording is simple in theory, and can be smple in practice as well. How-
ever, there are afew subtleties that can cause problems if you're not careful.

Making Your Game Predictable

For game input recording and playback to work, your game must be predictable. In

other words, your game must not be affected by anything unpredictable or unknow-

able. For example, if your game can be affected by the exact timing of task switching,
- then your game is unpredictable.

Many games use variably interleaved update and render loops. Input is recorded
at aset frequency. A frame is rendered and then the game update loop runs as many
times as necessary to process the accumulated set of inputs.

This model implies that the number of times that the game update loop is run for
each frame rendered is unpredictable; however, this needn't make the game itself
unpredictable. If you are tracking down a bug in the Tenderer, then you may need to
know the exact details of how the render loop and update loop were interleaved, but
the rest of the time it should be irrelevant. It is worthwhile to record how many
updates happened for each frame, but this information can be ignored on playback
unlessyou are tracking a Tenderer bug.

However, if the render function does anything to change the state of the game,
then the variably interleaved update loop and render function do make the game
unpredictable, and input recording will not work. One example of this is a render
function that uses the same random number generator as the update loop. Another



example can be found in Total Annihilation. In this game, the "fog of war" was only
updated when the scene was rendered. This was a reasonable optimization because it
reduced the frequency of this expensive operation. While it ensured that the user only
ever saw accurate fog, it made the games behavior unpredictable. The unit Al used
the same fog of war as the Tenderer; the timing of the render function cals would sub-
tly affect the course of the game.

Another example of something that can make a game unpredictable is uninitial-
ized locd variables or functions that don't always return results. Either way, your
game's behavior will depend on whatever happened to be on the stack. These are bugs
in your code, so you aready have a good reason to track them down.

One tricky problem that can lead to unpredictability is sound playback. This can
cause problems because the sound hardware handles them asynchronoudly. Tiny vari-
ances in the sound hardware can make a sound effect occasiondly end a bit later. Even
ifthevariationistiny, if it happensto fall on the cusp between two frames, then it can
affect your game's behavior if it is waiting for the sound to end.

For many games, this is not a problem because there is no synchronization of the
game to the end of these sounds. If you do want this synchronization, then there is a
fairly effective solution: approximation. When you start your sound effect, caculate
how long the sample will play—number of samples divided by frequency. Then,
instead of waiting for the sound to end, wait until the specified amount of time has
elapsed. The results will be virtually identical and they will be perfectly consistent.

Initial State

You aso need to make sure that your game sarts in a known sate, whether starting a
new game or loading a saved one. That usually happens automatically. However, each
time you recompile or change your data you are dightly changing the initial state.
Luckily, many changes to code and data don't affect the way the game will unfold. For
instance, if you change the size of a texture, then the frame rate may change, but the
behavior should not—as long as the game is predictable. If changing the size of that
texture causes dl other memory blocks to be dlocated at different locations, then this
should also have no effect—as long as your code doesn't have any memory overwrite
bugs.

An example of a code or data change that could affect how your game behaves
would be changing the initial position of a creature or wall, or dightly adjusting the
probability of a certain event. Smdl changes might never make a difference, but they
destroy the guarantee of predictability.

Hoating-point caculations are one area where your results may unexpectedly
vary. When you compile an optimized build, the compiler may generate code that
gives dightly different results from the unoptimized build—and occasiondly, these
differences will matter. Y ou can use the "Improve Float Consistency" optimizer set-
ting in Visua C++ to minimize these problems, but floating-point variations are an
unavoidable problem that you just have to watch for.
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Random Numbers

Random numbers can be used in a deterministic game, but there are a few caveats.

The reason random numbers can be used is that rand() isn't really random. rand()
is implemented using a simple agorithm—typically alinear congruential method—
that passes many of the tests for random numbers while being completely repro-
ducible. This is cdled a pseudo-random number generator. As long as you initiaize
rand() with aconsistent seed, you will get consistent results. If having the randomness
inyour game different each timeisimportant, then choose aseed for srandQ based on
the time, but record the seed so that you can reuse it if you need to reproduce the
game.

One problem with rand() is that it produces a single stream of random numbers.
If your rendering code and your game update code are both using rand()—and if the
number of frames rendered per game update varies—then the state of the random
number generator will quickly become indeterminate. Therefore, it is important that
your game update loop and your Tenderer get their random numbers from different
locations.

Another problem with rand() is that its behavior isn't portable. That is, the behav-
ior is not guaranteed to be identical on dl platforms, and it is unlikely that it will be.

The third problem with rand() comes if you save a game and continue playing,
and then want to reload the saved game and replay the future inputs. To make this
work predictably, you have to put the random number generator back to the state it
was in when you saved the game. The trouble is, there's no way to do this. The C and

" C++ standards say nothing about the relationship between the numbers coming out
of rand() and the number you need to send to srand() to put it back to that state.
Visua C++, for instance, maintains a 32-bit random number internally, but only
returns 15 of those bits through rand(), making it impossible to reseed.

These three problems lead to an inescapable conclusion: don't use rand(). Instead,
create random number objects that are portable and restartable. Y ou can have one for
your render loop, and one for your game update loop.

When implementing your random number objects, please don't invent your own
random number algorithm. Random number generators are very subtle and you are
unlikely to invent a good one on your own. Look at your C runtime source code, the
sample code on the CD, Web resources [Coddington], or read Knuth [KnuthSl].

Inputs

Once you have restored your game's initial state, you need to make sure that you can
record and play back al of the input that will affect your game. If your game update
loop is calling OS functions directly to get user input—such as calling the Win32
function GetKeySate(VK_SHIFT) to find out when the Shift key is down—then it
will be very hard to do this. Instead, al input needs to go through an input system.
This system can record the state of al of the input devices at the beginning of each
frame, and hand out this information as requested by the game update loop. The
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input system can eadily record this information to disk, or read it back from disk,
without the rest of the game knowing. The input system can read data from Direct-
Input, a saved game, the network, or a WindowProc, without the update loop know-
ing the difference. As a nice bonus, isolating the game input in one place makes your
game code cleaner and more portable.

Programmers have a habit of breaking al rules that are not explicitly enforced, so
you need to prevent them from calling OS input functions directly. Y ou can use the
following technique to prevent programmers from accidentaly using "off-limits"
functions.

#define GetKeyState Please do not use this function
tfdefine GetAsyncKeyState Please do not use this function either

Another important input to a multiplayer game is the network. If you want to be-
able to replay your game, dien you need to record the incoming network data
together with the user's input stream. This will adlow you to replay the game, even
without a network connection. The network data stream is the one type of data that
can actually get quite large—a game running on a 56K modem could easily receive
many megabytes of network data per hour. While this large data stream does make
the recording more unwieldy, it is not big enough to be redly problematic. The ben- -
efits of recording this stream are enormous, and the cods are quite small.

Thefina "input" that a game might use is time. Y ou may want certain events to
happen at a specific time, and it is important that these times are measured in game
time, not in red time. Whenever your game needs to know the time—except for pro-
filing purposes—it should ask the game engine for the current game time. As with the
other input functions, it is a good idea to use the preprocessor to make sure that
nobody accidentally writes code that callstimeGetTimeO or other OS time functions.

It is a good idea to record inputs throughout the game. That lets you use input
playback to track down bugs anywhere in the game, even in the pre-game menus. -
However, for many purposes you will want to store the record of the input during the
game separately, so that you can play it back separately.

e i

Game input recording should work on any well-wrltten game Even ifyour gameisa
multiplayer game, if you record every piece of input that you receive on your
machine, then you should be able to reproduce the same game.

However, if your game playbacks are failing to give condgtent results, it can be
difficult to determine why. A useful option in tracking down these problems is record-
ing part of the game state along with die input—perhaps the health and location of all
of the game entities. Then, during playback, you can check for changes and detect
differencesbeforethey becomevisible.
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Conclu3|on

Game |nput recordl ng and playback isava uabIe part of a game engine with many
benefits. If it is planned from the beginning, then it is easy to add, and leads to a
better-engineered and more flexible game engine. Here are some rules to follow:

e Route al game input, including keyboard, mouse, joystick, network, and time,
through a single input system, to ensure consistency and to alow recording and
saving of dl input. This input should dways be recorded. It should be stored per-
manently in case the game crashes or the user requests it at the end of the game.

» Watch for floating-point optimizations or bugs in your code that can occasiondly
lead to behavior that is different or unpredictable in optimized builds.

e The randQ function should be avoided; use random number objects instead.

» Never change the game's state in rendering functions.

e Store some of your game state along with the input so you can automatically
detect inconsistencies. This can help detect race conditions, unintended code
changes, or bugs.

\f_,) The sample code on the CD includes an imput system and a random number
ON THE €D dess
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A Flexible Text Parsing System

James Boer, Lithtech, Inc.
jimb@lithtech.com

early every modern game requires some sort of text parser. This gem, along with

the sample code on the CD, demonstrates a powerful but easy-to-use text pars-
ing system designed to handle any type of file format.

Text files have a number of advantages when representing data:

oNiHfco . They g-€eaY o0 reac) @Nd fa; Using any standard text editor. Binary data usualy
requires a custom-built tool that must be created, debugged, and maintained.
» They are flexible—the same parser can be used for simple variable assignment or
amore complex script.
» They can share constants between code and data (more on this later).

Unfortunately, text data has a few drawbacks as well:

» Unlike most binary formats, text must first be tokenized and interpreted, dowing
the loading process.
» Stored text is not space efficient; it wastes disk space and dowsfile loading.

Because many game parameters only need to be tweaked during development, it
may be practical to use atext-based format during development, and then switch to a
more optimized binary format for use in the shipping product. This provides the best
of both worlds: the ease of use of text files, and the loading speed of binary data. Well
discuss a method for compiling text filesinto a binary format later in the gem.

The Parsing System

———— e e T N S e ey

Here's what our parser will support:

» Native support for basic data types. keywords, operators, variables, strings, inte-
gers, floats, boots, and GUIDs

» Unlimited user-definable keyword and operator recognition

» Support for both C (block) and C++ (single-line) style comments

e Compiled binary read and write ability

» Debugging support, able to point back to asourcefileand line number in case of
error

112
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 #includefile preprocessing support
 #define support for macro substitution

Most of the preceding items are self-explanatory, but #indude files and #define
support may seem a bit out of place when discussing a text parser. Well discuss how
these features can greatly simplify scripts, aswell as provide an additional mechanism
to prevent scripts and code from getting out of sync.

Macros, Headers, and Preprocessing Magic

Preprocessing datafilesin the same manner as C or C++ code can have some wonder-
ful benefits. The concept is perhaps best explained by a simple example. Let's assume
that we wish to create a number of unique objects using a script file, which will pro-
vide the necessary datato properly initialize each object and create unique handles for
use in code. Here's what such a script might look like:

CreateFoo&I Data = 10
CreateFoo( Data = 20
CreateFoo(3) { Data = 30 }

CreateBar(4) { Foo =1}

Assuming that the CreateFooQ keyword triggers the creation of a Foo object in
code, we now have three Foo objects in memory, each with unique member data, cre-
ated by a script. Also, assuming that were referencing these objects with handles, we
can now access these objects in code with the values of 1, 2, and 3 as unique handles.
Note that in our example, the script can dso use these numeric handles. The Bar class
requires avaid Foo object as adata member, and so we use areference to thefirst Foo
object created when creating our first Bar object.

It could get easy to lose track of the various handle values after creating severd
hundred of them. Any time an object is added in the script, the programmer must
change the same vaues in code. There are no safeguards to prevent the programmer
from accidentdly referencing the wrong script object. This problem has aready been
solved in C and C++ through the use of header files in which variables and other com-
mon elements can be designed for many source files to share. If we think of the text
script as simply another source file, the advantages of a C-like preprocessor quickly
become apparent. Let's look again at our example using a header file instead of magic
numbers.

- Header File -

/1 Qbj Handl es. h

/1 Define all our object handles
tfdefine  SmallFoo

tf def i ne Medi unfFoo 2

#define LargeFoo 3

#define SmallBar 4

#define FooTypeX 10
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#define FooTypeY 20
tfdefine FooTypeZ 30

- Script File -
//

// Directs the parser to scan the header file
Ninclude "ObjHandles.h"

CreateFoo(SmallFoo) { Data = FooTypeX }

CreateFoo(MediumFoo) { Data = FooTypeY }
CreateFoo(LargeFoo0) { Data = FooTypeZ }
CreateBar(SmallBar) { Foo = SmallFoo }

In addition to this being much easier to read and understand without the magic
numbers, both the text script and source code share the same header file, so it'simpos-
sible for them to get out of sync.

Because were aready performing a simple preprocessing substitution with
#define, it'sjust one more step to actualy parse and use more complex macros. By rec-
ognizing generic argument-based macros, we can now make complex script opera
tions smpler by substituting arguments. Macros are dso handy to use for another
reason. Because macros are not compiled in code unless they are actually used (like a
primitive form of templates), we can create custom script-based macros without
breaking C++ compatibility in the header file.

Note diat although were processing macros and #defines, the parser does not rec-
ognize other commands such as #ifdef, #ifndef, and #endif.

The Parsing System Explained

There are five dasses in our parsing a/stem Parser Token TokenLlst TokenFile, and
Macro. The Macro dass is a helper dass used interndly in Parser, so we only need to
worry about it in regard to how it's used inside Parser. TokenFileis an optional dass
used to read and write binary tokens to and from a standard token list. This leaves the
heart of the parsing system: Parser, Token, and TokenList. Because Token is the basic
building block produced by the parser, let's examine it first.

The Token Class

The basic data type of the parsing system is the Token class. There are eight possible
data types represented by the dass keywords, operators, variables, strings, integers,
real numbers, Booleans, and GUIDs. Keywords, operators, variables, and strings are
al represented by C-strings, and so the only red difference among them is semantic.
Integers, real numbers, and Booleans are represented by signed integers, doubles, and
booh. For most purposes, this should be sufficient for data representation. GUIDSs, or
Globaly Unique IDentifiers, are dso given ndive data type status, because it's often
handy to have a data type that is guaranteed unique, such as for identifying dasses to
create from scripts.
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The Token class is comprised of atype field and a union of severa different data
types. A single class represents al basic data types. Data is accessed by first checking
what type of token is being dealt with, and then calling the appropriate GetQ func-
tion. Asserts ensure that inappropriate data access is not attempted.

Each of the data types has arole to play in the parser, and it's important to under-
stand how they work so that script errors are avoided. In general, the type definitions
match similar definitions in C++. All keywords and tokens are case sensitive.

Keyword

Keywords are specially defined words that are stored in the parser. Two predefined
keywords are include and define. User-defined keywords are used primarily to aid in
lexicographical analysis of the tokens after the scanning phase.

Operator

An operator is usualy aone- or two-character symbol such as an assignment operator
or acomma. Operators are unique in the fact that they act like white space regarding
their ability to separate other data types. Because of this, operators dways have the
highest priority in the scanning routines, meaning that the symbols used in operators
cannot be used as part of a keyword or variable name. Thus, using any number or
character as part of an operator should be avoided. Operators in this parsing system
also have an additiona restriction: because of the searching method used, any opera-
tor that is larger than a single character must be composed of smaller operators. The
larger symbol will always take precedence over the smaller symbols when they are not
separated by white space or other tokens.

Variable
A variable is any character-based token that was not found in the keyword list.

String

A string must be surrounded by double quotes. This parser supports strings of lengths
up to 1024 characters (this buffer constant is adjustable in the parser) and does not
support multiple-line strings.

Integers
The parser recognizes both positive and negative numbers and stores them in asigned

integer value. It dso recognizes hexadecimal numbers by the Ox prefix. No range
checking is performed.

Floats

Floating-point numbers are cdled floats and are represented by a double value. The
parser will recognize any number with adecimal point as afloat. It will not recognize
scientific notation, and no range checking is performed on the floating-point number.

Booleans
Boolean values are represented as a native C++ booltype, and true and falseare built-
in keywords. Aswith C++, these values are case sensitive.
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QUIDs

By making use of the macro-expansion code, we can support GUIDs without too
much extrawork. Note that unless the macro is expanded with ProcessMacrosQ, the
GUID will remain a series of separate primitive types. This function is described later. -

The TokenlLlst Class

The TokenList class is publicly derived from a standard STL list of Tokens. It acts
exactly like a standard STL list of tokens, and has a couple of additional features. The
TokenList dass dlows viewing of the file and line number that any given token comes
from. This is exclusvely an aid for debugging, and can be removed with a compile-
timeflag.

The Parser Class

This is the heart of the parang functionality. We first cregte a parser object and cdl
the CreateQ function. Note that al functionsreturn abootvalue, using truefor success -
and false for failure. Next, we must reserve any additional operators or keywords
beyond the defaults required for the text parsing.

After this comes the actud parsing. The parsing phase is done in three passes,
handled by three functions. Splitting the functionality up gives the user more control
over the parsing process. Often, for ssimple parsing jobs, #include file processing and
macro substitution are not needed. The first pass reads the files and trandates the text
directly into a TokenList usng the function ProcessSource(). The next function,
ProcessHeadersQ, looks for any header files embedded in the source, and then parses
and substitutes the contents of those headers into the origina source. The third func-
tion, ProcessMacrosQ, performs both simple and complex C-style macro substitution.
This can be avery powerful feature, and is especidly useful for scripting languages.

Let's see what this whole process looks like. Note that for clarity and brevity's
sake, we are not doing any error checking.

/1 W e need a Parser and TokenList object to start
TokenList toklist;
Parser parser;

/I Create the parser and reserve some more keywords and tokens
parser.CreateQ;

par ser. Reser veKeywor d("speci al _keyword");

par ser . Reser veQoer at orE"{ } ;
parser. ReserveQperator("[");

Il Now parse the file, any includes, and process macros

par ser. ProcessSour ce("data\scripts\sonescript.txt”, &oklist);
par ser. ProcessHeader s( & okl i st);

par ser. ProcessMacros( &t oklist);
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The TokenFile Class

Because parsing and processing human readable text files can be a bit dow, it may be
necessary to use a more efficient fileformat in the shipping code. The TokenFile class
can convert processed token lists into a binary form. This avoids having to parse the
text file multiple times, doing #include searches, macro substitutions, and so forth.
Character-based values, such as keywords, operators, and variables, are stored in a
lookup table. All numeric values are stored in binary form, providing additiona space
and efficiency savings. In generd, this binary form can be expected to load five to ten
times as fast as the text-based form.

Using the TokenFileclassis simple aswell. The WriteQ function takes a TokenList
object as an argument, and creates the binary form using either the output stream or
filename that was specified. The dass can also store thefilein either a case-sensitive or
case-insensitive manner. |If both the variable "Foo" and "foo" appear in the script,
turning the case sensitivity off will merge them together in the binary format, provid-
ing further space savings. It defaultsto off.

Reading the file is performed with the Read() function. Here's how it looks in
code:

TokenFile tf;

Il Wite afile to disk
tf.Wite("sonmefile.pcs", &oklist);

I'10r read it
tf.Read("somefile.pcs"”, &toklist);

Wrapplng Up

R e —y

Text file processmg at |ts smplest Ie/el is atr|V|aI problem requiring only a few lines
of code. For anything more complex than this, however, it's beneficial to have a com-
prehensive text-parsing system that can be as flexible and robust as the job demands.
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Lasse Staff Jensen, Funcom
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n uring game development, one of the most frequent tasks we perform is tweaking
variables until the game has just the right balance we need. In this gem, we
will cover an easy-to-use "twesker" interface and the design issues behind the
implementation.

Requwements AnaIyS|s

Implementation
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One of the primary gods of a generlc tweaker mterface is to make it as transparent
and easy to use as possible. The user in this case is the programmer who exposes vari-
ables to be tweaked. Further requirements to emphasise are the size in memory, the
ability to tweak a variable without too much added overhead, and the speed of actu-
ally tweaking a variable (because in some cases the tweaker will be used in the release
build as well).

Let's try to break down the requirements in more detail, and see what the |mple
mentation realy needs to do:

e It should be transparent to the coder, meaning that the variables we want to
twesk shouldn't contain any additional data and/or functionality, and that the
usage of these variables shouldn't need to know about the tweaker at all.

It should be smple to use, meaning that the user should be able to define vari-
ables to be tweaked in less than 10 lines of code, and be able to tweak and get
variables from a common database in typically two or three lines of code.

Design

Figure 1.18.1 contains the UML diagram of the classes to be presented in a bottom-
up fashion in the rest of this gem. The type information and the tweakable hierarchy
are the essence of this design.
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*AddTweakable()
*TweakValue()

mmemmmmmmmac e a3y

TweakerinstanceDB"c

~Categories: Tweaker_c
Anstances: Tweaker_c
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FIGURE 1.18.1 Overview of the tweaker classes.
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Type Information

We will use template specialization to provide type information that we can storein a
uniform way. First is our base class TypelDjc that defines the interface for our type
information class with avirtual function that returns a string with the type name:

class TypelD_c {
public:
virtual const char* GetTypeNameO const { return "Unknown"; }

¥

Next, we create atemplate class that we can use to retrieve the correct type when
given the variable. In this dass, we add a member to get the pointer to our TypelD_c
instance that can be tested directly for the stored pointer address.

tenplate <class T>
class I dentifier_c{
public;
static const Typel D c* const Get Type();
}i

Now that we have this dass declared, we will use template specidization to define
each unique type. Each subclass of TypelD_c will exist as asingleton, and the pointer
to that instance serves as the identifier of the type. For smplicity, al of these will be
placed in the globd scope through static members. We can make sure that the actual
instances exig, if caled from other static functions, by receiving the pointer from the
Getldentification method. The full implementation for float vaues follows:

class floatlD_c : public TypelD_c {

public:
virtual const char* GetTypeNameO const { return "float"; }
static TypelD_c* const Getldentification () ;

}5

tenplate <>
class I dentifier_c<float>{
public:
static const TypelD_c* const GetType() {
return floatID_c: :Getldentification() ;
}
};
TypelD_c* const floatlD_c: :Getldentification() {
static floatID_c cInstance;

return &clnstance;
}

To use these classes for type information, we can simply store the base pointer:

float vMyFloat;

E:onst TypelD_c* const pcType = TweakableBase_c: :GetTypelD( vMyFloat ) ;
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Here, the TweakableBase c (more on this class |ater) has atemplate member that
cdls the correct Identifier® speciadization. Then we can test the address of the

pointer:
if( Identifier_c<float>::GetType() == pcType ) {
/I We have a float!
}

There are two macros for defining user types in the code on the accompanying
o' CD, =0 dl that's required for support of a new data type is to place a cdl to
m;p/ DECLARE_DATA TYPE in the header and DEFINE_DATA TYPE in the imple-
mentation file, and then recompile. (In addition, one might want to add a cdl to the

macro DUMMY_OPERATORS () in case one doesn't want to support range checking.)

TweakableBase ¢

We have a clean and easy way to store type info, so let's continue by creating the base
dass to hold the pointer to the tweakable variable. This class aso contains the tem-
plate member for getting the type info mentioned earlier. Because one of our require-
ments is to keep memory overhead to a minimum, we will use RTTI for checking
which specific types of tweskables we have stored in memory. We therefore make sure
the dlass is polymorphic by adding a virtual function to get the type info stored (or
NULL if none). Here is the implementation:

class TweakableBase_c {
public:

TweakableBase_c( void* i_pData ) : m_pData( i_pData ) {;}
-TweakableBase _c() { /*NOP*/;}

virtual const TypelD_c* const GetStoredType() const { return NULL; }

template <class T>
static const TypelD_c* const GetTypelD( const T& i_cValue ) {
return ldentifier_c<T>::GetType();

}

protected:
void* m_pData;

}; Il TweakableBase_c

Now that we have the base dass, we can creste subdasses containing additional
data such as type information, limits for range checking, apointer for a call-back func-
tion, and any other datawe might need to attach to the various tweskables, while keep-
ing die memory to a minimum. Here is how one of the specific tweakable classes looks:

tenpl ate <class T>
cl ass Tweakabl eType _c : public Tweakabl eBase c {
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public:

Tweakabl eType_c( T* i_pxData, const TypelD c¢* i _pcType ) :
Tweakabl eBase_c( reinterpret_cast<void*>( i_pxData ) ),
mpcType( i_pcType ) { /*NCP*/; }

const Typel D c* const GetDataType() const { return mpcType; }
virtual” const Typel D c* const Get StoredType() const {
return mpcType; }

private:
const TypelD_c* const m_pcType;
}; /I TweakableType_c

The great thing about this code is that the subclasses are implemented as tem-
plates, even though the base class was defined without them. This way, we can passin
the pointer to the actua data type, hiding the casting to void horn the interface.

Tweakerje -
We finally have dl the building blocks we need to create the tweaker class itsdlf. This
class will store dl of our tweakables and give the user functionality for tweaking the
stored values. We will use an STL map to hold al of the pointers to our tweakables,
using the name of each tweakable as the key. Simple template members provide dl the
functionality. An example of thisis the TweakValue member:

template<class Value_x>
TweakError_e TweakValue( const std::string& i_clD, const Value_x&
i_xValue ) {
Tweakabl eBase _c* pcTweakabl e;
i Tneakabl eMap_t i SearchResult = mcTweakabl e nmap.find( i _cID);
if( iSearchResult == m cTweakabl e_map.end() ) {
return e_UNKNOMWN_KEY; }
pcTweakabl e = (*i SearchResult). second;

#ifdef _DEBUG
Tweakabl eType_c<Val ue_x>* pcType;
if( pcType = dynam c_cast< Tweakabl eType_c<Val ue_x>* >(
pcTweakabl e L ?)
assert( pcTweakabl e->Get Typel D( i _xValue ) ==
pcType- »Get Dat aType() {;

#engi f

Tweakabl eTypeRange_c<Val ue_x>* pcTypeRange;
if ( pcTypeRange = dynam c¢_cast < Tweakabl eTypeRange_c<Val ue_x>* >(
pcTweakabl e ) )

{assert( pcTweakabl e- >Cet Typel { i _xValue ) ==
pcTypeRange- >Get Dat aType() );

if( i_xValue < pcTypeRange->Get M n return e_M N_EXCEEDED;
if( i_xValue > pcTypeRange- >Get Max return e_MAX EXCEEDED,
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Usage

}

*(reinterpret_cast<Value_x*>( pcTweakable->m_pData ) ) = i_xValue;
return e_OK;
} /I TweakValue

Because the member is a template, we can cagt back to the given vaue directly,
thereby completely hiding the ugly void casting. Note that if users decide to not store
the type information, they could eadly force us to do something bad, since we have
no way of checking the origin of thereinterpret_casA

TweakerinstanceDB_c

In order to support grouping of tweakables and the ability to store several instances of
a given variable, we have an ingance database to hold different tweakers. The imple-
mentation is straightforward—an STL multimap holding all of the instances of differ-
ent tweakers, and an STL map of these multimaps where the category is the key.

Let's test our implementation against the requirements to verify that we have reached
our gods. Defining avariable to be twesakable requires us to create a tweaker and add
it to the tweskable instance database.

Tweaker_c* pcTweaker = TweakerlnstanceDB_c::AddTweaker( "Landscape",
TWEAKER_CREATE_ID( this ), "Graphics" );

Herewe create atweaker for the class Landscape (inside the constructor, for exam-
ple) and put it in the Graphics category. The TWEAKER _CREATE_ID macro takes
the thispointer and makes sure that each instance of the class Landscape gets a unique
ID. Then, we smply add each variable to this (and other tweakers we make) by:

pcTweaker->AddTweakable( &m_vShadowmapScaleTop, "Shadowmap scale",
O0.0OF, 68.0F );

Here we have added avariable, constrained it to the interval [0, 68], and called it
"Shadowmap scde” It's vitd to note that because of the template nature of the
AddTweakable method, we must pass correct types to dl of the arguments (for exam-
ple, use O.OF and not just 0). Defining avariable to be tweakable takes two lines of
code, and is totally hidden from the users of the variable in question.

For tweaking this variable, al we need is the name, data type, and desired
instance. Usualy, we have the pointer to the tweaker instance itself, but in the GUI
code, one would typicaly do something like:

TweakerinstanceDB_c::iConstCategoryMap_tiCategory =
TweakerlnstanceDB_c::GetCategory( "Graphics" );
Tweaker_c* pcTweaker =
GetTweaker( iCategory->second, "Landscape", TWEAKER_CREATE_ID(
pcLandscape ) ) ;
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Here we first get al of the instance maps that are stored under the "Graphics' cat-
egory label. Then we search for the correct instance of the Landscape class (we assume
the pointer pcLandscape points to the instance in question). Changing the value of a
specific valueis straightforward.

Tweaker_c::TweakError_e eError;
eError = pcTweaker->TweakValue( "Shadowmap scale", 20.0F );

So, tweaking avariable is one line of code, with additional lines for error handling
(or simply asserting the return value). Receiving the stored value is done similarly:

float vShadowrapScal e;
eError = pcTweaker - >Cet Val ue( "Shadowrap scal e", &vShadowrapScal e );

Graph|cal User Interface

GUIs tend to be specific to each prolect 0 I have Ieft ageneral discussion of this
topic out of this gem, although I will describe an existing implementation as a source
for ideas. In Equinox, Funcom's next-generation 3D engine, we have implemented a
directory structure, as shown in Figure 1.18.2, that can be browsed in a console at the
top of the screen.

For tweaking values, we have defined input methods that can be assigned to the
tweakables. That way, we can create specidized input methods such as the angle
tweaker seen in Figure 1.183.

For saving and loading, in addition to the binary snapshots, we can save dl of the
tweakables in #define statements directly into h files. Because the number of instances
of avariable could change over the lifetime of the application, we only save the first
instance into the header file. This feature gives us the capability to add variables to be
tweaked only in debug builds, and we then #indude the header file to initiaize the

Tweaker: Appllcatlon

1o
ust:lcs_.__d
densi pll o III
Fog end
Fog start
Li near fog
Physi cal water
Show Equi nox | ogo
Show caustics
Show f og
Show Iandscape
Show sky
Show wat er
Tabl e fog

FIGURE 1.182 Screen shot from our GUI. The user can move up and down in the
directories (categories in the code) and choose values to be tweaked.




1.18 A Generic Tweaker =

Tweaker: Graphics ]
Tweaker instance name: GraphicsTestlnstance
AngleTweak 1/2
Type: float
Ualue = 56.649902
Limited to range <45.080000, 120.800008>
step = 8,758006, use +/—/spaee to modify

FIGURE 1183 This specialized input gives the user thepossibility to visually tweak
anglesin an intuitive way.

variables to the latest tweaked vaue in the release build. Here is a sample of how this
works for our ShadowmapScalevariable;

landscape_tweakables.h:
tfdefine  SHADOWMAP_SCALE 43.5

landscape.cpp:
tfinclude "landscape_tweakables.h"

m_vShadowmapScale = SHADOWMAP_SCALE;

Note

It is possible to use the RTTI typeidQ to replace the type information code detailed
previoudly. There are pros and cons to using our type information code.

Pros.

|t takes up less space for the type information, since it is only required for classes
that use it.

e One can add specific information to the TypelD_c dass, for example, a way to
load and store the type or a pointer to the GUI control.

Cons:

¢ \We have to use macros for each unique type, while RTTI provides the type infor-
mation automatically.
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mputer games use random numbers extensively for rolling dice, shuffling cards,
simulating nature, generating realistic physics, and performing secure multi-
player transactions. Computers are great at generating pseudo-random numbers, but
not so good at creating genuine random numbers. Pseudo-random numbers are num-
bers that appear to be random, but are algorithmically computed based on the previ-
ous random number. Genuine, or real, random numbers are numbers that not only
appear random, but are unpredictable, nonrepeating and nondeterministic. They are
generated without the input of the previous random number. This gem presents a
method of creating genuine random numbers in software.

Pseudo- Rano_lomness

S — . S

Pseudo-random number sequences eventually repeat themselves and can dways be
precisely reproduced given the same seed. This leads to distinct problems in gaming
scenarios. Consider the common case of a game that initializes its random number
generator (RNG) with the current tick count - the number of ticks since the machine
was booted up. Now assume the player turns on their gaming console every time they
begin playing this game. The level of randomness in the game is gated by the choice
of seed, and the number of bits of randomness in the seed is unacceptably small.

Now consder the use of a pseudo-RNG to create secret keys for encrypting
secure multiplayer game transmissions. At the core of al public key cryptographic sys-
tems is the generation of unpredictable random numbers. The use of pseudo-random
numbers leads to false security, because a pseudo-random number is fully pre-
dictable—trandate: easily hacked—if the initial state is known. It's not uncommon
for the weakest part of crypto systems to be the secret key generation techniques
[Kelsey9s].

Genuine Randomness

TR

A genuine random number meets the foIIowr ng crrterra_ it appears random, has
uniform distribution, is unpredictable, and is nonrepedting. The qudity of
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unpredictability is paramount for security purposes. Even given full knowledge of the
algorithm, an attacker should find it computationally infeasible to predict the output
[Schneier9g).

The idedl way of creating genuine random numbers is to use a physical source of
randomness, such as radioactive decay or thermal noise. Many such devices exist; see
[Walker(a)] for one example. However, PCs and video game consoles do not typicaly
have access to these types of devices. In the absence of a hardware source, the tech-
nigue recommended by RFC 1750 [Eastlaked4] is "to obtain random input from a
large number of uncorrelated sources and mix them with a strong mixing function."
By taking input from many unrelated sources, each with a few bits of randomness,
and thoroughly hashing and mashing them up, we get a value with a high degree of
entropy—a truly random number.

Random Input Sources

Examples of random |nput avalable on many PCs and game consoles include:

» System date and time

» Time since boot at highest resolution available

* Username or ID

* Computer name or ID

o State of CPU registers

o State of system threads and processes

» Contents of the stack

* Mouse or joystick position

» Timing between last N keystrokes or controller input

» Last N keystroke or controller data

» Memory status (bytes allocated, free, etc.)

» Hard drive state (bytes available, used, etc.)

* Last N system messages

* GUI date (window positions, etc.)

» Timing between last N network packets

* Lagt N network packet data

» Datadored at a semi-random address in main memory, video memory, €tc.

» Hardware identifiers: CPU ID, hard drive ID, BIOS ID, network card ID, video
card ID, and sound card ID

Some of these sources will aways be the same for agiven system, like the user ID
or hardware IDs. The reason to include these values is that they're variable across
machines, so they're useful in generating secret keys for transmitting network data.
Some sources change very little from sample to sample. For instance, the hard drive
state and memory load may only change dightly from one read to the next. However,
each input provides afew bits of randomness. Mixed together, they give many bits of
randomness.
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The more bits of entropy that can be obtained from input sources, the more ran-
dom the output. It's useful to buffer sources such as mouse positions, keystrokes, and

network packets over time in a circular queue. Then the entire queue can be used as
an input source.

Hardware Sources

Some gaming pI atforms have access to physcd sources of randomness. When these
sources are available, they make excellent input sources. Examples of physical sources
include:

e Input from sound card (for example, the microphone jack) with no source
plugged in

 |Input from avideo camera

» Disk drive seek time (hard drive, CD-ROM, DVD)

* Intd 810 chipsat hardware RNG (a thermal noise-based RNG implemented in
slicon) [Intel99]

Mixing Function

In the context of creatl ng genw ne random numbers, a strong mixing function is a
function where each bit of the output is a different complex and nonlinear function of
each and every bit of the input. A good mixing function will change approximately
half of the output bits given a single bit change in the input.

Examples of strong mixing functions include:

» DES (and most other symmetric ciphers)
» Diffie-Hellman (and most other public key ciphers)
e MD5, SHA-1 (and most other cryptographic hashes)

Secure hashing functions such as MD5 are the perfect mixers for many reasons.
they meet the basic requirements of a good mixing function, they've been widdy ana-
lyzed for security flaws, they're typically faster than either symmetric or asymmetric
encryption, and they're not subject to any export restrictions. Public implementations
are dso widely available.

L|m|tat|ons

...... — . — e

UnI|ke generatl ng pseudo—random numbers, creatlng genume random numbers in
software is very dow. For the output to be truly random, many sources must be sam-
pled. Some of the sampling is dow, such as reading from the hard drive or sound card.
Furthermore, the sampled input must be mixed using complex algorithms.

Game conoles have a more limited sdection of input sources compared to PCs,
so they will tend to produce less random results. However, newer consoles often have
disk drives of some sort (CD-ROM, DVD, hard disk) that can be used as good hard-
ware sources of entropy.
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The randomness of the results depends solely on the level of entropy in the input
samples. The more input samples and the more entropy in each sample, the better the
output. Keep in mind that the more often this algorithm is invoked in quick succes-
sion, the less random the output, because the smaler the change in the input bits. To
sum up, thistechnique is not areplacement for pseudo-RNG. Use this technique for
the one-time generation of your RNG seed value or for generating network sesson
keys that can then be used for hours or days.

Implementatlon

T ——— e T s s

A C++ example of agenw ne random number generator is provided on the accompa
nying CD. Any implementation of this algorithm will naturally be platform depen-
dent. This particular version is specific to the Win32 platform, but is designed to be
easly extensible to other platforms. It uses hardware sources of randomness, such as
the Intel RNG and sound card input, when those sources are available. In the inter-
edts of efficiency and smplicity, it does not use al of the examples listed previoudly as
input, but uses enough to produce a high level of randomness.

The primary functionality resdes in the GenRand object within the TrueRand
namespace. Here is an example use of GenRand to create a genuine seed value:

#include "GenRand. h" // Genuine random number header
unsigned int nSeed = TrueRand: :GenRand() .GetRandInt() ;

Here's another example showing the generation of a sesson key for secure net-
work communication. The Buffer object is a Smple wrapper around stof: :toasic__
string<unsigned char>, which provides the functionality we need for reserving
space, appending data, and tracking the size of the sample buffer:

TrueRand::GenRand randGen;
TrueRand: : Buffer bufSessionKey = randGen. GetRand();

The Get/tend() function is the heart of the program. It samples the random
inputs, and then uses a strong mixing function to produce the output. This imple-
mentation uses MD5 hashing, so the resulting buffer is the length of an MD5 hash
(16 bytes). The mCrypto object is a wrapper around the Win32 Crypto API, which
includes MD5 hashing.

Buf f er GenRand: : Get Rand()

{ /1 Build sanple buffer

Buffer randl nputs = Get Randonl nput sO;

Il Mx well and serve
return mCOrypto. Get Hash( CALG M5, randlnputs );
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The GetRandomlnputsf) function is the input sampler. It returns a buffer with

. approximately 10K of sampled data. This function can eesily be modified to include
more or lessinput as desired. Because the time spent in the function varies according to
system (drive, sound card) access, we can use the hardware latency as a source of random

* input; hence, the snapshot of the current time at the beginning and end of the function.

BufferGenRand::GetRandomlnputs()

! /1 For speed, preallocate input buffer
Buf fer randl n;
randl n. reserve( Get MaxRandl nput Si ze() );
GetCQurrTime( randln ); Il append tinme to buffer
Get StackState( randlin ); Il stack state
Get HardvxareRngE randl n g; /I hardware RNG if avail
Get Pendi ngMsgs( randin ); /I pending Wn32 nsgs
Get MenoryStatus( randin ); // menory |oad
Get QurrMousePos( randln ); // nouse position
... etc.
GetQurrTing( randln ); /1 random har dware | atency
return randl n;

}

Findly, here's one of the input sampling functions. It extracts the current time,
and then appends the data to the mRandl nputs buffer object. QueryPerformance-
Counter() is the highest resolution timer in Windows, o it provides the mogt bits of
randomness. We can ignore API failures in this case (and many others), because the
worst that happens is that we append whatever random stack data happens to be in
Perf Counter if the function fails.

void GenRand: :GetCurrTime( Buffer& randin )
LARGE_INTEGER PerfCounter; '
QueryPerformanceCounter( &PerfCounter ); // Win32 API

Append( randln, PerfCounter );
}

How Random Is GenRand'?

TR e —

There are many tests for examining the quallty of random numbers. One test is the
Nc ") publicly avalable program ENT [Walker(b)], included on the accompanying CD,
mmCD  which applies asuite of tests to any data stream. Tests of GenRand() without using any
sources of hardware input (including hard drive seek time), and generating a file of

25,000 random integers using GetRandInt() gives the following results:

» Entropy = 7.998199 bits per byte.
» Optimum compression would reduce the size of this 100,000-bytefile by O percent.
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e Chi square digribution for 100,000 samples is 250.13, and randomly would
exceed this value 50 percent of the time.

» Arithmetic mean value of data bytes is 127.4918 (127.5 = random).

» Monte Carlo value for Pi is 3.157326293 (error 0.50 percent).

» Sarid correlation coefficient is 0.000272 (totally uncorrelated = 0.0).

These results indicate that the output has a high degree of randomness. For
instance, the chi square test—the most common test for randomness [Knuth98]—
indicates that we have a very random generator.
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Using Bloom Filters to
Improve Computational
Performance

Mark Fischer, Beach Software
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magine the desire to store Boolean information in a bit array—a very simple

premise. Simply assign each element in the bit array to a specific meaning, and then
asdgn it avdue. In this scenario, it takes 1 bit in the array to store 1 bit of stored
information. The bit array faithfully represents its relative value with 100-percent
accuracy. This, of course, works best when the stored data is array oriented such as a
transient over time or space. However, what if the data is not a linear transient-
oriented data set?

Bloom’ sWay

In 1970 Burton H BIoom publlshed asmple and clever algorlthm [Bloom70] in the

"Communications of the ACM." In his publication, Bloom suggests using a "Hash
Coding with Allowable Errors" algorithm to help word processors perform capitaliza-
tion or hyphenation on adocument. This agorithm would use less space and be faster
than aconventional one-to-one mapping algorithm. Using this example, a majority of
words (90 percent, for example) could be checked using a simple rule, while the
smaller minority set could be solved with an exception list used to catch the instances
where the algorithm would report aword as simply solvable when it was not. Bloom's
motivation was to reduce the time it took to look up data from a dow storage device.

Possible Scenarios

S (T et ST 1 ) T el

A Bloom Filter can reduce the time it takes to compute a reI atively expensive and rou-
tinely executed computation by storing atrue Boolean value from apreviously executed
computation. Congder the following cases where wed like to improve performance:

» Determine if apolygon is probably visible from an octree node.
» Determine if an object probably collides at a coordinate.
» Determine if aray cast probably intersects an object at a coordinate.
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All of these cases fit into a general scenario. Each case involves an expensive com-
putation (CPU, network, or other resource) where the result is a Boolean (usually fase)
answer. It isimportant to note that that the word probably is used in each case because
a Bloom Filter is guaranteed to be 100-percent accurate if the Bloom Filter test returns
afalse (miss), but is, a best, only probably true if the Bloom Filter returns true (hit).

A Bloom Filter can gstore the true result of any function. Usudly, the function
parameter is represented as a pointer to a byte array. 1f we wish to store the result of a
function that uses multiple parameters, we can concatenate the parameters into asin-
gle function parameter. In cases where 100-percent accuracy is needed, we must com-
pute the origina expensive function to determine the absolute result of the expensive
function, if a Bloom Filter test returns true.

How It Works

There are two primary functions in a Bloom Filter: afunction for storing the Boolean
true vaue returned from an expensive function, and afunction for testing for a previ-
oudy stored Boolean true vaue. The storing function will accept input in any form
and modify the Bloom Filter Array accordingly. The testing function will accept input
in the same form as the storing function and return a Boolean vaue. If the testing
function returns false, it is guaranteed that the input was never previoudy stored using
the storing function. If the function returns true, it is likely tha the input was previ-
oudly stored using the storing function. A false positive is a possible result from the
test. If 100-percent accuracy is desired, perform the origind expensive function to
determine the absolute value. A conventional Bloom Filter is additive, so it can only
store additional Boolean true results from an expensive function and cannot remove
previously stored values.

Definitions

The high-quality operation of a Bloom Filter requires a high-quality hash function
that is sometimes referred to as a message digest algorithm. Any high-quality hash
function will work, but | recommend using the MD5 message digest algorithm
[RSAO]] from RSA Security, Inc., which is available in source code on the Net, and is
aso documented in RFC 1321. The MD5 hash function takes N bytes from a byte
array and produces a 16-byte (128-bit) return value. This return vaue is a hash of the
input, which means if any of the bits in the input change (even in the dightest),
the return value will be changed drasticaly. The return of the hash function, in
Bloom terminology, is cdled the Bloom Filter Key.

Bloom Filter Indexes are obtained by breaking the Bloom Filter Key into blocks
of a desgnated bit sze. Ifwe choose a Bloom Filter Index bit Sze of 16 bits, a 128-bit
Bloom Filter Key can be broken into eight complete 16-bit segments. If there are

remaining bits left over from bresking the Key into complete segments, they are
discarded.
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The number of Bloom Filter Phases used in a Bloom Filter is the number of
Bloom Filter Indexes used to store the Boolean value from the expensive function. For
example, three phases might be used from a 128-bit key using a Bloom Filter Index
bit size of 16 bits. The remaining five indexes will be discarded, in this example.

A Bloom Filter Array is used to store the expensive function's Boolean vaue. For
example, if the Bloom Filter Index bit size is 16 bits, the Bloom Filter Array will be 2'¢
bits long, or 64K bits (8K bytes). The larger the array, the more accurate the Bloom
Filter test.

The Bloom Filter Saturation of the Bloom Filter Array is the percentage of bits set
to truein the bit array. A Bloom Filter Array is optimal when saturation is 50 percent,
or hdf of the bits are set and haf are not.

Examplel

For an example, we will store the function parameter ("Mikano is in the park™") using
three phases with an index bit size of 16 bits into an array 64k bits long (8k bytes). In
this instance, the expensive function was used to determine if Mikano was truly in the
park and the result was yes (true). Although we used a string variable, in this case, any
variable format will work. The format of the stored expensive function parameter data
is independent of the Bloom Filter performance, accuracy, or memory usage.

First, the hash function is computed from the expensive function parameter data.
Let's assume that the hash function returned the 128-bit value OxI0027AB30001BF
7877AB34D976A09667. The first three segments of 16-bit indexes will be 0x1002,
Ox7AB3, and 0x0001. The remaining segments are ignored.

The Bloom Filter Array starts out reset (dl false bits), before we begin to populate
the bit array with data. Then, for each of these indexes, we will set the respective bit
index in the Bloom Filter Array to true regardless of its previous value. As the array
becomes populated, sometimes we will set a bit to true that has aready been st to
true. Thisis the origin of the possible false positive result when testing the Bloom Fil-
ter Array (Figure 1.20.1).

When we wish to examine the Bloom Filter Array to determine if there was a pre-
vioudly stored expensive function parameter, we proceed in amost the same steps as a
store, except that the bits are read from the Bloom Filter Array instead of written to
them. If any of the read bits are fase, then the expensive function parameter was
absolutely never previoudly stored in the Bloom Filter Array. If dl of the bits are true,
then the expensive function parameter was likely previously stored in the Array. In the
case of atrueresult, calculate the origina expensive function to accurately determine
the Boolean value (Figure 1.20.2).

Tuning the Bloom Filter

Tuning the Bloom Filter involves determining the number of phases and the bit
size of the indexes. Both of these variables can be modified to change the accuracy and
capacity of the Bloom Filter. Generally speaking, the larger the size of the bit array
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void store_bloom_data("Mikano is in the park")

3phase, 16-bit (8K Byte)

128 Bloom Key divided Bloom Filter
into 8 16-bit segments
“Mikano is in oxlooz  Hwrite Bit Value Bit Index
the park” OX7AB3  |-wite T o | oxoow
_ ool Hwite__. . LA : —
Hagh OxBF78 | 0x0002
J : OX77TAB only 3 0 . 0x0003
Ox4D9 igr]f)?: ﬁe
OX76A0 rest
(| Ox9667 o | oxom
> 1 0x1002
0 | Oxw0m
boolean test_bloom_data("Mikano is in the park")
0x1002 read ,

" ox7AB3  |read 2 > 1 OX7AB3
0x0001 0 OX7ABA4
0xBF78 —

e OX77AB

- 0x34D9 T 0 OxFFFC

" 0x76A0 1 OFFFD

oo 0 OXFFFE

— > 1 OXFFFF

return false
T
No

tential false positive)

"Mikangisin (O _fm(l_(po | POSITVe) A Are all
the office" 0x7AB3 | j-ed A pits set?
OXFFEC ~ |read (not set <o return false)

0x7063 —r-J Yes m

Hesh | Ox6o1E

. l returntrue
OxB269
0x0110

| OCa If OXFFFC was a0 &, oSk

then afalse positive would
be returned.
FdsePogtive

FIGURE 1.20.1 Flow of a Bloom Filter.
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// returns a pointer to 16 bytes of data that represent the hash
voi d * conpute_hash( pData, nDatalength );

// returns the integer value for the bits at nlndex for nBitLength | ong
int get_index value( void * pData, int nBitlndex, int nBitLength );

/] tests a bit inthe BloomFilter Array.
/l returns true if set otherw se returns fal se
bool ean is_bit_index_set( int nlndexVal ue );

/] sets a bit inthe BloomFilter Array
void set_bit_index( int nlndexVal ue );

void store_bloomdata( void * pData, int nDatalLength )

voi d *pHash;
int nPhases = 3, nPhasel ndex = 0, nBitlndexLength = 16;

// returns pointer to 16 bytes of nenory Theoretically, adifferent input
pHash = conput e_hash( pData, nDatalLength ); #——————— parameter could return the same
' value but that is unprobable.

/1 now set each bit Either way, the algorithm will
whi l e { nPhasel ndex < mnPhases ) ill work.

{

nl ndexVal ue = get _i ndex_val ue( pHash, nPhasel ndex, nBitl ndexLength );

// if bit is not set, we have a mss so return fal se
set _bit_i ndex( nl ndexVal ue ) ;

nPhase! ndex++;

}
}

bool ean test_bl oomdata( void * pData, int nDatalLength )
{
voi d *pHash;
int nPhases = 3, nPhasel ndex = 0, nBitlndexLength =. 16;

compute_hashwill aways

return the same 16 bytes of

datawhen called with the
sameinput parameters.

// returns pointer to 16 bytes of nenory
pHash = conpute_hash( pData, nDatalLength ); 4-.

/1 now test each bit
whil e ( nPhasel ndex < mnPhases )

{

nl ndexVal ue = get _i ndex_val ue( pHash, nPhasel ndex, nBitl ndexLength } ;

/] if bit is not set, we have a miss so return fal se
if ( lis_bit_index_set( nlndexValue ) ) return( false );

nPhase! ndex++; *s,
}
. . Return false as soon aswe
// all bits are set so we have a probably hit. find afasebit. At thispoint
return( true ); the expensive function has
} definitely not been previously
stored.

FIGURE 1.20.2 Basic use of a Bloom Filter.
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(N) and the more phases, the less likely a fase positive response will occur. Bloom
asserted that the optimum performance of this dgorithm occurs when saturation of
the bit array is 50 percent. Statisticdly, the chance of a false positive can be deter-
mined by taking the array saturation and raising it to the power of the number of
phases. Other equations are available to tune the Bloom filter agorithm.

The equation to calculate the percentage of false positives is

percent_false pdsitive = saturation™™-of.fes=

or expressed as afuncti on of percent_false  positive:
number_of j>hases = LOQsuraion(Percentjalse fositive)

By assuming that the Bloom Filter Array is operating at optimum capacity of 50-
percent saturation, Table 1.20. 1 can be computed from the preceding formulas.

For example, if we want the false positive rate below half a percent (0.5 percent),
eight phases must be used, which will return a worst-case scenario of 0.39-percent
falsepostives.

Next, we calculate the Bloom Filter Array bit size.

array_hit size = (number_of phases * max_stored_inputs )/-/»(0.5)

Thearray_bit sizeisusually rounded up to the nearest valuewhere array_bit_size
can be expressed as 2 to the power of an integer.

array bit size= 2
Findly, compute the index_hit_size from the array_hit_size.

ndex_ bi t nZyx

array <_hit size=2>

Table 1.20.1 Percentage of False Positives Based on Number of Phases Used

percent _false_positive number_of_phases _

i

w
=
8
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Example 2

Suppose we want to store a maximum of 9000 expensive function parameters
with at least 95-percent accuracy when the Bloom Filter Array test returns true. From
Table 1.20.1, we can determine that five phases will be necessary to obtain an accu-

racy of equal to or greater than 95 percent and a false positive of less than or equal to
5 percent.

5phases * 9000 expensivefunctionparameters/-In(0.5) = 64,921 bits

Rounding up to the nearest 2" gives us 64K bits (8K bytes), and because 2% =
64K, the index_bit_sizewill be 16 bits.

I_:_inal Notes

One way to improve performance is to use an exception list to prevent executing
the expensive function, as Bloom did in his algorithm. An exception list contains al
of the false positive cases that can be returned from testing a Bloom Filter. This can be
computed at parameter storage or dynamically when false positives are detected (Fig-
ure 1.20.3).

Another way to improve performance is to dynamicaly build a Bloom Filter
Array. If the range of expensive function parametersis too great, Bloom Filters can be
caculated dynamically and optimized for repetitive cdls to tet the bit array. By
dynamically building a Bloom Filter Array, the commonly tested expensive function
parameters are calculated once, and untested function parameters do not waste space

in the bit array.
Standard Bloom Filter Test Code Optiond Code
if ( test_bloomdata(c ) )
{
bool ean bSuccess = fal se;
|if (_in_exception_list (c) ) return( bSuccess ) ; b Exception Ligt Test
bSuccess = expensi ve_f unction (c) ; )
I if ( ibSuccess ) add_to_exception_list lc I Irn-——— Dynan.mdly. CompUted
return( bSuccess) ; Exceptlon List
}
el se L Dynamicaly computed
{ _ _ _ Bloom Filter
if ( expensive_f unction (c) )
{
store_bloomdata(c) ;
return true;
)
}
return fal se;

FIGURE 1.20.3 Bloom Filter configurations.
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Here are some interesting Bloom Filter characterigtics:

» Two Bloom Filter Arrays can be merged together by bitwise ORing them.

» Bloom Filter Arrays can be shared among paralel clients.

» Optimized Bloom Filter Arrays are not compressible.

» Underpopulated Arrays are very compressible.

» Memory corruption in the array can be mended by setting unknown bits to true.

Conclu3|on

P

Re_f_erences -

Bloom F|Iters offer a method of |mprOV| ng performance of repeatedly cdled expensive
functions at the expense of memory. While this method has been documented for a
long time, it remains ardatively unused technique, although exceptions exist, such as
Bloom Filter usage in the very popular Web-caching program Squid (Www.squid-
cache.org/) by Duane Wessds. Adding a Bloom Filter agorithm to a program can
usually be done in less that 20K bytes of code. As with most performance-enhancing
tricks, it is agood ideato add Bloom Filters to a project during the optimization stage,
after the main functionality is finished.

L —

[BeachOI] Bea:h Software, BIoom F|Iters available online a http://
beachsoftware.com/bloom/, May 10, 2000.

[RSAOL] RSA Security, "What Are MD2, MD4, and MD5," available online at
www.rsasecurity.com/rsalabs/fag/3-6-6.html, March 4, 2001.

[FlipcodeOl] Hipcode, "Coding Bloom Filters," available online a "“www.flipcode
.com/tutorialsg/tut_bloomfilter.shtml, September 11, 2000.

[Bloom70] Bloom, Burton H., "Space/Time Trade-Offs in Hash Coding with Allow-
able Errors," Communications of the ACM, Vol. 13, No.7 (ACM July 1970): pp.
422-426.
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3ds max Skin Exporter and
Animation Toolkit

Marco Tombesi
tombesi@infinito.it

We have seen wonderful specia effects in modern films that have taken glorious
monsters such as dinosaurs and made them move smoothly. We know how
they did it (using software such as LightWave, 3ds max, Maya, etc.), but how do we
use the same animation technology for our games?

This gem is intended as an introduction to afull toolset for that purpose, starting
just after the creation of the animated character in 3ds max (and Character Studio),
and ending with that object smoothly animating in a game's real-time scenes. Along
the way, it passes through the export plug-in and is stored in a custom dataformat. In
this gem, we will go into depth only about the export aspect; the rest iswell explained
by the code on the accompanying CD.

Let's talk about the necessary steps:

1. The animation is done with 3ds max 3.1 (hereafter smply caled MAX) and
Character Studio 2.2, using Biped and/or bones and the Physique modifier. It
should be noted that athough newer versions of these tools will become
available, the algorithms required for any new versions should be similar.

2. The export plug-in cresates a custom format file ((MRC), which consists of:
* Mesh information (vertices, normals).

» Skeletd structure (the bone tree).

« Influence values (weighting) of each bone to vertices of the mesh (one
vertex may be influenced by multiple bones).

» Bone animation: For each bone, this consists of a set of translation and
rotation keys (using quaternions), including the exact time in millisec-
onds from the animation start to when the transformation should be
performed.

3. Toread the .MRCfile, we have areusable DLL available, provided with full
source code.

4. The Tenderer interpolates (linearly or better) between the sample keys and
calculates the current transformation matrix to be applied to each bone.
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This is done using the time egpsed from the animation start, obtaining a
smooth and non-hardware-dependent animation.

5. At each frame, the Tenderer recalculates the position of each vertex and its
normal. The calculation is based on the current transformation matrix and
influence value that each bone has on a particular vertex. Most matrix oper-
ations can be done using the graphics hardware transformation and lighting
featuresif they exigt (for example, on the GeForce and Radeon cards).

The process of exporting the animation datawith aplug-in for MAX is not well
documented. While there are many Web pages covering skinning techniques, few
actually address the issue of exporting the data. Read and study the source code as
well as dl Readme.txt filesin the project directories for this gem on the CD. More
information is aso available on the authors Web page [TombesOl], where updates
for MAX 4 will be available when it is relessd.

Thisgem is based on ahierarchical bone structure: abone tree or aBiped, created
using Character Studio 2.2. Build a low polygon mesh (about 5000 triangles). The
mesh should be a single sdectable object in MAX. Deform the mesh using the
Physique modifier, based on the Biped previously created. The character animation
should be created on the Biped. '

ON THE CD

Exporting

e e L) T IR T TPE RIS YOS i o

First, we need afile format specification.

The MRC File Format

Thisis asmplefileformat for the purposes of this gem. It supports normals, bones,
vertex weights, and animation keys. See Figure 1211 for a sdlf-explanatory
schematic, and check the code on the CD for technica clarification.

Exporting to MRC with the MAX SDK

3 |fyou are new toplug-in development and don't know how MAX works, be
sure to refer to the MAX SDK documentation. In particular, study thefol-

lowing sections before proceeding:

» DLL, Library Functions, and Class Descriptors

»  Fundamental Concepts ofthe MAX SDK

* Must Read Sectionsfor All Developers

* Nodes

»  Geometry Pipeline System

» Matrix Representations of3D Transformations
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Working with Nodes

In our export plug-in, we must derive a class from SceneExport and implement some
virtual methods, one of which is the main export routine.

class MRCexport : public SceneExport {
public:
/I Number of extensions supported
int ExtCount() {return 1;}

/I Extension ("MRC")
const TCHAR * Ext(int n) {return _T("MRC");}

/I Export to an MRC file

int DoExport(const TCHAR *name,
Explinterface *ei,
Interface *i,
BOOL suppressPrompts=FALSE,
DWORD options=0);

[/ Const ruct or/ Destruct or
MRCexport () ;
- MRCexport();

};

Accessing scene datarequires an I nterface passed by MAX to the main export rou-
tine (the entry point of the plug-in). For every object in MAX, there is a node in the
globa scene graph, and each node has a parent (except RootNode) and possibly some
children. We can access the root node and then traverse the hierarchy, or we can
directly access a node if the user has sdected it in MAX before exporting.

INode* pNode = i->GetSelNode(0) ;
INode* const pRoot = i->GetRootNode() ;

To navigate the node structure, we have these methods:

Int count = pNode->NumberOfChildren() ;
INode* pChNode = pNode->GetChildNode(i) ;

A node could represent anything, so we need to discriminate among object types
viathe nodes dass identifier (Class ID or SuperClassi D), and then appropriately cast
the object. For our purposes, we need to check if anode is ageometric object (amesh)
or abone (aBiped node or abone).

bool 1sMesh( | Node *pNode)

if(obNode == NULL) return false;
ObjectState os = pNode->EvalWorldState(0) ;

if(0s.obj->SuperClassID() == GEOMOBJECT CLASS_ID)
return true;

return false;
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}
bool IsBone(INode *pNode)
¢ if(pNode == NULL)return fal se
0] ectState 0s = pNode- >Eval \Wor | dSt at e(0) ;
if (los.obj) return false;
i f(os.obj->0assID) == Aass_| BONE_ CLASS I D, 0)
returntrue;
if(os.obj->ClassID()==Class_ID(DUMMY_CLASS_ID,0))
return false;
Control *cont = pNode->GetTMController() ;
//other Biped parts
if( COnt->ClassID() == BIPSLAVE_CONTROL_CLASS_ID ||
/IBiped root "Bip01"
COnt->ClassID() == BIPBODY_CONTROL_CLASS_ID
) return true;
return false;
}

The previous example explains how to navigate MAX's nodes and check what
they represent. Once we get a mesh node, we need to acquire the desired vertex data.

Getting Mesh Data

For convenience later on, welll store al vertex datain global coordinate space. MAX
object coordinates are in object space, sO we need a transformatlon matrix to be
applied to each vertex and normal of the mesh.

We can grab this globa transformation matrix at any time during the animation
using GetObjectTM(TimeValue time). This matrix is used to transform vectors from
object space to world space and could be used, for example, if we want to get the
world space coordinate of one mesh vertex. We could do this by taking the vertex
coordinate in object space and multiplying it (post-multiply in MAX) by the matrix
returned from this method. We are interested in mesh data at the animation start, so
TimeValueis zero.

Matrix3tm=pNode->6etObjectTM(0)

_nf MAXuses row vector 1x3 and 4x3 matrices, so to transform a vector, we
' mustpremultiply it by the matrix.
VET

Vertices and other data are not Satically stored, but dynamically caculated each
time. To access data, we must first perform the geometry pipeline evaluation, specify-
ing the time at which we want to get the object Sate.
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MAX has amodifier stack system, where every object is the result of a modifica
tion chain. Starting from a simple parametric primitive (such as abox) that is the base
object, the final object is built, applying modifiers in sequence along the stack. Thisis
the object pipeline and we will work with the result. The resulting object is aDerived-
Object and has methods to navigate the stack of modifiers.

To get the result at a specified animation time, we must first retrieve an Object-
Sate, which is done by invoking the method EvalWorldState on the node. This makes
MAX apply each modifier in the pipeline from beginning to end.

ObjectStateos=pNode->EvalWorldState(0);

ObjectSate contains a pointer to the object in the pipeline and, once we have this
object, we can findly get the mesh data. To do this, we must cast the generic object to
ageometric one, which has amethod to build a mesh representation.

Mesh& mesh = *(((GeomObject*)os.obj)->GetRenderMesh(0, pNode, ...));

Now it is essy to access the mesh members and findly put vertices, faces, and normals
in memory, ready to bewritten to afile. These methods are available to accomplish this:
Mesh::getNumVerts(), Mesh::getNumFaces(), Mesh::getVert(i), anAMesh::getNormal(i).

Listing 1.21.1 illustrates how to export mesh datato a file.

Getting the Bone Structure

Now we need away to write the skeleton's hierarchical structure to an output data file.
Starting from the root node, we traverse depth-first through the tree, and for each
bone, we need to get severd things. First, we assign an index to any direct child and to
the bone's parent, and then we grab the bone orientation matrix.

tm= pNode- >Get NodeTM 0) ;
tminvert();

Although very similar, thepreceding matrix isn't the object matrix, butis
related to the node'spivotpoint, which may not be the object's origin. Check
with the SDK documentation to find a precise description. We will use this
matriX to transform every mestt vertexffom world space to refatedt Bone space,
soitcan movewiththe bone. Sncewehaveto multiply any vertex by the
inverse of this matrix, we can invert it now and save rendering time.

1]
MOTt

Getting the Bone Influences

Now we are a the most exciting part of this gem: getting the vertex bone assgnment
and influence value (weighting). The weighting isimportant when two or more bones
influence the same vertex and the mesh deformation depends on both (see [Wood-
landOQ] for the theory). These assignments should be done using the Physique modi-
fier in Character Studio 2.2. Note to the reader: Study the Phyexp.h header that comes
with Character Studio for modifier interface help.
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First, we must find the Physique modifier on the object's node that we wish to
export (this is the same node we used earlier to get the mesh vertex data). We do this
by accessing the referenced DerivedObject and then scanning each applied modifier on
the stack until we find the Physique modifier (using a Class _|D check).

Modifier* GetPhysiqueMod(INode *pNode)

(bject *pCbj = pNode->Get Chj ect Ref () ;
if(l pdajg return NULL;

Il Is it a derived object?
whi | e(pQhj - >Superd assI () == GEN DERI VOB _CLASS | D)

/1 Yes -> Cast
| Derivedbj ect *pDerivedQyj =
static_cast <l DerivedChbj ect *>(pQoj),

Il lterate over all entries of the nodifier stack
int MdStackl ndex = 0;
whi | e( ModSt ackl ndex < pDerivedChj - >Numvbdi fiers())

{

Il Get current nodifier
Modifier* pMbd = pDerivedQoj->
Get Modi fi er (MbdSt ackl ndex) ;

[11's this Physique?
i f(pMd->CasslD() ==
Cl ass_I D( PHYSI QUE_CLASS_I D_A,
PHYSI QUE_CLASS_I D_B))
return pMd;

[l Next nodifier stack entry
ModSt ackl ndex++;

%ij = pDeri vedQhj - >Get Obj Ref () ;
/ Not found

return NULL;
g

Now we enter the Bone assignment phase (see Listing 1.21.2; a code overview
follows). Once we have the Physique modifier, we get its interface (IPhysiqueExpori)
and then access the Physique context interface (IPhyContextExporf) for the object.
This owns al of the methods with which we need to work. Each vertex affected by a
modifier has an interface IPhyVertexExport. Grab this interface to access its methods,
caling GetVertexinterface(i) onthe Physique context interface.

We must check to see if avertex isinfluenced by one or more bones (RIGID_TYPE
or RIGID_BLENDED_TYPE, respectively). In the former case, the weight value is 1 and we
haveto find just asingle bone (caling GetNode on the i-th vertex interface). In the lat-
ter case, we have to find every bone assigned to the vertex, and for each bone we must
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get its proper weight value by invoking GetWeightQ) on the i-th vertex interface,
where | is the j-th bone influencing it. In addition, note that at the end, we must
remember to rel ease every interface.

Now we are ready for the last phase: bone animation data acquisition.

Getting Bone Animation Keys _
This is a smple sep. At sdected time intervas (default 100 milliseconds), grab the
transformation matrix of each bone. In the MAX SDK, timeis measured internally in

"ticks"" where there are 4800 ticks per second, so we must perform a conversion.
Then we use this method:

tm=pNode->GetNodeTM(timeTicks);

It's more efficient to not store the complete matrix (16 floats), but instead only
the trandation (3 floats) and rotation data (4 floats), so we extract a position vector
and a unit quaternion from the matrix. -

Points pos = tmGet Trans();
Quat quat (tn);

Once we have dl the data collected in memory, we store everything to disk using
the MRC file format. Now it is time to see how to use it al to perform smooth ani-
mation in our games. '

Put It to Use: The Drawing Loop

In our application, for each frame displayed, we should perform thefollowing stepsin .
sequence.

Get the Exact Time :
To make the animation very smooth and not processor dependent, getting the system

time is necessary. We update the skeleton structure by cycling through the bone tree

and, for each bone, work out the current transformation matrix by linearly interpo-

lating between two sample keys. To find out which sample keys to interpolate

between, we require the current rea animation time (in milliseconds) from animation

Start.

Moving the Skeleton

We determine actual bone position and rotation by linear (or better) interpolation
and by quaternion interpolation (SLERP or better) between sdected sample keys
(sample times should enclose the current time). Then, given these data, you can build
the current bone animation matrix from the trandation and rotation. The math
involved, especidly in the quaternion caculaions, is explained wel in the previous
Game Programming Gems book [ShankelOQ]. To take better advantage of graphics
hardware, we perform dl matrix calculations using OpenGL functions. This way we
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can exploit any advanced hardware features such as transformation and lighting, and
performance will be much better!

Recalculate the Skin

Once the skeleton is moved, it is time to deform the mesh accordingly, with respect to
vertex weight assignments. See [WhodlandOO] for a good overview of this topic. It is
convenient to check the vertices in bone-major order, traversing depth-first through
the bone tree and doing the following passes for each bone. For each vertex influenced
by the bone, we refer it to the bone's loca coordinate system (multiplying by the bone
inverse orientation matrk), and then transform it via the current bone animation
matrk. Then, we multiply the vertex coordinates by the influence value (weight) this
bone exerts on it. We add the result to the corresponding vertex value stored in atem-
porary buffer. Now this buffer contains the current vertex coordinates for the skin, at
this point in the animation. To finish, we draw the computed mesh using vertex
arrays (or better) to gain even more performance.

bool ExportMesh (iNode* pNode, FILE *out)
{

MRCmesh_hdr nHdr ;

Matri xS t m= pNode->Cet Chj ect TM 0) ;

(bj ect State os = pNode- >Eval Wr | dSt at e(0) ;

int needDel et e;

Mesh& mesh = *(( (Geonthj ect*) o0s.obj )->Cet Render Mesh (
0, pNode, ...));

/1 wite the mesh vertices
mHdr . vert Cnt = mesh. get NunVerts() ;
forfint i =0; i <nHdr.vertCnt; i+

Points pnt = mesh.getVert(i) * tm [lpremultiply in MAX
} .
/I write vertex normals
mesh.buildNormalsO ;
mHdr.normCnt = mesh.getNumVerts() ;
for(i = O; i < mHdr.normCnt; i++)
Points norm = Normalize(mesh.getNormal(i) ) ;

}

/I build and write faces
mHdr.faceCnt = mesh.getNumFaces() ;
for(i = O; i < mHdr.faceCnt; i++)
{
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MRCface_hdrfHdr;

fHdr.vert[0] mesh.faces[i].v[0];
fHdr.vert[1] mesh.faces[i].v[1];
fHdr.vert[2] mesh.facesl[i].v[2];

}

Listing 1212 Readlng Bone ASS|gnments

bool Get Physi queVeéi ght s(1 Node *pNode, | Node *pRoot,
Modi fier *phod, BoneData t *BD)

Il create a Physique Export Interface for given Physi que Modifier
| Physi queExport *phyl nterface = %I Physi queExport *)

pMod- >Cet ! nt erface(| _PHYI NTERFACE) ;
if (phylnterface)

Il create a MbdContext Export Interface for the specific

/1 node of the Physique Mdifier

| PhyCont ext Export *modContext!nt = (| PhyCont ext Export*)
phyl nt erf ace- >Get Cont ext ! nt er f ace(pNode)

Il needed by vertex interface (only Rigid supported by now
nmodCont ext ! nt - >Convert ToRi gi d( TRUE) ;

/1 more than a single bone per vertex
nmodCont ext | nt - >Al | owBl endi ng( TRUE)
if (modContext!nt)

int total ix = nodCont ext | nt - >Get Nunber Verti ces() ;
for(int i =0; i <totalVtx; i++)

IPhyVertexExport *vtxinterface = (IPhyVertexExport*)
modContext!nt->GetVertexInterface(i) ;
if (vtxinterface)

int vixType = vtxinterface->GetVertexType() ;
if(vixType == RIGID_TYPE)

I Node *boneNode = ((IPhyRigidVertex*)vtxlnterface)
-> Get Node();
int |bonel dx = Get Bonel ndex(pRoot, boneNode);
nsert
/] Build vertex data
MROwei ght Ji dr wdat a;
wdata. vertldx = i;
wdat a. weight = 1. G

[llnsert into proper bonedata
BO{ bonel dx] . wei ght sVect . push_back( wdat a) ;

/1 update vertexWeightCnt for that bone
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BO{ bonel dx] . Hdr. vert exCnt .
= BO bonel dx] . wei ghtsVect. size() ;

el se i f(vtxType == RI Gl D_BLENDED_TYPE)

| PhyBl endedRi gi dVertex *vtxBlended!nt =
(1PhyBl endedRi gi dVertex*)vtxI nterface;
for(int j =0; j <vtxBlendedl nt->Get Nunber Nodes()

;i)

| Node *boneNode = vt xBl endedI nt - >Cet Node((j) ;
int bonel dx = CetBonel ndex(pRoot, boneNode);
/] Build vertex data

MROwei ght Ji dr wdat a;

wdata. vertldx =i; . .
wdat a. wei ght = vt xBl endedI nt - >Cet Wi ght () ;

Il check vertex existence for this bone
bool notfound = true;
for (int v=0; notfound . .
&& v < BD{ bonel dx] .weightsVect.size() ;

v++t)

H t;deate found vert weight data for that
one
if ( BDfbonel dx] . wei ghtsVectfv] .vertldx
== wdata.vertldx )
{ BD[ bonel dx] . wei ghtsVect[v] . vei ght
+= wdat a. wei ght;
not found = fal se;
}
}

if (notfound)

Il Add a new vertex weight data into proper
/| bonedat a
BO[ bonel dx] . wei ght sVect . push_back(wdat a) ;

/] update vertexweightCnt for that bone
BO{ bonel dx] . Hdr . vertexCnt _
= BO bonel dx] . wei ght sVect . si ze() ;
}
}
}
}

phyinterface->ReleaseContextinterface(modContextint) ;
r}Jl\/bd- >Rel ease! nterface(| _PHYI NTERFACE, phylnterface) ;

?eturn true;
}
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Using Web Cameras in
Video Games

Nathan d'Qbrenan, Firetoad Software
nathand @firetoads.com

M ost games nowadays have multiplayer capabilities; however, the only interaction
that goes on among online gamers is the occasiona text message. Imagine hav-
ing the ability to see the expression on your opponent's face when you just pass them
before reaching the finish line, or when they get fragged by your perfectly placed
rocket. Web cams dlow you that functionality, and with high-speed Internet dowly
becoming standard, it's becoming feasible to send more data to more clients.

This gem demonstrates a straightforward approach to implementing Web cam
methodologies into a game. Well be using Video for Windows to capture the Web
cam data, so Windows is required for the Web cam initiaization function. We will
cover numerous approaches for fast image culling, motion detection, and a couple of
image manipulation routines. By die end, we will have afully functional Web cam
application tliat can be run and interacted widi at reasonable frame rates.

Initializing the Web Cam Capture Wlndow -

The following code demonstrates how to use Vldeo for Windows to set up a Web

C™M>3 camerawindow in an application. Note to die reader: when dealing with video drivers

ONTHICD  from hardware vendors. You can never have too much error checking and handling
code (review source code on CD for a more thorough implementation).

/l Globals

HMD hWidCam = NULL;

BOOL camdriver_on = FALSE

int wco_camwi dth = 160, wco_cam hei ﬁht = 120,

int weo_camupdates = 400, wco_camthreshold = 120;

/1 WEBCAM | NI T
voi d webcam init(HMD hWwd)
{// Set the windowto be a pixel by a pixel large
hwhdCam = capCr eat eCapt ur eW ndow( appnane,
W5 CHLD | W5 VISIBLE |
W5_CLI PCHI LDREN |
W5_CLI PSI BLI NGS,
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i f (hwndCan)

/1" Connect the camto the driver
camdriver_on = capDriver Connect (hWidCam 1);

[l Cet the capabilities of the capture driver
i f(camdriver_on)

capDri ver Get Caps(hWidCam  &caps, i zeof (caps));

Il Set the video stream callback function
capSet Cal | backOnFr ane( hwidCam webcam cal | back) ;

/I Set the preview rate in nilliseconds
capPrevi ewRat e(hWdCam wco_cam updat es);

/1" Disable preview node
capPrevi el hwidCam FALSH);

/1 Initialize the bitmp info to the way we want

capwnd. bm Header . bi Size = si zeof ( Bl TMAPI NFCHEADER) ;

capwnd. bm Header. bi Wdth = wco_camwi dth;

capwnd. bmi Header . bi Hei ght = wco_cam hei ght ;

capwnd. bni Header . bi Pl anes = 1;

capwnd. bm Header . bi Bi t Count = 24;

capwnd. bm Header . bi conpression = Bl _RGB

capwnd. bm Header . bi Si zel mage  =wco_cam wi dt h*wco_cam hei ght *3;
capwnd. bm Header . bi XPel sPer Meter = 100;

capwnd. bni Header . bi YPel sPer Meter =100;

i f(capSet Vi deoFor mat (hWhidCam i capwnd,
Si zeof (BI TMAPI NFO)) == FALSE)

t capSet Cal | backOnFrame( hwndCam  NULL);
Dest r oyW ndow hWhdCanj ;
hWidCam = NULL;
camdriver_on = FALSE

el se . .
{ Il Assign nmenory and variabl es
webcam set _vars();

gl GenTextures(1, &webcamtex.gl _bgr);

gl BindTextur e(Q_TEXTURE 2D, webcam tex. gl _bgr);

gl Tex! mage2D( @ TEXTURE 2D, 0, 3, webcamtex. si ze,
webcam tex.size, 0, Q_BGREXT,
Q_UNSIG\ED BYTE, webcam tex. bgr);

ol TexParameteri (G_TEXTURE 2D, G._TEXTURE WRAP S,
G_REPEAT); ;

Section 1 General Programming
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gl TexParaneteri (GL_TEXTURE_2D, GL_TEXTURE _WRAP_T,

Q. REPEAT) ;
gl TexPar amet er f (GL_TEXTURE 2D, GL_TEXTURE_M N FILTER
AJ. I NEAR);
gl TexPar aneter f (A_TEXTURE 2D, GL._TEXTURE_NAG FI LTER,
G_LI NEAR) ;
}
{

gl GenTextures(1, &webcamtex.gl grey);

gl Bi ndText ure( G._TEXTURE 2D, webcam tex. gl _grey);

gl Tex! mage2D( Q._TEXTURE 2D, 0, 1, webcamtex. sl ze,
webcamtex.size, 0, QJ. UM NANCE
GL_UNSI GNED BYTE, webcam tex. greyscal e);

gl TexParanet eri (Q_TEXTURE 2D, Q._TEXTURE WRAP S,

@Q._REPEAT);
gl TexParameteri (G_TEXTURE 2D, GL_TEXTURE_WRAP_T,
GL_REPEAT) ;
gl TexPar anet er f (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER,
GL_LI NEAR);
gl TexPar anet er f (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER,
G_LINEAR);
}
}
}
}
el se
camdriver_on = FALSE,
}
}

The above function retrieves the handle to the Web cam window we're capturing
from through the function capCreateCaptureéWindow(). We then initialize it with win-
dows properties such as its size, and whether it should be visble. In our case, we do
want it to be visible; however, were only going to set the window to a 1x1 pixd, soit's
basicaly invisible. Thisis required because we don't actually want to display the image
subwindow, but we want to receive the data updates from Windows through the cal-
back function.

We then retrieve driver information, set the cdlback function (more on this
later), the number of times per second we want to refresh the Web cam, and then reset
al our varigbles. The driver is then tested to see if it can handle returning the stan-
dard bitmap information in which we are interested. Upon success, we initiaize al
the memory for dl our movement buffers, as well as the OpenGL texture. We pull a
little trick when deciding how big to make this texture, which will come in handy
later on. Based on whatever height we set up our Web cam window to be, we find and
alocate our memory to the next highest power of 2. Even though we are alocating a
bigger buffer than the Web cam image, we save ourselves an expensive texture resize
operation, by just doing a memcpyQ right into the larger buffer — at the cost of some
small precision loss in the Web cam image.
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Retrieving Data

Once we have our video window initialized, we need away to retrieve the data from
the Web cam every frame. To let Windows know which callback function it should
send the data to, we must cal capSetCallbackOnFrameQ with the address of the call-
back function. When Windows decides it's time to update the Web cam, it will pass
us the bitmap information inside the VIDEOHDR structure.

In our case, well make the callback function process dl the Web cam data to
decide if we want to creste atexture out of it. We can pass dl of that data to the web-
cam_calc_movement () function for further processing, which will determine if enough
data has changed snce die lagt frame, after which, we can update the texture.

/ | \EBCAM_CALLBACK
Il _Process video callbacks here . S
LRESULT W NAPI webcam cal | back(HWND hwnd, LPVI DECHDR vi deoji dr)
{// Cal cul ate movement based off of threshold
i f (webcam cal ¢_nmovenent (video hd r,
webcam tex. del ta_buffer,
wco_camwi dth,
weo_cam hei ght
webcanftex. si ze,
weo_cam thr eshol d))

webcam nake_texture(videojidr, wco_camrendering);

}

return TRUE
}

Wndows defines the LPVI DECHDR structure as:
typedef struct videohdr tag

LPBYTE | pDat a; /I pointer to locked data buffer
DWRD dwBuf ferLength; [/ Length of data buffer

DACRD dwByt es! | sed; [l Bytes actuall used

DWCRD dwTi neCapt ured; // |||seconds romstart of stream
DACRD dwlser ; Il for client's use

DWCRD awFl ags; Il assorted flags (see defines)
DWORD OwReserved[4]; /] reserved for driver

} VIDEOHDR, NEAR *PVIDECHDR, FAR * LPVI DEOHDR;

Windows savesthe Web cam datain the buffer cdled If Data. Thisisthe primary
variable we are interested in, but dwTimeCaptured and some of the flags may prove
useful aswell. Now that weve captured the data from the Web cam, let's test it to see
if it's useful.
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Motion Detection

We now want to weed out any unnecessary frames which have barely changed so we
can avoid unnecessary updates to our texture. Updating textures is a notoriously dow
operation in a 3D APl such as OpenGL.

The following source code compares delta buffers, and returns true or false if the
given threshold has been breached. Note that returning early when the threshold has
been exceeded could optimize this function further; however, that would hamper
us from using the delta buffer later on. Ectosaver [FiretoadOQO] uses these unsigned
bytes of delta movement to caculate the amplitude of the waves it causes, and to
determine when there is no one moving around.

/1 GLOBALS o
unsi gned char wco_camthreshol d=128; // This is a good amount (0-255)

/1 \EBCAM CALC_MOVENENT
[l This is a sinple notion detection routine that determines if
/1 you've moved further than the set threshold
BCOL webcam cal ¢_novenent (LPVI DECHDR vi deo_hdr,
unsi gned char *del ta_buff,
int webcamwi dth, int webcam height,
int gl_size, unsigned char thresh)

unsi gned char max_del t a=0;
int 1=0, LZO;
i nt Iengt :
unsigned char *tenp_delta = (unsigned char *)malloc(
si zeof (unsi gned char)* webcamwi dth * webcam height);

[ ength = webcam wi dth * webcam hei ght;
webcam tex. whi ch_buffer = webcamtex.which_buffer 70: 1;

i f(!video_hdr->l pData)
return FS_TRUE

for(i

{

i<length; i+t)

(i=
[ Save the current franes data for conparison on the next frame
| NOTE VWeére onIK conparing the red channel (IpData is B&), so
[in theory if the user was in a solid red room coated in red
[ paint, we wouldn't detect any movement....chances are this
Jisn't the case :R For our purposes, it this test works fine
webcamtex back_buf f er [ webcam t ex. whi ch _buffer][i]

= video_hdr->l pData[i*3];

/
/
/
/
/

[I" Conpute the delta buffer fromthe last frane

[ 1f 1t's the first frame, it shouldn't blow up given that we

Il cleared it to zero upon initialization

tenp_delta[i] =

abs(webcam t ex. back_buf f er [ webcam t ex. whi ch buffer]H
webcam t ex. back_buff er[ ! webcam t ex. whi ch_buf f er [|])



28

Sedtiontly, Generalifrogramming

I'l'l's the difference here greater than our threshol d?
if (temp delta[l] > max delta)
max_delta = tenp_delta[i] ;
}

Il Fit to be inside a pover of 2 texture
for(i=0; i<webcam height ; i++)

{
mencpy( &del ta_buf f | size
py(&terrp del ta[[ ((V\?ebcam v)u]dt h] .
si zeof (unsi gned char)*webcam wi dth) ;
}

free(tenp_delta) ;

if(max_delta > thresh)
return TRUE

el se
return FALSE

Manipulating Web Cam Data

o e T

e S T

Get the BGR Plxels

Onceweve performed al our testing and culling, we are ready to manipulate the data
we were sent from Windows. For this, we will simply copy the pixels from die
VIDEOHDR data gtruct (the native format Windows returns is BGR) into a buffer
that weve allocated to have a power of 2. Note that this technique avoids resizing the
texture datas pixds, as it smply copies the pixels straight over, preserving the pixel
aspect ratio. The only drawback to this technique is that it will leave some empty
gpace in our texture, so we're left with abar of black pixels at the top of the image. We
can diminate that bar by manipulating texture coordinates (once mapped onto 3D
geometry) or resizing the texture.

/1 \NEBCAM MAKE_BGR
voi d webcam make_bgr (unsi gned char *bgr_tex, unsigned char *vid_data,
int webcamwi dth, int webcam height, int gI Si ze)
int i
for(i=0; i<webcam height; i+t)
rrerrcpy(&bgr tex[| gl size*3)]

data[l V\ebcamw dtn*3)],
5| ze6f(un5| gned char)* webcam_w dth*3);
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Convert to Grayscale

Once weve captured the BGR data, we could convert it to grayscde. This would result
in an image that is one-third the size of our regular textures, which would be practical
for users who have dow Internet connections, but sill want to transmit Web cam data.

Here is afunction that multiplies each RGB component in our color buffer by a
scdar amount, effectively reducing all three color channels to one:

/1 \WEBCAM MAKE GREYSCALE
voi d webcam make_greyscal e( unsi gned char *grey, _
unsigned char *color, int dim

int i, j;
/I Geyscale = RED * 0.3 + GREEN * 0.4f + BLUE * 0.3f
for(i=0, j=0, j<dimrdim i+=3, j++)

{
grey[j] = (unsigned char)float to int(0.30f * color[i] +

0

0.40f * color [i+1] +

QST * color[i+?]);
}

}

Real-Life Cartoons

Once weve successfully converted dl our data to grayscae, we can manipulate the
data to draw the picture in a cartoon-like fashion. This method splits the image into
five different levels and sx different colors, coloring different ranges of pixd vaues
with solid values. All we have to do is perform some simple comparisons and evaluate
each pixel based on our heat intensity constants.

The final result is compared against a lookup from either the grayscale buffer or
our deltabuffer. If wewant to see the image every frame (single buffer), wewill need
to compare against the grayscae. To give different results, well assgn random color
intensities for each pixel based on our heat intensity constants.

/| VEBCAM | NI T_CARTOON
voi d webcaminit _cantoon(cartoon_s *cartoon_tex)

char i;
for(i=0;, i<3; i++)

{

/1 Pick randomcolors in our range

cartoon_tex->bot _toll _col[i] = rand()9%55;
cartoon_tex->mn_toll col[I] = rand()%55;
cartoon_tex->lowtoll col[i] = rand()%55
cartoon_tex->med toll_col[i] = rand()%55
cartoon_tex->high tolT col[i] = rand()%55;
cartoon_tex->max_fol |l _col[i = rand() %255;
}
}

tidefine MIN CAM HEAT 50
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tfdefine LONCAM HEAT 75
#define MED CAMHEAT 100
#define HGTCAMHEAT 125
#define MAX CAMHEAT 150

/| \\EBCAM_MAKE_CARTOON .
voi dwebcam i tiake_cartoon( unsi gnedchar *cart oon,
cartoon_s cartoon_tex,
unsi gned char *data, int dim
int i, j, n
for(i=0, j=0; j<dintdim i+=3, j++)
{ if(data[j] < M N_CAM HEAT)

for(n=0; n<3; n++)
cartoon[i+n] = cartoon_tex.bot_toll _col[n] ;

if(data[j] > M N_CAM HEAT && data[j] < LOW CAM HEAT)

for(n=0; n<3; n++)
cartoon[i+n] = cartoon_tex.mn_toll col[n];

|}f(dat a[j] > LONCAM HEAT && data[j] < MED CAM HEAT)
{

for(n=0; n<3; n++)
cartoon[i+n] = cartoon_tex.lowtoll _col[n] ;

if(data[j] > MED_CAM HEAT && data[j] < H GH_CAM HEAT)

for(n=0; n<3; n++)
cartoon[i+n] =cartoon_tex.nmed toll _col[n] ;

if (data[ j] > HI GH_CAM HEAT && data[j] < MAX_CAM HEAT)

for(n=0; n<3; n++)
cartoon[i+n] = cartoon_tex.high toll _col[n] ;

|}f(dat a[j] > MAX_CAM HEAT)

for(n=0; n<3; n++)
cartoon[i+n] =cartoon_tex.max_toll _col[n] ;
}

}
}

Uploading the New Texture

Now, al that's left is uploading the texture to OpenGL. Thefirst step is to get the
color values from Video for Windows. Once the new color values are caculated,
we can go on to converting it to grayscale, and then go on to our cartoon Tenderer.
Onceadl theimage manipulationisfinished, we cdl gl TexSublmage2D() to get it into
the appropriate texture. It is then ready for usein a 3D gpplication as atexture.
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/1 VEBCAM MAKE_TEXTURE
voi d webcam nake_t ext ur e( LPVI DECHDR vi deo, webcam draw node node)

{// Build the color first
webcam make _bgr (webcam tex. bgr,

vi deo- >/ pDat a,

wco_cam wi dt h,

wco_cam hei ght

webcam tex. si ze) ;

if (mde == GREYSCALE || node ==
webcam make_greyscal e ( V\ebcamtex eyscal e,
webcam t ex. vxebcamtex size) ;

Il Note: Could also pass in the delta buffer instead of
Il the greyscal e
if (mde == CARTON)
webcam nake cart oon(webcamtex. bgr,
webcarm t ex. cart oon,
webcam tex. gre scal e,
webcam t ex. si ze% :

HOLEEEEDE DR LR et i bbb ini il ny

Il [oad the greyscale version to Cpen@
if (nugde == G?E\%SCXLE) @

{ gl BindTexture( G._TEXTURE 2D, webcamtex.gl grey) ;
gl TexSub! mage2D(@._TEXTURE 2D, 0,0, 0,
webcam tex. size, webcamtex si ze,
GL_LUM NANCE,
a_UNSI G\ED_BYTE, webcam tex. greyscale) ;

}I/ Upl oad the color version to CpenG
el se

{ gl Bi ndText ure( G._TEXTURE 2D, webcamtex.gl bgr) ;
gl TexSub! mage2D(@._TEXTURE 2D, 0, 0, 0,
webcam tex. size, webcamtex. size,
G_BGR EXT, G._UNSI G\ED BYTE, webcam tex. bgr) ;

}
}

Destroy the Web Cam Window

After we're done using the Web cam, we need to destroy the window and set our call-
back function to NULL, so Windows knows to stop sending messages to it. In addi-
tion, we must free up al the memory we previoudly alocated to our color, grayscae,
and delta buffers.

/1 \NEBCAM DESTROY
void webcam dest roy(voi d)

if (camdriver_on)
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capSetCallbackOnFrame(hWndCam, NULL);
DestroyWindow(hWndCam) ;
hWndCam = NULL;

if (webcam_tex . bgr)
free(webcam_tex.bgr);

if (webcam_tex . grayscale)
free(webcam_tex. grayscale) ;

if (webcam_tex . delta_buffer)
free(webcam_tex.delta_buffer) ;

if (webcam_tex.back_buffer[0] )
free(webcam_tex.back_buffer[0]) ;

if (webcam_tex.back_buffer[1 ])
free(webcam_tex.back_buffer[1]) ;

Concluson

p— S

e U

Web cams have a Iot of untapped potentlal that game developers may not redize.
They have the ability to be used as input devices, as in the way a mouse is used, by
tracking color objects and translating their rotations from 2D to 3D [Wu99] . It's even
possible to replace your standard mouse using a Web cam, by performing data
smoothing and color tracking algorithms on the input frames.
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Integers have fixed precision and fixed magnitude. Floating-point numbers have a
"floating" decimal point and arbitrary magnitude. Historically, integers were fast and
floats were dow, so most game programmers used integers and avoided floats. Integer
math was cumbersome for genera calculations, but the performance benefits were
worth the effort. Hardware cods have come down, however, and todays PCs and
game consoles can do floating-point add, subtract, multiply, and divide in a few
cycles. Game programmers can now take advantage of the ease of use of floating-point
math.

Although basic floating-point arithmetic has become fast, complex functions are
still dow. Floating-point libraries may be optimized, but they are generally imple-
mented for accuracy, not performance. For games, performance is often more impor-
tant than accuracy.

This gem presents various tricks to improve floating-point performance, trading
accuracy for execution speed. Table lookup has long been a standard trick for integer
math; this gem shows generalized linear and logarithmic lookup table techniques for
optimizing arbitrary floating-point functions.

The following sections discuss.

e The IEEE floating-point standard

e Tricks for fast float/int conversions, comparisons, and clamping

* A linear lookup table method to optimize sine and cosine

* A logarithmic method to optimize square root

» Generalized lookup table methods to optimize arbitrary floating-point functions
* The importance of performance measurement

167
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IEEE Floating-Point Format

The IEEE standard for roatl ng-poi nt numbers dlctat% a b| nary representation and
conventions for rounding, accuracy, and exception results (such as divide by zero).
The techniques outlined in this article rely on the binary representation, but are gen-
erdly not concerned with the rounding and exception handling. If a computer or
game console uses the standard binary representation, then these tricks apply, regard-
less of whether the floating-point handling is fully IEEE compliant. The Pentium 111
Streaming SIMD Extensions (SSE) and PS2 vector unit both implement subsets of
the IEEE standard that do not support the full range of exception handling; however,
since the binary representation follows the standard, die tricks in this gem will work
with these instruction sets.

The |IEEE standard represents floating-point numbers with a sign bit, a biased
exponent, and anormalized mantissa, or significand. Single precision, 32-bit floating-
point numbers (a"float" in C) are stored as shown in Figure 2.1.1.

i |rfrfjégf‘r|1rnrr|ﬁ1n"'|nﬁmn'1| mmm

31 30 .. 23 22 . i N

s = sign
e = biased exponent
m = normalized mantissa

floating point number is s x 1.m x 2°%%)

FIGURE 2.1.1 |EEE 32-bit floating-point format has a 1-bitsign, 8-bit exponent, and
23-bit mantissa.

The exponent is stored as a positive number in biased form, with 127 added to
the actual exponent (rather than the more familiar two's complement representation
used for integers). The mantissa is usualy stored in normalized form, with an implied
1 before the 23-bit fraction. Normalizing in this way alows maximum precision to be
obtained from the available bits.

A floating-point number thus consists of a normalized significand representing a
number between 1 and 2, together with a biased exponent indicating the position of
the binary point and a sign bit. The number represented is therefore:

n=sxl.mx2(¢-127

For example, the number -6.25 in binary is -110.01, or -1 X 1.1001 x 22 This
would be represented with s=1,e = 2+ 27= 10000001, m = [1] 1001, as shown in
Figure 2.1.2. }

Some additionad "magic vdues' are represented using the exponent. When e =
255, m encodes specid conditions such as not-a-number (NaN), undefined result, or
positive or negative infinity. Exponent e = 0 is used for denormalized numbers—
numbers so tiny that the range of the exponent overflows 8 hits. '
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s=1
+ 6=2+ 127 = 10000001
m= lPOlOOO...

-6.25 decimal ".110.01 binary * -1 x [1.]1001 x 22

!

EEZ;E'a.foii':ﬂ;tﬁtn?i.:n‘si'g;ziOidh iojoiojoioioioioloE010[010|0_I_oloié10[g1

FIGURE 2.1.2 The number -6.25 as stored in memory in 32-bit IEEE floating-point
format. -

Double precision 64-hit floating-point numbers are stored using the same basic
format, but with 11 bits for the exponent and 52 for the significand. The exponent is
biased by 1023, rather than 127. Double precision numbers require twice the storage
space and may be dower to load from memory and to process. For these reasons, dou-
ble precision should generaly be avoided in game code. This gem uses only single-
precision floats.

Floating- Pomt Tricks

.

Before getting to the Iookup table technlques thIS section discusses some useful
floating-point tricks that help explain the games you can play with the bit patterns of
floating-point numbers.

Float/Int Conversions

The lookup table techniques that follow convert a floating-point number to an inte-
ger to generate lookup table indices. This operation can be dow; on aPentium |1, for
example, casting afloat to an int with "(int)f' takes about 60 cycles. This is because
the ANSI C standard dictates that casting a float to an int should truncate the frac-
tion, but by default, the FPU rounds to the nearest integer. Casting to an int becomes
afunction cdl to aroutine that changes the FPU rounding mode, does the conver-
sion, and then changes the rounding mode back. Nasty.

Note that the cost of casting between ints and floats is dependent on the compiler
and processor with which you are working. Aswith al optimizations, benchmark this
conversion trick against aregular typecast and disassembl e the code to see what's actu-
aly happening.

The conversion can be performed much faster by simply adding 1 x 2% to the
floating-point number and then discarding the upper exponent bits of the result.
WEIl look at the code first, and then analyze why it works.

To do this, it is helpful to define the following union, which lets us access a 32-bit
number as either an integer or a float.
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typedef union

¢ int i;
fl oat f:
} I NTCRFLOAT;

The INTORFLOAT type is used in code snippets throughout this gem. Note that
it makes access to the bit pattern of numbers look very simple—in practice, the com-
piler may be generating more code than you expect. On a Pentium 11, for example,
floating-point and integer registers are in separate hardware, and data cannot be moved
from one to the other without going through memory; for this reason, accessing the
members of the INTORFLOAT union may require additiona memory loads and
stores. -

Here is how to convert afloat to an int:

INTORFLOAT  n; /I floating-point number to convert
INTORFLOAT  bias; // "magic" number

bias.i = (23 + 127) « 23; /I bias constant = 1 x 2*23

n.f = 123.456f; /I some floating-point number
n.f += bias.f; /I add as floating-point
n.i -= bias.i; /I subtract as integer

/I n.i is now 123 - the integer portion of the original n.f

Why does thiswork? Adding 1 x 2% as a floating-point number pushes the man-
tissa into the lower 23 hits, setting the exponent to a known value (23 + 127). Sub-

floating-point

43.25= 10101 101
1x2%8= +100000000000000000000000.00
100000000000000000101011.01

[1.]J0000000000000000010101101x2%

[oTv.iojojtTi|?ijctlololo]ololololololololololo[olololllolilollh~|
31 30 23 22 0

—ol:"FI"*il-'i-'f"00000000000000000000000
101011 =43
intege[

FIGURE 2.1.3 The number 43.25 is converted to an integer by manipulating the floating-point
format. The underlined bits in the mantissa do not fit in memory and are discarded (with rounding).
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tracting the known exponent as an integer removes these unwanted upper bits, leav-
ing the desired integer in the low bits of the result. These steps are illustrated in Fig-
ure 2.1.3 for the number 43.25.

On a Pentium Il (with everything in cache), this reduces the conversion time
from 60 cycles to about 5. Note that it is adso possible to write inline assembly code to
get the FPU to convert from float to int without changing the rounding mode—this
is faster than typecasting, but generally sower than the biasing trick shown here.

This trick works as long as the floating-point number to be converted does not

- "overlgp" the bias constant being added. As long as the number is less than 2%, the
trick will work.

To handle negative numbers correctly, use bias = ((23 + 127) « 23) + (1 «
22)—the additional (1 « 22) makes this equivalent to adding 1.5 x 2%, which causes
correct rounding for negative numbers, as shown in Figure 2.1.4. The extra bit is
required so that the subtract-with-borrow operation does not affect the most signifi-
cant bit in the mantissa (bit 23). In this case, 10 upper bits will be removed instead of
9, so the range is one bit less than for positive numbers—the number to be converted
must be less than 2%.

To convert from a float to a fixed-point format with a desired number of frac-
tional bits after the binary point, use bias = (23 - bits + 127) « 23. Again, to handle
negative numbers, add an additional (1 « 22) to bias. This is illustrated in Figure
2.1.5, which shows the conversion of 192.8125 to a fixed-point number with two
fractional bits.

Note that you can use the "inverse" of this trick to convert from integer to float-

ing-point.
floating-point.
_43.25 _ -10101 101
1.5x2%%= +1000000000000000000000O0O0.0D_

0111111111111111101010011

[1.]0111111111111111101010011 x 2%

loftleteltigisafelo1 1A [a[a 1] 1 [1]1]1]o1]o]1]0]0]
31 30 23 22 0

—0S) SWM¥X§:Q0000000000000000000000
ooooooo00001111111711271111111010100 =-44

integg

FIGURE 2.1.4 To convert a negative float to an integer is slightly different thanfor positive numbers.
Here we see the conversion of-43.25. Observe how the rounding applied when the underlined bits
are discarded yields the correct negative integer.
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floating-point ,

192.8125= 11
1x223~2 = + 1000000000000000

|

[1J00000000000001100000011 01 x 2%

|

[gl]Lolfi}-o|iT€fi1TiI (2)3T92T0T0J0T0J0|ojolo[ololololllllolololololollh;l

~ 33TCT14+PE0 0000000000000 0O0O0O000000O0
1100000011 =192.75

FIGURE 2.1.5 Fractional bits can bepreserved during the conversion from float to integer. Here,
192.8125 is converted to a fixed-point number with two bits after the binary point.

ni = 123; /I some integer
n.i += bias.i; // add as integer
n.f -= bias.f; // subtract as floating-point

// n.f is now 123.0 - the original n.i converted to a float

Usually, int-to-float conversions using typecasts are fast, and thuslessin needofa
performance-optimizing trick. >

Sign Test

Because the sign bit of a floating-point number is in bit 31, the same as for integers,
we can use the integer unit to test for positive or negative floating-point humbers.
Given a floating-point number f, the following two code fragments are (almost)
equivaent:

if (f<O.0f) // floating-point compare

INTORFLOAT ftmp;
ftmp.f = f;
if (ftmp.i < 0) // integer compare

Although they are equivaent, the integer compare may run faster due to better
pipelining of the integer instruction stream. Try it and see if it helps your code.
("Almogt" equivalent because negative O will behave differently.)
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L3

Comparisons

Since the floating-point format stores sign, exponent, mantissa in that bit order, we
can use the integer unit to compare floating-point numbers—if the exponent of a is
greater than the exponent of b, then ais greater than b, no matter what the mantissas.
The following code fragments may be equivalent:

if (a<b) /I floating-point compare

INTORFLOAT atmp, btmp;
atmp.f = f; btmp.f = b;
if (atmp.i < btmp.i) // integer compare

Again, the integer comparison will usually pipeline better and run faster. Note
that this breaks down when a and b are both negative, because the exponent and man-
tissa bits are not stored in the two's complement form that the integer comparison
expects. If your code can rely on at least one of the numbers being positive, then this
is afaster way to do comparisons.

Clamping

Clamping a value to a specific range often comes up in games programming, and
often we want to clamp to a [0,1] range. A floating-point value/can be clamped to O
(i.e, set/= 0 if/< 0) by turning the sign bit into a mask, as in the following code

snippet:
| NTORFLQAT ft np;
ftop.f = f;
int s = ftnp.i » 31, Il create sign bit mask
S = -5 [ flip bits in mask
ftnp.i & s; [ ftnp = ftnp & mask
f =ftnp.f;

s is set to the bits of/shifted right by 31—sign extension replicates the sign bit
throughout al 32 bits. NOT-ing this value creates a mask of O bits if/was negative, or
1 bits if/was positive. AND-ing/with this value either leaves/unchanged or sets/to
0. Net result: if/was negative, then it becomes O; if it was positive, it is unchanged.

This code runs entirely in the integer unit, and has no compares or branches. In
test code, the floating-point compare and clamp took about 18 cycles, while the in-
teger clamp took less than five cycles. (Note that these cycle times include loop
overhead.)

Clamping positive numbers to O (set/= 0 if/> 0) is less useful but even eesier,
since we don't need to flip the bits in the mask.

| NTCRFLQAT ft np;
ftop.f = f;
int s =ftnp.i » 31; [/ create sign hit mask
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ftmp.i &= s; /I ftmp = ftmp & mask
f = ftmp.f;

Clampingto 1 (set/= 1 if/> 1) can be done by subtracting 1, clamping to 0, and
then adding 1.

| NTORFLQAT ft np;

ftop.f = f - 1.0f;

int s = ftnp.i » 31 Il create sign bit mask
ftnp.i &- . [l ftop = ftnp & mask
f =ftmp.f +1.0‘;

Note that using conditional load instructions in assembly will generally increase
the speed of clamping operations, as these avoid the need for branching, which kills
the branch prediction logic in the instruction pipeline.

Absolute Value

This one's easy: since floating-point numbers do not use two's complement, taking
the absolute vaue of a floating-point number is as simple as masking the sign bit to 0.

| NTORFLOAT ft np;
ftm.f = f;

ftnp.i & OTFffffif;
f=ftm.f;

Note that this is much faster than using a compare to determine if/is less than 0
before negating it.

Llnear Lookup Tables for Slne and Cosme

Trlgonometry is often usef uI in games—for calculatl ng d| stances and angles, stepping
aong acircle, or animating a water mesh. The standard math library has al the nor-
mal trig functions, but they are dow, and they work on doubles, so they use more
memory than needed. In agame, alow-precision caculation is often sufficient.

To efficiently compute sine and cosine, we can use a lookup table. A common
approach isto use fixed-point math, with angles represented on an integer scde, say, 0
to 1023 to cover the full cirde. However, this means that the game programmer needs
to understand the library implementation of sine and cosine, and represent his or her
angles in the format it requires. By using floating-point tricks for efficient indexing,
we can create floating-point trig functions that use standard radians and do not
reguire the programmer to know about implementation details.

sin
Let's implement:

float fsin( float theta );
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This can easily be done with alookup table. A 256-entry table, covering the range
of angles 0 to 271, isinitialized as.

sintable[i] = (float)sin((double)i * 2 0*3.14159265/ 256.0)

which simply converts i in the range 0-256 to floating-point radians in the range O to
2n and takes the sine of the resulting angle.

Given this table, thejsin function could be implemented as follows:
float fsin( float theta )

i = (unsigned intg(theta ¥ 256.0/
2.0f*3.14159265f)) ;return  table[i];
}

However, this has two problems: first, it uses the dow float-to-int typecast, and
second, if theta is outside the range [0,21), then the function will index out of the
table.

Both of these problems are solved with this implementation:

#define FTOIBIAS 12582912.0f /I 1.5 * 2*23
#define PI 3.14159265f

float fsin( float theta )

int i;

| NTORFLQAT f t np;

ftnp.f = theta * (256.0/(2.0f*P)) + FTQBIAS,
i =ftop.i & 255

return tableli];

}

This implementation uses the floating-point biasing trick described previously
for fast conversion from floating-point to integer. It masks the integer with 255 so
that the table index wraps around, aways staying in the 0-255 range. Note that if/
exceeds 2%, then the float-to-integer conversion trick will fail, so it's till necessary to
periodicaly reducelto the valid [0,271) range.

This implementation of jsin takes about 10 cycles on a Pentium Il (assuming al
code and datais in primary cache), as compared with aimost 140 cycles for the stan-
dard math library implementation of sin (even though sin uses the hardware sine
instruction in the FPU).

A 256-entry floating-point table takes IK, which should easily stay within cache
for the duration of your inner loops. Accuracy is basicaly eight bits, as constrained by

("c>?'\ ™€ |°°Kk"P table size. The worst-case error can easily be determined from analyzing
A——~  the lookup table (as is demonstrated in the code on the CD). Larger lookup tables
"™ increase the accuracy of your resuits, but will hurt cache performance.
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COos

The cosine function could be implemented in exactly the same way, with its own
lookup table, but we can take advantage of the fact that cog(0) = sin(9 + n/2), and use
the same lookup table. To do this, wejust heed to add 256/4 (since adding n/2 means
were adding a quarter of a circdle to the angle) to the lookup table index, which we can
do at the sametime as biasing the exponent. Thisyieds the following implementation:

float fcos( float theta )

{ int i
| NTORFLOAT f t np;
ftnpf =theta * (26 /(2. 0f*P)) + FTABIAS + 64f;
i = ftnp.i & 255
returntablefi] ;
}

Depending on the application, it is often useful to get both sine and cosine at the
sametime. This can be done more efficiently than computing each separately — sim-
ply look up sin, and then add 64 to the index and mask by 255 to look up cos. Ifyou
need to compute severd Snes or cosines at once, you can write custom code to inter-
leave the calculations and make it faster still.

Logarlthmlc Optlmlzatlon of Square Root

............................................................................................ A S s e

Square roots are useful in games for operatl ons such as computing distances, normal-
izing vectors, and solving quadratic equations. Despite the presence of a square root
instruction built into the FPU, the sgrt function in the standard C library ill
takes about 80 cydes on a Pentium I CPU, making it another good candidate for
optimization.

Square root optimization is an interesting use of floating-point bit fiddling,
because the logarithmic, multiscale nature of square root dlows us to decompose the
square root calculation and manipulate the mantissa and exponent separately. Con-
sider the square root of a floating-point number:

f =lmx2¢
srrtf) = sgri{\mx 2)
= sgrt(l.m)x2"

So, to compute the sguare root off, we compute the square root of the mantissa
and divide the exponent by 2. However, the exponent is an integer, o if the exponent
is odd, then dividing by 2 loses the low bit. This is addressed by prepending the low
bit of the exponent to the mantissa, so we have:

srtff) = sar(Lmex, 2>) x 212

where g is the low bit of the exponent.
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This is implemented with a 256-entry table for the square root of the truncated
mantissa and some additional tweaking for the exponent calculation, as follows:

float fsqgrt( float f )

{
| NTORFLQAT ftnp;
unsi gned int n, e

ftmp.f = f;

n = ftmp.i;

e = (n » 1) & Ox3f800000; // divide exponent by 2
n=(n»16) & Oxff; /I table index is eO+m22-m16

ftmp.i = sqrttable[n] + e; // combine results

return ftmp.f;
}

The table index is simply the upper bits of the mantissa and the low bit of the
exponent (e). The lookup table contains the mantissa of the computed square roots.

The exponent of the square root is computed by shifting the exponent of /by 1
to divide by 2. Since the exponent is biased, this divides the bias by 2 aswell as the
exponent, which is not what we want. This is compensated for by adding an addi-
tional factor to the entries otsgrttable to re-bias the exponent.

Thisfcgrt function takes about 16 cycles on a Pentium || CPU—about fivetimes
faster than the C library implementation. Again, this is assuming that everythingisin
cache.

The algorithm is explained in more detail in the code on the CD.

Optlmlzatlon of Arbltrary Functlons

SRR, TS S T — T —

Consuder an arbitrary floating-point functl on of one varlable

y=f0

The techniques just discussed reved two basic methods for table-based optimiza-
tions of general functions. For sine and cosine, the value of x was linearly quantized
over aknown range and used as atable index to look upy. For square root, the value
of x was logarithmically quantized and used as a table index to look up avaue. This
value was scaded by a function of the exponent of x to get the fina value ofy.

The linear approach rescaes a floating-point number and converts it to an integer
to generate alookup table index via linear quantization. Thisis asimple technique very
similar to integer lookup tables, the only wrinkle being die efficient conversion of a
floating-point value into an integer index. The logarithmic approach uses the floating-
point bit pattern directly as atable index, to achieve logarithmic quantization.

Both of these techniques can be generdized to the case of arbitrary functions.
Depending on the function, the linear or logarithmic approach may be more
appropriate.
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Linear Quantization

The fiin function in the previous section can be used as a template for optimiz-
ing general functions via linear quantization. Suppose we know that the function
will only be used over a limited range x e [A, §. We can build a lookup table
that uniformly covers this range, and efficiently caculate the correct index into the
table for values of x within the range. The optimized function f is then imple-
mented s

tidefine FTOIBIAS 1258291 2. Of // 1.5 * 2"23
tfidefine  TABLESIZE 256
tfdefine INDEXSCALE ((float) TABLESIZE / (B-A))

float flut( float x )

int i;
| NTCRFLQAT ft np;
ftnp.f = x * | NDEXSCALE + (FTAOBIAS - A * | NDEXSCALE);
i = ftnp.i & (TABLESIZE - 1);
return ftablefi] ;
}

The lookup table is initialized with:

ftable[i] = f( (float)i / INDEXSCALE + A );

wherelfis the full-precision floating implementation of the function. They<J compu-
tation requires two floating-point operations (multiply and add), one integer bitwise
mask, and atable lookup. It takes about 10 cycles on a Pentium Il CPU.

Note that additional accuracy can be obtained for a few more cycles by linearly
interpolating the two closest table entries. An APl supporting this optimization for
general functions is provided on the CD, including optiona linear interpolation to
increase accuracy.

Logarithmic Quantization

The linear method treats the range [A,B) uniformly. Depending on the function, a
logarithmic treatment may be more appropriate, as in the square root optimization.
The basic idea is that the bits of the floating-point representation are used directly as
alookup table index, rather than being manipulated into an integer range. By extract-
ing selected bits of the sign, exponent, and mantissa, we can massage the 1.8:23 IEEE
floating-point number into our own reduced precision format with as many bits aswe
like for the sign, exponent, and mantissa.

In the square root example, we extracted 8 bits to give alogarithmically quantized
0:1:7 representation. We used 1 hit of the exponent and 7 bits of the mantissa. The
sign bit was discarded, since the sguare root of a negative number is undefined. The
0: 1:7 format represents an 8-bit mantissa (remember the implied 1 in the |EEE rep-
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resentation) and a 1-bit exponent, so it can represent numbers between [1].0000000
x2°and[1].1111111 x 2!, which coverstherange[1,4).

The square root function was decomposed into an operation on the 0:1:7 quan-
tized number (atable lookup) and an independent operation on the exponent (divide
by 2). Additional trickery was employed to optimize the two independent operations
and combine the mantissa and exponent into a 32-bit floating-point result.

Other functions can benefit from this method of logarithmic quantization. The
|EEE format makes it easy to extract the least significant bits of the exponent with the
most significant bits of the mantissa in a single shift and mask operation. To extract
ebits of the exponent and mbits of the mantissa, simply do this:

hits = (n » (23 - mhits)) & ((1 « (ebits + mhits)) - 1)

This shifts the number n to the right so that the desired bits of the mantissa and
exponent are the rightmost bits in the number, and then masks off the desired num-
ber of hits.

The dgn bit can be handled with some extra bit fiddling, depending on the func-
tion with which you are working. If you know that you are only dealing with positive
numbers (for example, square root), or that your function aways returns a positive
result, then you can ignore the sign. If the sign of your result is the same as the sign of
the input number (in other words, f(-x) = -f(X)), you can simply save and restore the
sign hit.

For functions with a limited range of input values, masking out selected bits of
the exponent and mantissa can give you a direct table index. For example, if you only
care about your function over the range [1,16), then you can use 2 bits of exponent
and 4 bits of mantissa (for example). This 0:2:4 representation stores binary numbers
between 1.0000x2°and 1.1111 x 25, ordecimal 1.0to 15.5. Mask out these bits and
use the bits directly as an index into a precomputed 64-entry table. This requires very
few cydes and is computationally fast. However, as you add more precision, the table
grows and may become prohibitively large, at which point cache performance will
suffer.

An dternative is to decompose the exponent and mantissa calculations, as was
done in the sguare root example. If your function f(x) can be decomposed as

fx) = f(1.m % 2°) = F1(1.mm) x 2820

then you can, for example, approximate fl with a256-entry lookup table, using 8 bits
of the mantissa m, and perform the calculation of f2 directly, as an integer operation
on the exponent e. This is essentially the technique used by the square root trick.

Logarithmic quantization is a powerful tool, but often requires function-specific
bit fiddling to optimize a particular function. Fully general techniques are not dways
possible, but the methods described in this section should be helpful when tackling
your specific optimization problem.
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When optl mizing code make sure you measure performance carefully before and
after making the optimization. Sometimes an optimization that looks good on paper
causes trouble when implemented, due to cache behavior, branch mispredictions, or
poor handling by the compiler. Whenever you make changes, be sure that you are
improving your performance—never assume.

Make sure compiler optimizations are enabled. Use inline functions where appro-
priate. Again, test your results when using inline functions or tweaking the compiler
settings.

When benchmarking code, take care that compiler optimization isn't getting in
the way of your tests. Disassemble your code and step through it to be sure it's run-
ning what you expected. When timing things, it's often helpful to run somethingin a
loop—but if the body of your loop gets optimized out, then your timing won't be
very accurate!

On Pentium computers, you can use the rdtsc (read time stamp counter) instruc-
tion to get the current CPU cyde count. Intel warns that this instruction should be
executed a couple times before you start using the results. Intel dso recommends
using an instruction such as cpuid that will flush the instruction cache, so that you get
more consistent timing results. To get absolute times, the cycle counts can be con-
verted to seconds by dividing by the execution speed (MHZz) of the processor.

Cyde counters are the most reliable way to measure fine-grain performance.
Other tools such as VTune and TrueTime (on the PC) are useful for higher level pro-
filing. For any benchmarking, make sure that memory behavior is redistic, as mem-
ory bottlenecks are one of the most serious impediments to high performance on
modern processors. Be aware of how your benchmark is using the cache, and try to
simulate the cache behavior of your game. For a benchmark, the cache can be
"warmed up" by running the agorithm a couple of times before taking the timing
measurements. However, a warm cache may not emulate the behavior of your
game—best is to benchmark directly in the game itself. Disable interrupts for more
reliable results, or take measurements multiple times and ignore the spikes.

All the cycle times reported in this gem are from an Intel Pentium 1l 450-MHz
machine. Each operation was repeated 1000 times in aloop, with the instruction and
data cache warmed by running the test multiple times. Cycle counts include loop
overhead. See the code on the CD for actual benchmarks used.

The lookup table techniques described in this article are appropriate if the lookup
table remains in cache. This is probably true within the inner loop of your rendering
pipeline or physics engine, but it's probably not true if you are calling these functions
randomly throughout the code. If the lookup tables cannot be kept in cache, then
techniques that use more computation and fewer memory accesses are probably more
appropriate—methods such as polynomia approximation (see [EdwardsOO] for a
good overview).
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Conclusmns

This gem scratched the surface of roatl ng-poi nt optl mlzatl on. Lookup tables are the
primary method explored, and they often produce significant speedups. However, be
aware of cache behavior, and aways benchmark your results. Sometimes you can
achieve the same result faster by using more computation but touching memory
less—techniques such as polynomia approximation may be appropriate. The tricks
shown here can be extended in avariety of ways, and many other tricks are possible.
As apopular book title suggests, there is aZen to the art of code optimization, and a
short overview like this can't hope to cover all possibilities.
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Vector and Plane Tricks

John Olsen, Microsoft
infix@xmission.com

Your collison detection routine is running flawlessly now, returning a surface
point and a normal back when you feed it a position and velocity vector. Now
what? Actualy, there are quite afew things you can do based on the datayou have.

In general, you may want to have your callision routine generate the actual colli-
sion point, but the methods in this gem show how to handle collision results that
show only the plane of intersection. Since aplane can be fully specified with asurface
normal and any point on the plane, you can work your way through the math to find
everything you need from there.

Data that goes into your collison code would be an initial point P, and a final
point Pf, and the output in the case of a collison would be a plane that is defined by
aunit vector surface normal TV and apoint on the surface Ps. The point need not be
the actual intersection point as long asiit is on the plane.

For optimization purposes, you will probably want to build a subset of these ca-
culations back into your collision code. Much of the information you need will have
aready been calculated during the collision tests. It will be much faster to reuse the
aready known information rather than recaculate it from scratch.

The plane equation Ax + By + Cz + D = 0 maps onto the supplied data, wherex,
y, and z are the components of the normal vector N, and D is the dot product N* Ps,

AItltude Relatlve to the CoII|S|on Plane
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One of the most commonly used p| eces of data when checkl ng collisions is the alti-
tude of one of your data points. If the altitude is positive, the point is above the sur-
face and has not collided yet. If it is negative, you have collided and penetrated the
surface.

Typicd collision testing code will only return ahit if one of your test pointsis on
each side of the test surface. This means that if you want to predict collisons, you
need to pass along a position with an exaggerated velocity vector. That way, the exag-
gerated vector will intersect much earlier than your actual movement would alow.

Once you have tricked your collision code into returning a surface point and nor-
mal, you can get your altitude relative to that surface by using your initial position.
The fina position is not used for this atitude caculation.
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FIGURE 2.2.1 Determiningthealtitude.

As shown in Figure 2.2.1, we want to find the length of the vector (Ps- Py) when
it is projected onto the surface normal N. This gives us the distance of the shortest
line from the point to the surface. This shortest vector is by definition perpendicular
to the surface. This is exactly what the dot product gives us, so we are left with the
scalar (nonvector) distance to the surface Dy as shown:

D‘=(‘1‘}-H)-N

Nearest Point on the Surface

Once we have the distance to the surface, it takes just one more step to get the point
on the surface Py that is closest to the initial point Pras dso shownin Figure2.2.1. We
dready know the point is distance Ds from die starting point, and that distance is
aong the surface normal TV. That means die point can be found with the following:

Py = P,-DsN
The normal vector is facing the opposite direction of the distance we want to

measure, so it needs to be subtracted from the starting point.

Plnnlng D(__)yy__n__ the CoII|S|on Pomt
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When you have one point on each side of a test surface, your vector must at some
point intersect with it. Finding this intersection point P, will tell you where your vec-
tor pierces die surface. If your collision detection code has not aready provided you
with the exact point, here is how you would find it.

Y ou know that the collision point must lie somewhere along the line. Knowing in
advance that there is a collision makes it possible to take some shortcuts since we
know there actually is a solution to the equation. If the test ray is parald to the sur-
face, the ratio cannot be calculated since it results in a divide by zero. We can take
advantage of the caculation for Ds in finding die collison point P.. Figure 2.2.2
shows the information needed for this calculation.

T ——
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FIGURE 2.2.2 Finding the collision pointP..

Since we know the collision is between the two points, we can find it by calculat-
ing how far it is dong the line from P/ to Pf. This ratio can be written as:

R= (P -P)*N)I((%-Py)eN)
Or, using our aready computed Dy, it becomes:

R= D, (P. -P)+N)

The two line segments are arranged to both point in the same direction relative to
the surface normal, which guarantees that our ratio will be non-negative. Once we
have this ratio, we can use it to multiply the length of the vector from P, to Pyto tell
how far from P, the collision occurs. In the specia case of R= 1, you can avoid the ca-
culation since it results in the point Pf For R = 0, the point is P-. Otherwise, the fol-
lowing equation is used:

P=P; + R(P; - P

Dl_ste_mce to the CoII_|S|on Pomt

e e S RIS IE dSE e

Although similar to D, this dlffers from the dlstance from the collison plane because
the distanceis calculated along the path of travel rather than along the surface normal.
In the case of travelling near the surface but nearly parald to it, your distance to col-
lison will be very large when compared to your altitude.

This is the type of caculation you would want to use when cdculating altitude
for an aircraft, since you cannot guarantee the direction of a surface normal on the
ground below. Rather than sending your actual velocity for acollision test, you would
send your current position and avery large down vector, long enough to guarantee
that it will intersect the ground. This works in the case of intersecting asmall polygon
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FIGURE 2.2.3 Calculating distance to the collision point.

that happens to be aigned nearly perpendicular to the test vector. In that case, the
altitude relative to the collison plane P, as calculated earlier would give a very small
number.

Once you have the actual collison point, it's very easy to caculate the distance
using Euclid's equation to find how far it is from the starting point to the collision
point. Figure 2.2.3 shows the elements required. The distance to the collision point,
D., is the magnitude of the vector from our starting point /J to the collision point P,
that was calculated earlier:

D, =

Another way to describe the magnitude of this vector is that it is the square root
of the sum of the squares of the differences of each component of the vector. Most
vector libraries include a function cdl to find the magnitude or length of a vector.
Vector magnitudes are never negative.

Another possible shortcut can be used when you know the ratio R used to find
the collision point as described in the previous section. The distance to the collision
point is the length of the full line (which you may dready have lying around) multi-
plied by the aready computed ratio.

D. = RP-P|

Reflectlng Off the CoII|S|on Plane

e — T —

The usual result ofacolllson isto bounce The interesting part is figuring out the
direction and position once you have rebounded off a surface. Figure 2.2.4 shows
the elements used in calculating the reflected vector. The first two cases will perfectly
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FIGURE 2.2.4 Calculating the reflected vector.

preserve the magnitude of the velocity. In both cases, the result of the bounce will be
the same distance from the plane as Pf.

One of the smplest ways to visudize reflecting a point relative to a plane is to
imagine a vector from the below-ground destination point back up to the surface
along the surface norma. The new reflected location is found by continuing that line
an equal distance to the other side of the plane. You obtain the new location
by adding to the final point twice the distance from the final point to the surface.
Reusing our equation to find the distance perpendicular to the plane, we come up
with the following. The distance is multiplied by the surface normal to turn it back
into avector since you cannot add a simple scalar value such as Ds to avector.

P, =P +2N((B, - P)- N)

The origina and reflected vectors will have the same angle relative to the plane.
Another way of looking at thisis that if you normalize the vectors from your collision
point going out to both your original start point and your reflected point, then find a
dot product of each with your surface normal; they will be equal.

Vectors are normalized by dividing the vector by its length or magnitude, so the
statement about reflected vectors in the previous paragraph can be written as

_Q:pL_ "N ——_Fpo-—pi-.\.
[

P-P; '

Any point on the plane could be substituted for P, (Psworks, for instance) in the
preceding equation and the same result would hold since dl we are saying here is that
the ends of the unit vectors are the same distance from the plane.

A complication with reflections is that the newly determined end point needs to
be tested dl over again with your collison code to see if you have been pushed
through some other surface. If you repeat the collison test, but with a vector from
your collison point P, to the newly reflected point P,, you will get a possble new col-
lison. You will need to repeat this process until no collision occurs. At each pass, your
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vector will be smaller as it is chewed up by bouncing, as long as you do not try to
bounce between two coincident planes.

There is one degenerate case you should aso watch out for when chaining calli-
sions together. Should you hit exactly at the intersection of two planes, your second
test will be made with an initial point on the edge of the surface. This is easy to han-
dle if you know about this problem and alow for it in advance by assuming anything
exactly at the surface (or on the edge) has not yet collided, and is counted as above the
surface for collision purposes. Collisons are reserved for penetration distances greater
than zero.

Once you have completed your final reflection, a new velocity vector can be com-
puted by normalizing the direction from the last collision to the final reflected loca
tion and multiplying it by the origina velocity like this:

(P - PoP; - R|

Ve lP-P. |

Kickback Collision

Sometimes, rather than reflect off the collison plane, you want to kick the player
back the way he or she came as shown in Figure 2.2.5. The calculations for this are
simple once you have the callision point. Since this collision dso preserves velocity, it
isdso perfectly eadtic.

The point to which you are kicked back, /*, is obtained by calculating the vector
from your final point Pf back to your collison point P, and adding it to the collision
point.

Pé = Pf + (P{—Pf)

We can combine terms to get:

Pk =%c - Pf

FIGURE 2.2.5 Calculating a kickback vector.
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You can run into the same problems with kickback collisons as with reflections
where the destination point leads to an additional collison. However, thereis an early
way out of the loop for kickback collisions in some cases. If the collision point is more
than halfway from the initial point to thefinal point, the resulting kickback point will
occur in an areathat has aready been checked for collisions, so no additional check is
necessay.

Co__l__l___|_3|ons with Damplng

T O AT R T T ———

Should you want to perform a colllson W|th some sort of friction or damping, you
will need to be careful of how you handle the vectors. You will need a scaar value
Sthat will be used as a multiplier to change your velocity at each impact. It will
typicaly range from zero (the object stops on impact) to one (a completely elastic
collison preserving velocity). Energy can be injected into the system by increasing
the scdar above one. A kickback collision is the same as using a scaar of negative
one.

To properly handle nonelastic collisions, you must scae only the portion of the
vector from the collision point Pe to the reflected point P, as shown in Figure 2.2.6,
since that is the only portion of the flight that will have been dowed due to the
impact. The following equation relies heavily on the earlier equations to determine
what your new dowed point would be.

P.=P+(L ~P)S

In coordination with this, you would need to multiply any separately stored
velocity vector by the same scdar value, or your object will resume its full speed the
next frame. In the case of a collison putting your point into another immediate colli-
sion as discussed earlier, this scae factor should be applied at each pass to simulate the
damping effect of multiple bounces in a single frame.

< op
\ / "erpw
T
| \( %

Py

FIGURE 2.2.6 Calculating a damped reflection vector.
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Interpolation Across a Line or Plane

An interesting side note about lines and planes is that a weighted average interpola-
tion between any set of points occupies the space defined by those points. For
ingance, starting with a line, you can assign weights to the end points where the
weights sum to one, and dl possible resulting points are on the line defined by
the points. Adding another point to build a plane extends the rule so the sum of the
three weights must equal one in order for the weighted sum to remain on the plane
defined by the three points. Additional points on the plane may be added, and addi-
tional dimensions may adso be added should you have need for a point on an
n-dimensional plane.

Thistrick is related in aroundabout way to the reason we can often use Ps and P,
interchangeably in severa of the previous equations. Either point is sufficient to fill
the needs of the plane equation.

It's dso interesting to note that the individual weights don't need to be between
zero and one. They just need to dl sum up to the vadue one, which alows the result-
ing point to be outside the line segment or polygon defined by the points while till
being on the extended line or plane.

Sphere-to-Plane Collision

Coalliding abdl with asurface is alittle bit more complex than colliding a point against
the surface. One way to approach it is through ratios. If you draw a line from
the start point P+ to the line-based collision point P, of the vector against the plane, die
ball center P,, will be somewhere on that line when the ball begins to intersect the
plane.

When the ball just touches the surface, we can compare the line from Ps to P, to
the line Ps to P, to gain the information we need. If you project the first line onto the
second, the ball center is off the surface by exactly the ball radius r on the line Pj to P,
Since the length of that line is known to be D, we can get a ratio of how far the ball
is dong the line. This is Smilar to the way we used aratio to find the surface collison
point Pc. This ratio is the same when applied to the line from P; to P, which leads to

the equation:
LB _ v
(Pe - Pi) DS

The equation can be solved for the location of the ball /, resulting in:



FIGURE 2.2.7 Colliding with a sphere.

Figure 2.2.7 shows the relation graphicaly, indicating where the sphereisinrda
tion to the vectors. Care must be taken to notice that the ball does not actually reach
P. as the bal touches the surface unless the line from P; to P, is perpendicular to the
surface. As the vector conies closer to being parallel to the plane, the ball will be far-
ther from P, when it touches the plane.
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he problem of determining the intersection of two line segments comes up from

time to time in game development. For example, the line/line intersection prob-
lem can be beneficial in simple collison detection. Consider two objects in three-
dimensional space that are moving in time. During a time step or animation frame,
each aobject will move from one point to another aong a linear path. The simplest
check to see if the objects callide during the time step would be to see how close the
two linear paths come to crossing, and if they are within a certain distance of each
other (in other words, less than the sum of the radii of bounding spheres of the
objects), then process a callison. Other common applications for line segment inter-
sections include navigation and motion planning (for example, when combined with
an Al system), map overlay creation, and terrain/visibility estimation.

This gem describes arobust, closed form solution for computing the intersection
between two infinite lines or finite-length line segments in three-dimensional space, if
an intersection exigs. When no intersection exists, the algorithm produces the point
along each line segment that is closest to the other line, and avector between the two
nearest points.

What Makes ThIS Algorlthm Robust’7

The algorlthm presented here is robust for acouple of reasons. Firdt, it does not carry
any spedid requirements (for example, the line segments must be coplanar). Second,
it has relatively few instances of tolerance checks. The basic agorithm has only two
tolerance checks, and these are required mathematically rather than by heuristics.

The Problem Statement

T ——

Giventwo Ilne segments in threedl mensonal space onethat spans between the points
4 = [Ax Aiy A" and A = [AN Ay Ax)\"and one that spans between the
pointsB, = [5x Bi, B)\'andB,= [B* By By]', wewould like to find the true
point of intersection, P=[Px P, P7]", between the two segments, if it exigts. "When
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A

FIGURE 2.3.1 Two line segments in three-dimensional space. A) An intersection exists. B)
No intersecton.

no intersection exists, we would like to compromise and find the point on each s
ment that is nearest to the other segment. Figure 2.3.1 illustrates the geometry of this
situation.

The nearest points, labeled Cand D respectively, can be used to find the shortest
distance between the two segments. This gem focuses on finding the nearest points,
which are identical to the true intersection point when an intersection exigs.

Observations

Before delving into how to solve the line intersection problem, it can be useful to
make afew observations. What are the challenges to solving the problem correctly?

Consider an arbitrary, infinite line in space. It is likely that the line will intersect
an arbitrary plane (if the line is not parale to the plane, then it intersects the plane);
however, it is unlikely that the line will truly intersect another line (even if two three-
dimensiona lines are not paralld, they do not necessarily intersect). From this obser-
vation, we can see that no algorithm designed to find only true intersections will be
robust, capable of finding aresult for an arbitrary pair of lines or line segments, since
such an algorithm will fail most of the time. The need for arobust algorithm justifies
the use of an algorithm that finds the nearest points between two lines, within ared-
time 3D application such as agame.

Since every student who has taken a basic planar geometry class has solved for the
intersection of linesin atwo-dimensional space, itis useful to consider the relationship
between the three-dimensiona line intersection problem and the two-dimensiona
intersection problem. In two-dimensiona space, any two nonparalel lines truly inter-
sect a one point. To visualize what happens in three-dimensional space, consider a
plane that contains both defining points of line A, and die first defining point of line -
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B. LineA lieswithin the plane, as does the first defining point of line B. Note that die
point of intersection of die two lines lies on die plane, since diat point is contained on
line A. The point of intersection dso lies on line B, and so two points of line B lie
widiin die plane. Since two points of line B lie in the plane, the entire line lies in the
plane.

The important conclusion here is diat whenever there is a true intersection of
two lines, those two lines do lie widiin a common plane. Thus, any time two three-
dimensional lines have a true intersection, the problem is equivalent to a two-
dimensond intersection problem in die plane diat contains al four of the defining
points.

NaTve Solutions

A naive, and problematic, solution to die intersection problem is to project the two
segments into one of the standard coordinates planes (XY, YZ, or XZ), and then solve
the problem in the plane. In terms of implementation, the primary difficulty widi diis
approach is selecting an appropriate plane to project into. If neither of the line seg-
ments is parale to any of the coordinate planes, dien the problem can be solved in
any coordinate plane. However, an unacceptable amount of logic can be required
when one or both segments are paradlel to coordinate planes. A variation on diis
approach, less naive but ill problematic, is to form a plane equation from three of
the four points, Ay, Ay, Bz and By, project al four points into the plane, and solve the
praoblem in the plane. In the rare case that there is a true intersection, this latter
approach produces the correct resullt.

One key feature that is completely lacking from the basic two-dimensional pro-
jected intersection problem is the ability to give a direct indication as to whether a
three-dimensional intersection exists. It aso doesn't provide the three-dimensional
nearest points. It is necessary to work backwards to produce diis vital information.

The biggest problem with either variation on the projected solution arises when
the two lines pass close to one anodier, but do not actudly intersect. In this case, the
solution obtained in any arbitrary projection plane will not necessarily be the correct
pair of nearest points. The projection will often yield completely wrong results! To
visudlize this situation (which is difficult to illustrate on a printed page), consider the
following mind experiment. There are two line segments floating in space. Segment A
is defined by die points (0, 0, 0) and (1, 0, 0), and segment B is defined by (1, 0, 1)
and (1, 1, 1). When the lines are viewed from above, equivalent to projecting thelines
into the XY planeg, the two-dimensional intersection point is (1, 0, 0), and the three-
dimensional nearest points are (1, 0, 0) and (1, O, 1). These are the correct nearest
points for the problem. However, if those two lines are viewed from different arbitrary
angles, the two-dimensional intersection point will move to appear anywhere on the
two line segments. Projecting the two-dimensional solution back onto the diree-
dimensional lines yields an infinite number of "nearex" point pairs, which is clearly
incorrect. The test code provided on the companion CD-ROM is a useful tool to see



this problem, asit dlows you to rotate the view to see two line segments from differ-
ent viewing angles, and displays the three-dimensional nearest points that you can
compare to the intersection point seen in the viewport.

In the next section, | derive a closed-form solution to the cadculation of points C
and D that does not make any assumptions about where the two line segments lie in

space. The solution does handle two specid cases, but these cases are unavoidable
even in the aternative approaches.

ROt et R el eIl =
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Calculating the Nearest Points on Two Infinite Lines

The equation of a line in three-dimensiona gpace can be conddered a vector function
of asingle scalar value, a parameter. To derive a closed-form solution to the nearest-
point between two 3D lines, we first write the equation for an arbitrary point,
CENiEY C, CJ, located on the first line segment, as Equation 2.3.1.

C = A+sLa, whee La = (A -4) (231)

Notice that Equation 2.3.1 basically says that the coordinates of any point on the
first segment are equa to the coordinates of the first defining point plus an arbitrary
scaar parameter s times a vector pointing along the line from the first defining point
to the second defining point. If sis equal to zero, the coordinate is coincident with the
firgt defining point, and if sis equa to 1, the coordinate is coincident with the second
defining point. We can write a similar equation for an arbitrary point, D = [Dy Dy
DJ', located on the second line segment, as Equation 2.3.2:

D=5 +tpwhere [y = % -8B (232)

Here, tisasecond arbitrary scalar parameter, with the same physical meaning ass
with respect to the second line segment. If the parameters s and t are alowed to be
arbitrary, then we will be able to caculate points C and D as they apply to infinite
lines rather than finite segments. For any point on a. finite line segment, the parame-
terssand twill satisfy 0 <st< 1. Well alow sand tto float arbitrarily for now, and
treat the finite length segments later.

The two 3D line segments intersect if we can find values of s and t such that
points Cand D are coincident. For ageneral problem, there will rarely be an intersec-
tion, however, and we require a method for determining s and t that corresponds to
the nearest points C and D. The remainder of the derivation shows how to solve for
these vdues of; and t.

Firgt, subtract Equation 2.3.2 from Equation 2.3.1 to obtain the following equa-
tion for the vector between points C and D:
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C-D=-AB+ 9lLp-tLg = [O 0 O
where AB = B, - A (233

Here, since we would like for points Cand D to be coincident, we set the vector
between the points to be the zero vector. The right side of Equation 2.3.3 can then be
represented by the following matrk equation: '

Lz‘lx _.LS* s ABx
LA, -Lu AB;

There are three rows in Equation 2.3.4, one for each coordinate direction, but
only two unknowns, the scaar values s and t. This is a classc over-determined or
under-constrained system. The only way there can be an exact solution is if the coef-
ficient matrix on the left side turns out to have rank 2, in which case the three equa
tions are equivalent to just two independent equations, leading to an exact solution
for sand t. Geometricdly, when there is an exact solution, the two lines have a true
intersection and are coplanar. Thus, two arbitrary lines in three-dimensional space
can only have a true intersection when the lines are coplanar.

The difference between the left Sde and right side of Equation 2.34 is equd to
the vector representing the distance between C and D. It is dso the error vector of
Equation 2.3.4 for any arbitrary values of s and t. We determine the nearest points by
minimizing the length of this vector over al possible values of sand t.

The vaues of s and t that minimize the distance between C and D correspond to
alinear least-squares solution to Equation 2.3.4. Geometricaly, the least-squares solu-
tion produces the points C and D. When we have the case of the segments being
coplanar but not paralel, then the algorithm will naturally produce the true intersec-
tion point. Equation 2.34 can be written in the form:

M? = b, where 7 = I:s t;\r (235

One method for finding the least-squares solution to an over-determined system
is to solve the normal equations instead of the original system [Golub96]. The normal
equations approach is suitable for this problem, but can be problematic for general
problems involving systems of linear equations. We generate the normal equations by
premultiplying the left Sde and right Sde by the transpose of the coefficient matrk
M. The normal equations for our problem are shown as Equation 2.3.6.

M™™M? = MT£ , where M'isthe transpose of M. (2.36)
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Equation 2.3.6 has the desired property of reducing the system to the solution of
a system of two equations, exactly the number needed to solve algebraicaly for values
of / and t. Let's carry through the development of the normal equations for Equation
2.3.4. Expanding according to Equation 2.3.6 , the normal equations are:

B _ _ LAJI.’ _LBX ABX
LAX L LA 5 I I I
. A P N I Pa:Y (237)
e e e e 4 "'Lgx _‘LB} —Lpz
! Ly, ~Lp, AB;

Carrying through the matrix algebra:

L’% L Lﬁﬂz L, 45 239

Or, simplifying by defining a series of new scdar variables:

S

This is a smple 2x2 system, and to complete this section we will solve it dge
braically to form a closed-form solution for s and t. There are a number of ways to
solve Equation 2.3.9, including Cramer's rule [O'Neil87] and Gaussian elimination
[Golub96]. Cramer'sruleis theoretically interesting, but expensive, requiring approx-
imately («+!)! multiply and divide operations for a general-sized problem. Gaussian
elimination is less expensive, requiring «%3 multiply and divide operations. There are
other approaches to solving systems of linear equations that are significantly more
reliable and often faster for much larger systems, including advanced direct solution
methods such as QR factorizations for moderate-sized systems, and iterative methods
for very large and sparse systems. | will derive the solution using Gaussian elimina-
tion, which is dightly less expensive than Cramer's rule for the 2x2 system. Here, we
perform one row elimination step to yield an upper triangular system. The row €im-
ination step is as follows. Maodify row 2 of Equation 2.3.9 by taking the original row
2 and subtracting row 1 times L,/L,. to yield Equation 2.3.10.

A, Ly, a 2310)
I = 3.1
L, = A J'?/Ia Aa Aa T'% Fn-7y A'af
[ Al Ai

Simplify Equation 2.3.10 and multiply the new row 2 by L, to yield the upper
triangular system shown in Equation 2.3.11.
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Equation (2.3.11) immediately yields a solution for t,

t = AI"B ~ LUTA (2312
¥ 100 ~~ AL
and then, for 5,
s= Mt (23.13)
Al

It is important to note that Equations 2.3.12 and 2.3.13 fail in certain degenerate
cases, and it is these degenerate cases that require that we use tolerances in a limited
way. Equation 2.3.13 will fail if line segment A has zero length, and Equation 2.3.12
will fail if either line segment has zero length or if the line segments are paralldl. These
situations lead to a divide-by-zero exception. | provide more discussion later in the
section titled Special Cases.

In terms of computational expense for the 2x2 problem, the only difference
between solving for s and t using Gaussian elimination and Cramer's rule, for this
casg, is that the computation of s requires one multiply, one divide, and one subtrac-
tion for Gaussian elimination, but four multiplies, one divide, and two subtractions
for Cramer's rule.

To summarize from the derivation, given line segment A from point A to A, and
line segment B from point B, to By, define the following intermediate variables:

Ly = (A -4); ;= (B, -B)- ~AB= BI-A 2314)
and
oHI ~ A:A C EA, Ly = L_B o L—B’ ZN= —L-A N EB
& o (2.3.15)
v, =L, AB; ry =Ly - AB

Compute the parameters  and t that define the nearest points as,

t = LB _A7A (2.3.16)
AIAI ~ Al
and
oo T Lyt (2317)

Ly,
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The point where the first segment comes closest to the second segment is then
given by:

C = AL+ sla (23.18)

and the point where the second segment comes closest to the first segment is
given by:

£ = #+ tlg (23.19)

We can consider a point located halfway between the two nearest points to be the
single point in space that is "nearest”" to both lines/segments as:

P = (C+ D)2 (2.3.20)
Of course, when the lines do intersect, point P will be the intersection point.

Special Cases

When we talk about the nearest points of two infinite lines in space, there are only
two possible specia cases The first case occurs when one or both lines are degenerate,
defined by two points that are coincident in space. This occurs when point A™ is coin-
cident WIthAg, or when B\ is coincident with Bz WEell cal thisthe degeneratelinespe-
cial case. Thesecond caseoccurswhenthetwolinesareparalld, called $\< zparallel tine
special case.

It is easy to relate the degenerate line specia case to the equations developed pre-
vioudly. Note that variable L,,, defined in Equation 2.3.15, is equa to the square of
the length of line segment A, and Ly, is equa to the square of the length of segment
B. If either of these terms is zero, indicating that aline is degenerate, then the deter-
minant of the matrix in Equation 2.3.9 is zero, and we cannot find a solution for s
and t. Note that when either L,, or Ly is zero, then Ly, is dso zero.

One standard test to check and decide if line A is degenerate is the following,

bool line_is_degenerate = L, < e? ? true : false;

Here, eisasmall number such as perhaps 10"°. It iswiser to choose avalue for £
such as 10" rather than a much smaller number such as machine epsilon.

When segments A and B are both degenerate, then point C can be sdected to be
equal to point A and point D can be selected to be equa to point B”. When segment
A aoneis degenerate, then point Cis equa to A> and point Dis found by computing
the point on segment B that is nearest to point C. Thisinvolves computing avaue for
parameter tonly, from Equation 2.3.21.

Lgt = AB (2321)
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Equation 2.3.21 is a simplification of Equation 2.3.4 for the case where segment
A is degenerate, and again it requires that we find a least-squares solution. The least-
sguares solution, shown here using normal equations without derivation, is.

y="Ls 4B _ 15 @3-22)

Point D can be calculated using Equation 2.3.2.

When segment B alone is degenerate, then point D is set equal to B\, and point C
is found by computing the point on segment A that is nearest to point D. This
involves computing avalue for parameter sonly, from Equation 2.3.23, which is anal-
ogous to Equation 2.3.21.

et

LA* = "8 (2-3.23)

Solving for syields:

s= - (2.3.24)
Ri

Note that Equation 2.3.24 is identica to Equation 2.3.13 with fset equal to zero.
Since t equals zero at point B, our derivation here is consistent with the derivation for
nondegenerate lines.

Certainly, a nice way to handle the cases where only one segment is degenerate is
to write asingle subroutine that is used both when segment A alone is degenerate and
when B done is degenerate. It is possible to do this using either Equation 2.3.22 or
Equation 2.3.24, as long as the variables are treated properly. The implementation
provided on the companion CD-ROM uses Equation 2.3.24 for both cases, with
parameters passed in such that the degenerate line is dways treated as segment B, and
the nondegenerate line is dways treated as segment A.

Itis dso easy to relate die parallel line specia case to the equations developed pre-
vioudly, athough it is not quite as obvious as the degenerate case. Here, we have
to remember that L, is the negative dot product of the vectors L, and Lg, and
when the lines are parallel, the dot product is equal to the negative of the length of La
times the length of Lg. The determinant of the matrix in Equation 2.3-9 is given by
LnL22 L., and thisis equal to zero when L, is equa in magnitude to the length of
La times the length of Lg. Thus, when the line segments are parallel, Equation 2.3.9
is singular and we cannot solve for sand t.

In the case of infinite paralld lines, every point on line A is equidistant from line
B. Ifit is important to find the distance between linesA and B, simply choose Cto be
equal to A, and then use Equations 2.3.22 and 2.3.2 to find D. Then, the distance
between C and D is the distance between the two segments. Well look at how to han-
dle finite length segments in the next section.
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Coding Efficiency

For coding efficiency, you should check first for degenerate lines, and then for parallel
lines. This gpproach diminates the need to caculate some of the convenience

variables from Equations 2.3.14 and 2.3.15 when one or both of the lines are degen-
erate.

with Flnlte Llne Segments

et e e T g

The previous two sections treated i nfi nlte Imei Thisis useful however, there are per-
haps many more situations in game devel opment when it is required to process finite
line segments. So, how do we adjust the results shown previously to ded with finite-
length line segments?

Line Segments that Are Not Parallel

If Equations 2.3.12 and 2.3.13 generate values of s and t that are both within the
range [0,1], then we don't need to do anything at dl, since the finite length line seg-
ment results happen to be identical to the infinite line results. Whenever one or both
of sand rare outside of [0,1], then we have to adjust the results. For nonparallel lines,
there are two possibilities: 1) sor tis outside of [0,1] and the other is inside [0,1]; and
2) both sand rare outside of [0,1]. Figure 2.3.2 illustrates these two cases.

For the case when just one of sor tis outside of [0,1], as in Figure 2.3.2a, dl we
need to do is: '

1. Clamp the out-of-range parameter to [0,1].

2. Compute the point on the line for the new parameter. This is the nearest
point for the first segment.

3. Find the point on the other line that is nearest to the new point on the first
line, with the nearest point calculation performed for afinite line segment.
Thisisthe nearest point for the second segment.

In the last step, just clamp the value from Equation 2.3.22 to [0,1] before calcu-
lating the point on the other segment.

For the case when both s and t are outside of [0,1], as in Figure 2.3.2b, the situa-
tion is dightly more complicated. The process is exactly the same except that we have
to make a decision about which segment to use in the previous process. For example,
if we selected line segment” in Figure 2.3.2b, step 2 would produce point Ao. Then,
step 3 would produce point 5 the nearest point on segment B to point Az The pair
of points, A, and Bl clear j jv are not the correct points to choose for ‘Cand D. Point B,
is the correct choice for D, but there is a point on segment A that is much closer to
segment B than A,. In fact, the point generated by step 3 will always be the correct
choice for either Cor D. It is the point from step 2 that is incorrect. We can compute
the other nearest point by just using the result from step 3. The process for both s and
t outside of [0,1] then becomes:
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FIGURE 2.3.2 Finite-length line segments. A) Either sortis outside of[0,1]. B) Both s
and t are outside of[0,1].

1. Choose a segment and clamp its out-of-range parameter to [0,1].

2. Compute the point on the line for the new parameter. This is not guaran-
teed to be the nearest point for the first segment!

3. Find the point on the other line that is nearest to the new point on the first
line, with the nearest point calculation performed for afinite line segment.
This is the nearest point for the second line segment.

4. Find the point on the first line segment that is nearest to the point that
resulted from step 3. This is the nearest point for the first line segment.

Ifwe sdlect segment B in Figure 2.3.2b as our initial segment to correct, we would
immediately sdect point 5, and step 3 would give the point between A and A;. In
this case, step 4 is not required. The implementation provided here does not bother to
check for this situation.

Line Segments that Are Parallel

There are two basic possible scenarios when the two segments are paralel, both of
which areillustrated in Figure 2.3.3. First, there might be asingle unique pair of near-
es points, shown in Figure 2.3.3a. This dways occurs when the projection of both
segments into aline parallel to both do not overlap. Second, there might be alocus of

o possible nearest point pairs, shown in Figure 2.3.3b. Here, we could choose the two
*_N5  nearest points to be any pair of nearest points between the two vertical gray lines. The
ONmeco implementation provided on the accompanying CD-ROM selects the nearest points
for finite length, overlapping parald line segments to be halfway between the gray

lines; that is, at the midpoint of the overlapping portion of each segment.

It is important to note that when the two segments are pardlel, or amost paralld,
the nearest points computed by this algorithm will often move erratically as the lines



Sectlon 2 Mathematlcs

1l

A B

FIGURE 2.3.3 Parallel line segments. A) Unique nearest point pair. B) Locus of nearest
pointpairs.

are rotated dightly. The algorithm will not fail in this case, but the results can be con-
fusing and problematic, as the nearest points jump back and forth between the ends
of the segments. Thisis illustrated in Figure 2.3.4.

Shown in Figure 2.34a, the nearest points will stay at the far left until the lines
become exactly pardldl, at which point the nearest points will jump to the middle of
the overlap section. Then, as the lines continue to rotate past parale, the nearest
points will jump to the far right, shown in Figure 2.3.4b. This behavior may be prob-
lematic in some game applications. It is possible to treat the behavior by using a dif-
ferent approach to sdecting the nearest point when lines are pardld or near pardld.
For example, you could implement a rule that arbitrarily selects the point nearest A
as the nearest point on segment A when the segments are parallel within, say, 5
degrees of each other. To avoid the erratic behavior a the 5-degree boundary, you
would need to blend this arbitrary nearest point with an agorithmicaly generated
nearest point between, say, 5 and 10 degrees, with the arbitrary solution being 100%
a 5 degrees and 0% at 10 degrees. This solution will increase the expense of the ago-
rithm. There are certainly other approaches, including ones that may be smpler,
cheaper, and more reliable. The implementation provided on the companion CD-
ROM does not attempt to manage this behavior.
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FIGURE 2.3.4 Erratic movement of nearest points for nearly parallel line segments. A)
Nearestpoints at the left. B) Nearestpoints at the right.

Implementat|on Descnptlon

............. T e e e

The |mplementat|on includes four C-language functlons contained in the files
lineintersect_utils.h and lineintersect_utils.cpp. The primary interface is the function
Inter sectLineSegments, which takes parameters defining the two line segments, and
returns points C, D, and P, as well as avector between points Cand D. The function
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ON THE CD

aso takes a parameter indicating whether you want the line segments to be treated as
infinite lines, and a tolerance parameter to be used to check the degenerate and paral-
lel line special cases. The vector between Cand D can be used outside of the imple-
mentation to determine a distance between the lines. It is important to note that the
vector is not necessarily normal to either of the line segments if the lines are finite. If
the lines are infinite and at least one is not degenerate, the vector will be normal to the
nondegenerate lineg(s). The supporting functions are as follows:

» FindNearestPointOnLineSegment calculates the point on a line segment that is
nearest to a given point in three-dimensional space.

 FindNearestPointOjParallel LineSegments calculates representative (and possibly
unique) values for Cand D for the case of parallel lines/segments.

« AdjustNearestPoints adjusts the values of Cand D from an infinite line solution to
a finite length line segment solution.

The code is documented with references to the text.

A test program is dso provided, cdled line_intersection_demo. The demo requires
that you link to the GLUT library for OpenGL. Projectfilesare present for Microsoft
Visua C++ 6.0 for Windows. It should not be too difficult to port this to other sys
tems that support OpenGL and GLUT.

Opportunltles to Optlmlze

| i8%
"ONWCD

The implementation source code was ertten carefully, but without any attempt to
optimize for a particular processor or instruction set. There are a number of opportu-
nities in every code to optimize the implementation for a given platform. In this case,
perhaps the biggest opportunity is in the area of vectorization. There are numerous
operations in this code that require a multiply or addition/subtraction operation on
al three elements of a vector. These are prime opportunities to vectorize. Addition-
dly, if you have an instruction set that supports high-level operations such as dot
products, take advantage when evaluating Equation (2.3.15), for example. To truly
maximize the performance, | strongly recommend that you use a professional code
profiling utility to identify bottlenecks and opportunities for your target platform(s).

The text presented here and the implementation provided on the accompanying
CD-ROM s rigorous, and treats every conceivable situation. The code is generaly
efficient, but in the case where the infinite lines intersect outside of the range of the
finite segments (in other words, one or both ofs and t are outside of [0,1]), the true
nearest points are not necessarily cheap to compute. In fact, the nearest point problem
weve solved here is a minimization problem, and as is the case in general, the cost
increases when constraints are applied to minimization problems. Beyond proces-
sor/platform-specific optimizations, it is certainly possible to remove parts of the
implementation that are not required for your application. For example, if you do not
need to treat finite length segments, remove everything that deds with finite length
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segments. Just have the main function return a bool that is true when the nearest
point is found between the finite segment endpoints, and false when the nearest point
is found outside the finite segment endpoints.

Conclus ons

............................................................................................................... o e

The algonthm d| scussed here isri gorous and capable of handling any line intersection
problem without failing. Depending on your particular use of line intersections, you
may need to adjust the agorithm; for example, to manage the idiosyncrasies that arise
when two finite segments are nearly parallel, or to remove the processing of finite seg-
ments when you only ded with infinite lines. | sincerely hope that some of you will
benefit from this formal discussion of line and line segment intersections, along with
ready-to-use source code.
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Inverse Trajectory
Determination

Aaron Nicholls, Microsoft
aaron_ feedback@hotmail.com

problem frequently faced in the development of games is that of calculating tra-
jectories. In the most common case, we have avelocity and a direction for apro-
jectile, and need to determine the location at a given time, and whether the projectile
has collided with any other entities. This is a smple iterative problem, but it is not al
that is required for most games. In many cases, we aso need to solve the inverse of this
problem; namely, given a number of constants (gravity, starting position, intended
destination), we must calculate the proper yaw, pitch, and/or initial velocity to propel
the projectile between the two points. In addition, once we have a solution for this
problem, we can use this as a framework for solving more complex variants of the
same problem.
This gem expects that the reader is familiar with fundamental 2D/3D transfor-
mations, basic integral calculus, and trigonometry.

Simplifying the Problem at Hand

There are severd ways to simplify the problem, and we can begin by reducing athree-
dimensional problem to a two-dimensional one. Given an initial velocity and direc-
tion for a projectile, if the only acting force is gravity (which can usualy be assumed
to be congtant), the trgjectory of the projectile will be parabolic and planar. Therefore,
by transforming this planar trgjectory into two dimensions (xand_y), we can simplify
the problem significantly. In addition, by translating the starting point to the origin,
we can remove the initial x andy values from most of the equations, focusing on the
destination coordinates. A sample trajectory, rotated into the xy plane and trandated
to the origin, is shown in Figure 2.4.1.

In addition, we need to determine exactly what the problem is that we wish to
solve. In this case, our variables are initia velocity, angle of elevation, and distance in
x and y between the points. In the case where we know three of the four values (and
thus have one unknown), our god is to produce an equation that defines the value of
the unknown in terms of the three known values.
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Destination (X, y)

Source

FIGURE 2.4.1 Trajectory between two pointsin two dimensions.

However, it is very common to have to deal with multiple unknowns. In that
case, the best solution is typically to get rid of some of the variables by setting their
values to constants. For instance, we often know the locations of the two points, but
need to provide an initia velocity and angle of devation. In this case, we can dimi-
nate initial velocity as avariable by setting it to the maximum possible velocity Vinae
By doing so, we only have one unknown, and we smply need to determine the angle
of elevation 6 in terms of v -, X, and y. This technique and guidelines for using it are
discussed in further detail later in this gem, under Solving for Multiple Variables.

Defining Position and Velocity as a Function of Time

Now that we have reduced the problem to two dimensions, we can identify the veloc-
ity and acceleration working in each dimension. Starting with initial velocity v, angle
of elevation ?, and gravity g, we can express initia velocity dong the x andy axes as
follows:

v,; = v;cos 0
Vyi = VfsnO

Since the only force acting upon this system is gravity, we can assume that verti-
cd velocity (v,) stays constant, while gravity is acting upon horizontal velocity (vy).
The two can be expressed as follows:

V. =V cosO (24.)

v =v/sn0—gt (24.2)

Next, we integrate the velocity equations to determine the position a a given
time (assuming the origin as the starting point).
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X = }vt cos9 dt

> x = vfcos9 (24.3

y = J(»- Sn0- gt] dt

-y = (2.44)

A SpeC|aI Case:

R o B Lt et A R e

Both Pomts at the Same EIevatlon

Before tackling the general case of this problem, let's examine a simpler case, which
will give us insight into solving the more genera problem. One of the common spe-
cid cases is that in which both the start and end points have the samey value. An
example of this might be a game where the ground is flat, and a cannon on the ground
is firing a a ground target. In this case, we know thaty, the horizontal displacement
between the two points, is zero. Therefore, we can simplify the horizontal position
equation by settingy=0. This dlows us to simplify Equation 2.4.4 to solve for time t,
initial velocity v;, or angle of elevation 9 as follows:

1
y =vfsing - off =0
Z

In addition, this leads to asimplified formulafor calculating x for this special case

(7?} ang\
X=W—"-- -)cosO

2v1§n9c039
X = — - —

g
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Using the trigonometric identity sin 9 cos 0 = sin 29, we can simplify further as
follows:

_ 2v sin29

g

In addition, in the previous case where a ground-based cannon is firing a ground
targets on flat terrain, this equation can be used to determine the maximum horizon-
tal range of a cannon at angle of eevation O, given maximum projectile velocity v

(245

20, .S n29
g

Range = (246

Solving for Angle of Elevation

Now that we have defined the equations that define the projectile's movement and
solved for a specid case, we can continue to solve for the more generd case Firdt, we
will andyze the case in which both points may not be at the same dtitude, and
we must determine the angle of elevation or velocity required to propel a projectile
between the two points. Since we have expressed x andy in terms of t, we can begin
by removing t from the equation and defining x and” in terms of each other.

<

X = v;tcos9—»t =

Vi cos 9

Next, we replace t with x| v, cos 9 in the eguation for y to remove t from the
equation.

1
y= vitsm9--gt?
2

-y = v (—wcov) sin@ — —g( ¥

v; cosB

s

-=>y=Xtan9 -- ;
2v; cos’ 9

We then use the trigonometry identity 1/cos” 9 = tan® 9 + 1 to reduce further.

)

.&‘_
y=xtan@ — % 5
2v, cosz 9
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tan’ 0 + 1
— y= xtanD- Ee—z(i)
2V;‘
2 2
—)gi-tanZG-—XtanO+-£-2-+y:0 (24.7)
2v. 2v.

i 13

As odd as this final equation may look, it serves a purpose: this version of the
eguation fitsinto the quadratic equation as follows:

e
_ -b+VE?-4ac
tan0 =
2a
where
2
a = ___gxz
2v;
b=-x
2
_ &
2u.

£

Plugging the preceding values of a, b, and c into the quadratic equation and solv-
ing for 9, we obtain the following:

6 = tan
S
2
Vi
\ Y,
2 4 2
2
—x xi_L’:__.,._&z_J_
- v
>9=tan™! vz % d

; o (248)
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The quadratic form provides us with away to solve for G, given a known initial
velocity v;, horizontal displacement x, and vertical displacementy. If (b® - 4ac) is
positive, we have two possible solutions, and if it is negative, there are no solutions for
the given parameters. In addition, if the initia velocity is zero, we know that the tra
jectory isentirely vertical, so 6 isirrelevant.

When dealing with two trgjectories, it is important to remember that the flatter
trgjectory will yield afaster route to the target, and is thereby preferable in most cases
If both angles are between -7C/2 and 7t/2, the angle closer to zero will yidd the flatter
trajectory for agiven v. A case with two vdid angles of elevation to reach a given tar-
get is shown in Figure 2.4.2. Here, Trgjectory 2 is the fastest.

Trajectory 1

Trajectory 2

.Deﬂination )

SRS, W, ST A

Source ¢

e

FIGURE 2.4.2 Two angle of elevation solutions OC and§ for a given Vj.

Solving for Initial Velocity

Now that we have the problem solved for the case where 0 is unknown, we can change
Equation 2.4.7 dightly to solve for initia velocity v, given aknown angle of elevation
9, horizontal displacement x, and vertical displacementy as follows:

2 . o2
£ _tan’9-xtan0+& —+7=0
2v; Vs

2 B
- -g—x—z—tanz 6+ £— = xtan6-y

2v. 20/

2
->~"_(tan®0+ 1) = xtanfl -y
2v.”

i

We then multiply both sides by v /(xtan Q -y), thereby isolating initia veocity.
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2
& (tan®0+1) = V,'Z
2(xtan9- y)

Solving for v, we get the following:

—
g, e LB O D (249)
2(xtan 6 — )
Again, we can choose to use the trigonometric identity I/cos’ 6 = fan®6 + 1 to
simplify the square root.

d £
= 2A1
b cos @ q 2(xtan 6 - y) (2A10)

Again, snce we are dedling with a square root, there are some cases that have no
solution. An example would be when the dope of the initia trajectory is less than the
dope to the target. One specia case iswhere 6=n/2 (straight upward), since there can
be two solutions.

Calculating Maximum Height for a Trajectory

Solving for peak height of a trajectory is straightforward: vertical peak is defined as
the point where vertical velocity v,=0, given 9>0. Therefore, we simply solve the ver-
tical velocity equation as follows:

Vy(t) =visin0-gt =10

Solving for t, we get the following:
V. Sin6

= t—

g

Now, to determine the maximum altitude, we substitute the preceding value for t
in the vertical position equation as follows:

= pbdin D il
Vmax = V;tsin 0 q gt
_Vs?9 gysnof

e 20 ¢ )

v] sin’ 9
= I = — - g (2.4.12)
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As mentioned previoudly, this depends on & >0. If the angle of elevation 6 is neg-
aive (pointing downward), the vertical peak will be a.ty=0, since the projectile€sinitial
downward velocity is only increased by gravity. This is somewhat of a specid case,
since vertical velocity is not necessarily zero at the vertical peak in this case.

Calculating Flight Time

In order to determine time to destination, we can smply rewrite the horizontal pos-
tion from Equation 2.4.3 in terms of 2.

X
v; cosd

X(t) =vfcos6 —»t =

However, in the casewhere v* = 0 or cos6 = 0, tis undefined if expressed in terms
of x In addition, in this case, x will always be zero, and no solutions exist in this case
if the two points are not at the same x value. In implementation, these boundary cases
are worth testing, since a mistake here can cause an engine to crash or behave errati-
cdly a times.

To solvefor twhen vy = Oor cos6 = 0, we can use the vertical position equation
from Equation 2.4.4 instead.

1
y(t) = vfsinO- - gt?
Z

If Vi = O, we can use the following equation to expresstin terms of/ and g.

1ot = -2y
y-—8 =t \/?

However, ifcos6 = 0and vi>0, there can be one or two solutions (the latter hap-
pens only ifd>0, since v; >0in practice). In addition, we know that if cos6 = 0, sin 6
= +1. This reduces the problem further, but we ill need to express thisin terms of t
asfollows:

s
y= vitsine--gt?
Z

1

> -gt? -Vitsn6+y =0 (2.4.12)
Z

Thisis aquadratic in terms of t, and the solution thereof is |eft to the reader.

Solving for Multiple Variables

As mentioned near the start of this topic, it is very common that two or more vaues
are unknown or need to be determined, usually 9 and v (Snce both points are usualy
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known). In multivariate cases, the set of possible solutions expands greetly, so in order
to solve the problem, the fastest approach is to eliminate some of the unknowns. In
the most common case, we are given two points and a maximum initia velocity Vi,
and need to solve for both v-;and G.

When reducing variables in order to simplify to a single-variable problem, it is
important to reduce in a manner that does not overly restrict possible solutions. In the
previous case in which both 6 and v; are unknown, restricting 6 greatly reduces the
number of solutions, and is undesirable. On the other hand, setting vi = Ve and
varying 6 preserves a larger sa of landing points. This same logic can be extended to
other forms of this problem, athough there is not space to elaborate further within
the scope of this gem.

Optlmlzmg Implementatlon

..... ST R TR S

When implementing the prewous equatrons in code, there are a few optimizations
that can make a substantial difference in performance. This is because trigonometric
functions have a very high overhead on most systems.

Avoid Oversimplification

When deriving mathematical calculations, there is a tendency to reduce formulae to
their smplest mathematical form, rather than the simplest or most optimal algo-
rithm. For instance, in solving for initial velocity v, we came across Equations 2.4.9
and 2.4.10 as follows:

= x [ BE @D
2(xtan @ — y)
X {_-__—-—-
- £

cosGVZ(xtanG - )

The tendency from a mathematical point of view would be to prefer the latter
form, since it reduces the equation; however, in implementation, it is more efficient to
precalculate tan 9 and use it twice in the first equation, rather than calculating both
tan 9 and cos 9 as is done in the latter formula. In addition, even if we choose to use
the second equation (and not simplify to terms of tan Q), leaving cos 9 outside of the
square root bracket means that two divisions need to be done: one inside the bracket
and one outside. To optimize, one can either place the cos 9 inside the divisor within
the bracket as cos” 9, or multiply x by 11 cos 9.
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Reduce Trigonometric Functions to
Simpler Calculations

Rather than using the provided functions for sin, cos, and tan, it is much more effi-
cient to use pregenerated |ookup tables or take advantage of known relations between
other variables. For instance, to cdculate tan 9, you can smply divide the initid vaue
of vy by t>,, sincethey are defined in terms of sin 6 and cos 9, respectively, and arelikely
precomputed.

In addition, there is additiona room for optimization—The purpose here is sm-
ply to dert the reader to the high computational cost involved with trigonometric cd-
culation and the importance of optimization.

summary

Sl ey

Efficient trgectory production can enhance perceived Al quality and engine perfor-
mance. Although the derivation can be math intensive, the resulting equations arerel-
aively smple and essy to understand. In addition, once the process involved in
deriving and simplifying the previous formulae is understood, it is easy to apply that
knowledge to more complicated situations, such as moving targets, nonvertical acce-
eration, and other related problems.



The Parallel Transport Frame

Carl Dougan
Carl.dougan@gte.net

M any tasks in computer games require generating a suitable orientation as an
object moves through space. Let's say you need to orient acameraflyingadong a
looping path. You'd probably want the camera to turn with the path and point along
the direction of travel. When the path loops, the orientation of the camera should
change appropriately, to follow the loop. You wouldn't want it to suddenly flip or
twist, but turn only to match the changes of the path. The parallel transport frame
method can help provide this "steedy” orientation.

Y ou can aso use this technique in the generation of geometry. A common opera
tion in 3D modding is lofting, where a 2D shape is extruded dong a path curve, and
multiple sections made from the shape are connected together to produce 3D geome-
try. If the 2D shapewas acircle, the resulting 3D model would be atube, centered on
the path curve. The same criteria apply in calculating the orientation of the shape as
did with the camera—the orientation should "follow" the path and shouldn't be sub-
ject to unnecessary twist.

The parald transport method gets its stability by incrementally rotating a coor-
dinate system (the frame) asit is translated along a curve. This "memory" of the pre-
vious frame's orientation is what alows the elimination of unnecessary twist—only
the minimal amount of rotation needed to stay parallel to the curveis applied at each
step. Unfortunately, in order to calculate the frame at the end of a curve, you need to
iterate aframe along the path, al theway from the start, rotating it at each step. Two
other commonly used methods of curve framing are the Frenet Frame and the Fixed
Up method [EberlyOl], which can be calculated anaytically at any point on the
path, in one calculation. They have other cavedats, however, which will be described
later.

The Technique

A relatively simple numerical technique can be used to calculate the parallel transport
frame [Glassner90]. You take an arbitrary initial frame, trandlate it aong the curve,
and at each iteration, rotate it to stay as "pardld™ to the curve as possible.

215
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Given:
aCurve C
an existing frame Fl at t-1
atangent Tl at t-1 (the 1% derivative or velocity of C at t-1)
atangent T2 at t

anew frame F2 at the next time t can be calculated as follows:
F2s position is the value of C at t.
F2s orientation can be found by rotating FI about an axis A with angle Ot, where
A=TlI XT2and
a= ArcCos((Tl *T2)/(JT1[T2])

If the tangents are paralé, the rotation can be skipped (i.e, if TI X T2 is zero)
(Figure 2.5.1).

FIGURE 25.1 The frame at t-1 is rotated about A by Of to calculate the frame at t.

The initial frame is arbitrary. You can caculate an initia frame in which an axis
lies along the tangent with the Fixed Up or the Frenet Frame method.

In some casss, you may find it desrable to use paralld transport to generate
frames a a coarse sampling along the curve, and then achieve smooth rotation
between the sample frames by using quaternion interpolation. Using quaternions is
desirable anyway, since there is an efficient method of generating aquaternion from a
rotation axis and angle [EberlyOl]. Y ou can use the angle and axis shown previously to
generate arotation quaternion, and then multiply it with the previous frame's quater-
nion to perform the rotation.

Moving Objects

You can orient a moving object with a single pardld transport rotation each time the
object is moved, presumably once per frame. We need three pieces of information: the
velocity of the object at the current and previous locations, and the orientation at the pre-
vious location. The velocities correspond to the tangents Tl and T2 shown previoudly.
For some tasks, the paralld transport frame may be too "stable.” For example, an
aircraft flying an S-shaped path on the horizontal plane would never bank. To achieve
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redistic-looking simulation of flight, you may need to use a different solution, such as
simulating the physics of motion. Craig Reynolds describes a relatively simple, and
thus fast, technique for orienting flocking "boids' that includes banking [Reynolds99].
Reynolds technique is similar to parallel transport in that it dso relies on "memory" of
the previous frame.

Comparison

The details here show how the parallel transport method we have looked at so far
compares with the Frenet Frame and Fixed Up methods of curve framing.

The Frenet Frame
The Frenet Frame is built from three orthogonal axes:

« The tangent of the curve
« The cross-product of the tangent, and the second derivative
« Another vector generated from the cross-product of the prior two vectors

The Frenet Frame is problematic for the uses aready discussed because it cannot
be caculated when the second derivative is zero. This occurs at points of inflection
and on straight sections of the curve [Hanson95]. Clearly, not being able to calculate
aframe on astraight section is abig problem for our purposes. In addition, the frame
may spin, due to changes in the second derivative. In the case of an S-shaped curve,
for example, the second derivative points into the curves, flipping sides on the upper
and lower halves. The resulting Frenet Frames on the S-shaped curve will flip in con-
sequence. Figure 2.5.2 shows what this means graphically; instead of continuous

FIGURE 2.5.2 Second derivative on an S-shaped curve, and Frenet Frame generated tube
from the same curve.
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geometry, we have a discontinuity where the second derivative switches sides. If this
was aflock of birds, they would suddenly flip upside down at that point.

The Fixed Up Method

In the case of the Fixed Up method, the tangent T and an arbitrary vector V (the
Fixed Up vector) are used to generate three axes of the resulting frame, the direction
D, up U, and right R vectors [EberlyOl].

D=T/]T|
R=DxV/|DxV|
U = RxD

A problem with the Fixed Up method occurs when the tangent and the arbitrary
vector chosen are pardld or close to pardlel. When T and V are pardldl, the cross
product of D and V is zero and the frame cannot be built. Even if they are very close,
the twist of the resulting vector relative to the tangent will vary greatly with small
changes in T, twisting the resulting frame. This isn't a problem if you can constrain
the path—which may be possible for some tasks, like building the geometry of free-
ways, but may not be for others, like building the geometry of aroller coaster.

Figure 2.5.3 shows a comparison of atube generated using paralld transport with
one using the Fixed Up method. In the upper and lower sections of the curve, the
cross-product of tangent and the Fixed Up vector is coming out of the page. In the

middle section, it is going into the page. The abrupt flip causes the visible twist in the
generated geometry.

Fixed Up Pardld Transport

FIGURE 2.5.3 Comparison of Fixed Up and parallel transport.
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Conclus on

For unconstramed paths—for example fIylng mlssles or Iooplng tracks—paralle

transport is one method that you can use to keep the tracks from twisting and the
missilesfrom flipping.
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Smooth C? Quaternion-based
Flythrough Paths

Alex Vlachos, ATl Research;

and John Isidore
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n this gem, we describe a method for smoothly interpol ating acameras position and
orientation to produce a flythrough with C? continuity. We draw on severa known
methods and provide a C++ dass that implements the methods described here.

Introduct_lgn B

s i b A st T e RS

Smoothly mterpolatlng the positions of aflythrough path can easily be achieved by
applying a natural cubic spline to the sample points. The orientations, on the other
hand, require alittle more attention. We describe a method for converting a quater-
nion in S° space (points on the unit hypersphere) into R* space (points in 4D space)
[Johnstone99]. Once the quaternion is in R* space, any 4D spline can be applied to
the transformed data. The resulting interpolated points can then be transformed back
into S* space and used as a quaternion. In addition, a technique caled selective nega-
tion is described to preprocess the quaternions in a way that produces the shortest
rotation path between sample point orientations.

Camera cuts (moving a camera to a new location) are achieved by introducing
phantom points around the camera cut similar to the way an open spline is padded.
These additional points are needed to pad the spline to produce smooth results near
the cut point. The code provided describes cut points as part of a single fly path and
simplifiesthe overal code. Internally to the C++ class, theindividual cut segments are
treated as separate splines without the overhead of creating a spline for each segment.

Position Interpolation

Let's now discuss posmon mterpol atl on.

Sample Points

There are two common ways to specify sample points. Thefirst is to have each segment
between control points represent a constant time (for example, each control point rep-
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resents one second of time). The second is to use the control points only to define the
shape of the camera path, and to have the camera move at a constant speed along this
path. The code provided with this gem assumes a constant time between control points,
athough this code could easily be modified for the constant speed technique.

Natural Cubic Spline

A natural cubic spline is chosen due to the high degree of continuity it provides,
namely C. However, it'simportant to note that any spline may be used in place of the
natural cubic spline. Code for implementing this spline iswidely available, including
Numerical Recipes|In C [Press97]. The sample code provided is modeled after this.

A natural cubic spline is an interpolating curve that is a mathematical representa-
tion of the origind drafting spline. One important characteristic of this spline is its
lack of loca control. This means that if any single control point is moved, the entire
spline is affected. This isn't necessarily a disadvantage; in fact, this functionality may
be desirable. Asyou begin to use this spline, you'll see the advantages it has in smooth-
ing out the camera movement when you sample the spline at a higher frequency.

It is important to differentiate between open and dosad splines. In the cese of a
closed spline, the spline is specified such that the last point is the same as the first
point. This is done to treat the camera path as a closed loop. To work around any pos-
sible discontinuities in the spline at the loop point, simply replicate the last four
points of the spline to the beginning of the array, and the first four sample points to
the end of the array. In practice, weve found that using four points was sufficient to
eliminate any visual artifacts.

This replication eliminates the need for modulus arithmetic and aso simplifies
our preprocessing of the camera path. This is even more important when dealing with
orientations using the selective negation method as described later (Figure 2.6.1).

212 313

FIGURE 2.6.1 Replicatingpointsfor a closed spline.
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FIGURE 2.6.2 Creatingphantom pointsfor an open spline.

In contrast, an open spline has a different beginning and end point. In order to
sample the spline, you need to pad the spline with severd "phantom™ points at both
the beginning and end of the open spline (Figure 26.2). A constant velocity is
assumed for the phantom points before and after the open spline path. At the begin-
ning of the spline in Figure 2.6.2, the vector V/PFj-Po is subtracted from P, to get the
resulting point P_j. Similarly, Vg issubtracted from P_j to create P_2, and so on. The
trailing phantom points are calculated in asimilar way.

Orientation Interpolation

Sample Points

Unit quaternions are used as the orientation data at the sample points. Quaternions
can be very useful for numerous applications. The beauty of quaternions is that, for
rotations, they take the form of anormalized 4-element vector (later referred to asa 3-
element vector and a scdar component). This is exactly enough information to repre-
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sent an axis of rotation and an angle of rotation around that axis [GPG1]. Quater-
nions give us everything we need to represent a rotation and nothing more.

For orientation, however, there is an ambiguity in using quaternions. Orientation
can be thought of as a rotation from a base orientation. When using quaternions,
there are two possible rotations that will bring you to the same orientation. Suppose
there is a counterclockwise rotation 9 about an axis w that gives you the desired ori-
entation. A rotation by 360°-0 about the axis —w aso results in the same orientation.
When converted into a quaternion representation, the second quaternion is simply
the negation of the first one.

Dlrectlon of Rotatlon and Selectlve __Negatlon -

When performlng quaternl on mterpol ation, there is one small nuance that needs to
be considered. When representing an orientation, either a quaternion or its negation
will suffice. However, when interpolating orientations (for example, performing a
rotation), the positive and negative quaternions result in vastly different rotations and
consequently different camera paths. If the desred result is to perform the smdlest
possible rotation between each pair of two orientations, you can preprocess the
guaternions to achieve this.

Taking the dot product of two quaternions gives the cosine of haf the angle of
rotation between them. If this quantity is negative, the angle of rotation between the
two quaternions is greater than 180 degrees. In this case, negating one of the orienta
tion quaternions makes the angle between the two quaternions less than 180 degrees.
In terms of interpolation, this makes the orientation spline path dways perform the
shortest rotation between the orientation key frames. We cal this process selective
negation.

The technique of sdectively negating orientation quaternions can be incorpo-
rated as a preprocessing step for a camera flythrough path. For the preprocessing step,
traverse the flythrough path from start to end, and for each quaternion g,on the path,
negete it if the dot product between it and its predecessor is negative (in other words,
if (g g,.))<0). Using selective negation as a preprocessing step makes spline interpo-
lation much more efficient by not requiring the sdective negation math for every
sample. '

To preprocess a closed spline path, it is necessary to replicate the first four points
of the spline path and append them to the end of the path prior to the selective nega
tion. Note that the replicated points may have different signs than the origind points.
When dealing with an open spline, you need to create phantom quaternions (corre-
sponding to the phantom control points) to pad the spline. The concept is similar
in that you want to linearly interpolate the difference between the two quaternions
closest to the beginning or end of the path. However, linearly interpolating quater-
nions doemnt suffice. Instead, we use the sphericd linear interpolation (derp) dgo-
rithm. Given quaternions o and ¢, we need to generate four phantom
guaternions—a.j, q_», and so on— to pad the beginning of an open spline. We use the
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derp function (sphericd linear interpolation) to slerp from g, to ¢ with aderp value
of 2.0. This effectively gives us alinear change in rotation at our phantom points.

Once we have preprocessed our entire list of orientation quaternions for interpo-
lation, it is straightforward to perform smooth spline-based quaternion interpolation
techniques.

Spl_l_ne; Interpolation for Quaternlons -

SRR S—

As seen for positiona interpolation, splln&s can be used to give us much smoother
interpolation than linear interpolation can. However, spline interpolation for quater-
nionsis not so straightforward, and there are severd techniques that can be used. One
technique simply interpolates the raw quaternion values, and then renormalizes the
resulting quaternion. However, this technique does not result in a smooth path and
produces bizarre changes in angular velocity. Another ideaiis to use techniques based
on the logarithms of quaternions. SQUAD (spherica quadrangle interpolation)
[Shoemaked]] is an example of this. A performance limitation isincurred when using
these techniques because they require transcendental functions (sin, cos, log, pow, and
so on). Other techniques involve blending between great 2-spheres laying on the unit
quaternion hypersphere [Kim95], or involve some sort of iterative numeric technique
[Neilson92]. While many of these techniques provide decent results, most of them do
not provide C? continuity or are computationally prohibitive to use, especialy when
many flythrough paths are used (for game characters or projectiles, as an example).

However, there is a technique for quaternion spline interpolation that gives very
good results and obeys derivative continuity requirements. This uses an invertible
rational mapping Qohnstoned9] M between the unit quaternion 4-sphere () and
another four-dimensional space (R%). In the following equations, a, b, and c are the
components of the vector portion of the quaternion, and s is the scalar portion.

The transformation M” from S* — >R* is

X = alsgrt(2(l-s))
y = blsgrt(2(1-s))
z = clsrt(2(1-9)
w=(l-s) /sgrt(2(1-s))

The transformation M from R* — > Sis

s=(C+ P+ 2-w2 )/ P+ Y+ 2+ 0)
az 2w | (Y?+y + 22+ V)
b=2yw/(¢+y + Z+ ui’)
c=2wl (C+y+ Z+ iV

To use this for quaternion spline interpolation is straightforward. First, sdective
negation should be applied to the contral quaternions to assure the shortest possible
rotation between control points. After this, apply M ' to al the control quaternions to
get their resulting value in R*. This can be done as a preprocessing step and can be
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done in the flythrough-path building or loading stage of a program. This way, die
sguare root does not have to be caculated when die flythrough path is being evauated.

Next, the resulting 4-vectors can be interpolated using the spline of your choice.
Because this is a continuous rational mapping, the continuity of the interpolated S
quaternion path has the same continuity as die spline used for interpolation in R*
space.

In our application, we use natural cubic splines [Hearn94] [Press@?] for the inter-
polation in R* space.

This gives us C? continuous orientation interpolation as well. The qudlitative
effect of this is that die camera path does not have any sharp changes in angular
acceleration.

After the desired point on the spline in R* is found, it can be converted back into
aquaternion using M.

However, there is one mathematical nuance in using this technique that needs to
be addressd.

Slngularlty |n the Ratlonal Mapplng

Ifyour fIythrough path contans orlentatlon quaternlons do&e or equa to (1,0,00), it
will cause numerical instability when interpolated through in R* space, as M~(1,0,0,0)
= CPP P %) There gre afew ways to handle diis singularity. One possible option is to
ignoreit, and surprisingly, thisisfeasiblein many cases. For example, if the z-axis of the
world is pointing up, and you know the camerawill never point straight up with the
camerds up-vector pointing up the y-axis, the orientation quaternion (1,0,0,0) will
never occur in the flythrough path, and die problem is solved.

If thisis not the case, another option is to find a quaternion ~that is not within
30 degrees of any of the orientation quaternions, and use gy-to rotate al of the quater-
nions into "safe' orientations that are not near the singularity Qohnstone 99]. The
basic idea behind this is to perform the spline interpolation on a rotated version of
your flythrough path, and then rotate die interpolated orientations back into their
original coordinate frame. All that has to be done is to multiply al your orientation
guaternions by g after the sdective negation step. Following, you transform the
quaternions from S° space into R* space, apply the natural cubic spline, and transform
the resulting R* values back into S® space. After this, we add the additional step of
rotating each resulting quaternion by gj* before using it.

An easy way to find gy-is to randomly generate unit length quaternions, until you
find one that is not within 30 degrees of any of the sdlectively negated orientation
quaternions.

Camera Cuts

A cameracutis def| ned asmoving the camerafrom one point in your scene to another.
Y ou can't just introduce a cut in the middle of aspline, and you cant Smply step over
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FIGURE 2.6.3 Creating phantom points for a path cut segment.

a segment of the spline. Instead, you segment your spline into two separate splines at
a cut point, and process these splines as separate open splines. This is done simultane-
oudly for both the position- and orientation-based splines. The code we supply deds
with camera cuts in such away that you don't need to explicitly create a separate path
(see Figure 2.6.3).

SRS M SN R X S e U S T SO———

The code accompanying this gem is a C++ class that implements most of the tech-

niques explained in this article. It has member functions for creating and editing the
control points manualy, reading and writing path files, dealing with cut points, sam-
pling the spline at a given time, and setting up vertex and index buffers for drawing
the spline. The class assumes there is a constant time between control points as
opposed to a constant velocity. In addition, the code does not solve the singularity

problem, since we never saw the singularity in our project. Please see the source files
for more information.
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Recursive Dimensional
Clustering: A Fast Algorithm
for Collision Detection

Steve Rabin, Nintendo of America
steve_rabin@hotmail.com

B> asic collision detection can be a costly operation. The simplest method relies on
'treating each object as a sphere and comparin n? distances. Listing 2.7.1 shows
the code for this simple brute-force comparison algorithm. However, anew technique
caled Recursive Dimensiona Clustering (RDC) can take the typicd case from O(rf)
to something dose to O(nlog,n).

Listing 271 Brute- force companson algor|thm

s s

228

R e b e

1 Sllghtly optlmzed 0((n*2 n)/2) time coerIeX|ty
for( 1=0; i<numobjects; i+ ) {
for( j—|+|, J<numobjects j+H ) |
if( Distance(i, j) < Radius(i) + Radius(j) ) {
[1incollision
}

}
}

The practica difference between RDC and the brute-force method is shown in
Table 2.7.1. These times were caculated on a Pentium |l 400 MHz with data con-
taining only one collison. Note that the brute-force O(r") algorithm was fully opti-
mized to run at O((rf-n)/2) asin Listing 2.7.1 and compared positions using distance
squared in order to avoid the costly square root operation.

What's interesting about Table 2.7. 1 isthat RDC increases almost linearly, while
the brute force method increases exponentially. Although the results are remarkable,
RDC only becomes useful if you are dealing with large numbers of objects that are
usualy not in callison.
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Table 2.7.1 The Difference between RDC and the Brute-Force Method

Objects RDC Brute Force

10 <1lms <1lms

50 2ms 6ms

100 4ms 18ms

200 7ms 67 ms

300 urns 150ms

400 15 ms 263ms i
500 19ms 406ms

1000 38ms 1596ms (1.6 seconds)

2000 8l ms 6335 ms (6.3 seconds)

5000 222ms 39380 ms (39.4 seconds)
10000 478ms 157621 ms (2 minutes, 37.6 seconds)

Other Appllcatlons

= T S —— TR A T AT e

One of the beneflts of RDC is that |t natural ly finds groups of objects rather than sin-
gle collision pairs. A group is a collection of objects that touch each other or are
within a certain radius of each other. This definition aso includes groups such that if
A touches B and B touches C, then A, B, and C are dl in the same group, meaning
that every group member is not required to touch every other group member. Thus,
RDC can be used to find simultaneous collisions of severa objects or even groups of
enemies on abattlefield.

One interesting application of RDC involves identifying metaball clusters in
order to speed up geometry generation (Marching Cubes algorithm). In this use, RDC
finds the clusters and then calculates the minima axis-aligned bounding boxes
(AABB) around those clusters. Minimal bounding boxes are critical for the Marching
Cubes agorithm. This is because the computational speed is proportiond to the vol-
ume of the boxes, which equates to an algorithm with O(n?) time complexity. Color
Plate 1 shows an example.

The RDC Algorithm

In order to understand how RDC works, the first step is to follow how it recognizes
groups of objects in collison along a single dimension. Figure 2.7.1 shows a one-
dimensional example with three objects.

Asyou can see, objects B and C overlap, while object A is by itself. Thus, aclus-
tering algorithm would find two groups: one group containing A, and a second group
containing both B and C. Although it's easy to figure this out visualy, we need a sys-
tematic algorithm that achieves the same result.

The basic idea of this agorithm is to mark the boundaries of each object and then
find groups of overlapping objects using that data. This is done by looping through all
entities and storing the beginning and ending boundaries for a given dimension in a
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10 20 2
FIGURE 2.7.1 Three objects along one dimension.

linked list. For example, thefirst object A has aleft boundary of 7 and aright bound-
ary of 13. In order to make this apply to any dimension, we can think of these bound-
aries in terms of brackets and label them open and close, instead of left and right.
Figure 2.7.2 shows the resulting linked list created from the three objects.

A A E B C C
open r-+| dose [-*- open 1™ dose |-*¢ open [-*e do=

pos 7 pos 13 pos 17 pos 23 pos 22 pos 28

FIGURE 2.7.2 The boundary list.

With the boundary list complete, the next step is to sort the list from lowest to
highest postion using your favorite sorting algorithm, such as quicksort. The sorted
list is shown in Figure 2.7.3. In this example, only two elements were swapped.

Now that we have the sorted list of boundaries, we can find the groups. The
algorithm for finding the groups is very similar to parser agorithms for matching
brackets. The pseudocode in Listing 2.7.2 will go through the sorted list and extract
each "bracketed" group.

A A B C B C
open | 4| dose H*o open [ open [-*} dose ¥ dose
pos7 B pos 13 pos 17 pos 22 pos 23 pos 28

FIGURE 2.7.3 The list after sorting.

Listing 2.7.2 Algorithm for finding groups along one dimension

int count = 0;
Jear( currentGoup );
for( elenent in list )

if( element is an "open bracket" ) {
count ++,;
Add entity to currentGoup;

}



else { //lelement is a "closed bracket"
count- - ;
if( count == 0 ) { //entire group found
Store( currentGroup );
Clear( currentGroup );
}
}

}
assert( count == 0 );

At this point, you may have noticed that the algorithm arbitrarily groups objects
that share boundaries. For example, if object A has a dosed boundary a position 10,
and object B has an open boundary at position 10, then any ssimple sorting algorithm
would not distinguish between them. The result is that the algorithm in Listing 2.7.2
would inconsistently group these types of cases. However, there are many solutions to
this problem. The easiest is to use floating-point values and to make sure that objects
don't snap to integer locations. Another solution involves "puffing out" each object
radius by avery tiny amount, thus causing identical boundaries to be offset from each
other. You could dso fix the problem in the sorting function; however, that would
introduce extra overhead and increase the running time.

RDC in Higher Dimensions

Clearly, this algorithm works well for finding groups along one dimension. How-
ever, it would only be useful if it worked in two or three dimensions. The trick for
multiple dimensions is to first find groups along one axis, and then send each newly
formed group to the next axis to be subdivided further.

Figure 2.7.4 shows a set of four objects in two dimensions. Again, it's easy to spot
the groups visualy, but this example will show how the algorithm determines groups
in multiple dimensions.

The ordered linked list for Figure 2.7.4 adong the x-axis is shown in Figure 2.7.5.

(6, 16,rad3)

(14, 14,rad3)
( % (19, 11,rad4)

g (22 3,rad2)
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IIIIIIIIIIIIIIITTTI|IIIT'

FIGURE 2.7.4 Two-dimensional example of four objects.



D D E F E G F G
open [+ close [-*e| open [™ open ™ dose open doe [ dose
pos3 pos9 pos 11 pos 15 pos 17 pos 20 | pos 23 pos 24

FIGURE 2.7.5 The sorted boundary list for Figure 2.7.4.

The groups in the x-axis are:

Groupo = { D }, Groupl = { E, F, G}

Weve

now determined that there are at least two groups. The first group contains

object D, and the second group containsE, F, and G. With the x-axis done, each new
group is sent to the y-axis to be divided further. Since object Ds group has only one

member, i
However,

t doesn't need to be divided anymore and will smply be its own group.
objects E, F, and G must now be andyzed along the y-axjs. Figure 2.7.6

shows the ordered linked list for Group, along the y-axis.

G
open -
pos1l

G F E F E
close [->| open [-*e¢| open |[-*e| close |-+| close
pos5 pos7 pos ]_1_ pos 15 pos 17

FIGURE 2.7.6 The Groupi y-axis sorted boundary list.

The groups in the y-axis are:
Group;a = { G}, Groupyy = { E, F }

Now that we've gone through each dimension once, the final groups are:
Groupy = { D}, Groupsa = { G}, Groupy, = { E, F}

Figures 2.7.7s. and 2.7.7b graphically show the boundaries of each object in each

dinienson

and the resulting groups. When this agorithm is expanded to three

dimensions, the groups are smply analyzed in one more dimension; namely, the
z-axis. Following is a summary of the steps involved in the RDC agorithm.

RDC Seps
1. Start with the x-axis.
2. Construct alinked list of object boundaries in this dimension.
3. Sort that list by boundary position, from lowest to highest.
4. Find groups using the open/close "bracket matching” agorithm in Listing
272
5. For each group found in that dimension, repeat steps 2-5 in the next

dimension.
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FIGURE 2.7.7 A) Groupsfoundin thex-axis. B) Group, subdividedin they-axis.

A Flaw in the Algonthm

Unfortunately, the algorlthm d@crlbed o) far has afatal flaw When grouping objects
aong one axis, objects can get sucked into groups that aren't later separated by other
dimensions. Figure 2.7.8 points out a problem configuration.

ad L]

GVOUPOb]

eroupm]

| | |
I TTTITTITTITTTI T T T T

Lrerpr e peeregtr

Lyl

- Groupo

A B C
FIGURE 2.7.8 A) Flaw example. B) Groupsin thex-axis. C) Group, subdividedin they-axis.

Figure 2.7.8b shows the first pass aong the x-axis and finds that al three objects
overlap. Thus, they are al assigned to the same group. Then the single group is ana
lyzed dong they-axis, asin Figure 2.7.8c. This results in two groups being found, but
it understandably fails to put object A and object Cin separate groups.

The correct solution would be for each object to be in its own group. However,
the result of the algorithm was only partialy correct. Thefix isto send the new groups
found along the y-axis back to be analyzed again along the x-axis. When this is done,
the correct groups are finally found.

This solution can be generdlized in order to permanently correct the agorithm.
The algorithm needs the following rule:
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When a group is subdivided along one dimension,
the resulting subgroups must be reanalyzed along all other dimensions.

In the 2D case, agroup that is broken up aong the y-axis must be reanalyzed in
the x-axis, and vice versa. In 3D, a group that is broken up along the y-axis must be
reandyzed in both the x-axis and the z-axis. This fix finally explains the recursve de-
ment of RDC. Following are the revised steps for RDC agorithm.

RDC geps (revised):

1. Start with the x-axis.

2. Construct alinked ligt of object boundaries in this dimension.

3. Sort that list by boundary position, from lowest to highest.

4. Find groups using the open/close "bracket matching" agorithm in Listing
272

5. For each group found in that dimension, repeat steps 2-5 in the other
dimension(s) until the group no longer gets subdivided and dl dimensions
have been analyzed for that unique group.

Fl_n_d__lng Pairs in CoII|S|on

T o
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As presented so far, RDC only |dent|f|&e groups or clusters of objects that touch each
other. The effect is that a group can contain members who may or may not directly
touch every other member in the group. While this has many great uses (sSmultane-
ous collisons, grouping info), general collison detection usualy requires pairs that
are in callision.

To find collision pairs, each final cluster group from RDC must be sent to the
brute-force comparison algorithm. Hopefully, the clusters have very few objects at
this point so that the O((n*n)f2) agorithm runs sufficiently fast.

Oneway to find collision pairs even faster is to use the brute-force algorithm once
a collison cluster gets below a certain number; for example, less than 10 objects. At
this point, it would be ssimply faster to compare dl of the objects rather than attempt-
ing to subdivide the group further with continued recursive cadls.

The RDC Implementation

As described, the agorithm is basicaly recursive and attempts to break groups up
until the minimum clusters are found. The tricky part is designing a recursive func-
tion that chooses which dimensions to subdivide and when to end the recursion. In
3D, the function must at least try to subdivide the group aong dl three dimensions.
However, if any of those dimensions results in subdivision, each subdivided group
must then be sent recursively to the other two dimensions.

The esdest way to accomplish this is to let a recursve function take three argu-
ments that determine which dimensions still need to be considered. When the func-
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tion first gets caled, dl three dimensions appear as arguments. As each dimension is
andyzed and not subdivided, the dimension argument list shrinks to zero and the
recursion halts. However, it is mandatory for a subdivided group to be caled recur-
sively with two arguments (the other two dimensions). The complete function can be
found in Listing 2.7.3.

void RDQ Pairs& pairs, Qoup& group,
Axis axPsI, Axis axis2, Axis axisS)

[/"pairs" holds all final pairs that are in collision
[1"group” is the current group of objects to analyze
[1"axis|" is the axis to analyze within this function
[1"axis2", "a3" wll be analyzed in recursive calls

if( Sze( group ) < 10 || axisl == INVALID AXIS )
{ /lend recursion and test for collisions
Brut eFor ceConpari sonf pairs, subGoup );

else {
[Ifor this group, find the boundaries and sort them
(pend oseBoundaryLi st boundari es; .
Fi ndQpenC oseBoundaries( axisl, group, boundaries );
Sort Qpend oseBoundari es(  boundaries 5) 1 Q(nl ogn)

Goup subG oup;

unsigned int count = 0;

Axi's newAxisl = axis2;

AXi S newAxi s2 = axi sS,

Axis newAxis3 = INVALID AXIS,
bool groupSubdi vided = fal se;

[1subdivide the group if possible and call recursively
for( every curBoundary in boundaries list )

if( curBoundary is "open bracket" )

{ Ilthis entity lies within a cluster group
count ++;
AddToG oup( subGroup, curBoundary->entity );

1
el se

count -;

if( count ==0)

{ //found the end of a cluster group - take subgroup
[land call recursively on remaining axis'

if( curBoundary != GetLastBoundary(} boundaries ) )

{ I/this group is being subdivided - remenber
groupSubdi vided = true;

}
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if( groupSubdivided )
{ /lreconsider all other axis'
if ( axisl == X_AXIS ) {
newAxisl = Y_AXIS;
newAxis2 = Z_AXIS;

élse if ( axisl == Y_AXIS ) {
newAxisl X_AXIS;
newAxis2 = Z_AXIS;

%lse if( axisl == Z_AXIS ) {
newAxisl = X_AXIS;
newAxis2 = Y_AXIS;

}

}
}

/lrecursive call
RecursiveClustering( pairs, subGroup,
newAxisl, newAxis2, INVALID_AXIS );
Clear( subGroup ); //clear the subGroup for the next group
}
}
}
}

As you examine the RDC function, note that it has been augmented to find col-
lison pairs. When the recursion halts and a minimal cluster is found, it then sends
that cluster to the brute-force comparison function. It will dso halt the recursion
should a cluster fall below 10 members. At this point, it immediately compares the
members with the brute-force function.

At first glance, this algorithm looks fairly time intensive. Y our gut feeling probably
tdls you that it's an O(r?) algorithm — and you'd be pretty close. However, because of
the physical restrictions of 3D space, certain worst-case configurations are extremely
rare. Instead, the algorithm takes on average O(nlog;n), as long as most objects aren't
in collision.

RDC performs badly in two extreme cases. One is when the objects configura-
tion causes RDC to recurse very deeply — this is the worst case 0"O(nlogzn). The
other is when the objects are dl in collision with each other, in which case RDC does
almost no work and the brute-force algorithm must be used with Q(t£).

In the worst case, recursion gets very deep. Functionally, this happens when the
object set is split completely asymmetrically, with one object in one group, and n-1
objects in the other. The larger group is then sent to the function recursively. If this
happens at each level of recursion, we get a total of n-1 cdls to the function. (This
anaysis applies to one dimension only. In three dimensions, we can get up to
3 + 2(n-l) cdls In dl cases, thisis O(n)).
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For these cdlls, the average group size mis equal to n/2. The most complex part of
the function is the sort that we assume to be O(mlog,m) or O(nlogzn). This gives the
total time complexity of theworst case as O(n) * O(nlog2n), or O(n’log.n).

Figure 2.7.8 shows the near worst-case scenario for time complexity (atrueworst-
case scenario might not be physically possible). Since Figure 2.7.9 is such an unlikely
configuration, the worst-case time complexity of O(n?log,n) is somewhat misleading.
Interestingly, this particular configuration results in an actual time complexity of
O(n“"®logzn). In practice you should never expect anything nearly that bad, since this
particular case is humorously rare and contrived.

A more likely bad case for RDC occurs when dl objects are in collision with each
other. In this situation, each dimension would be tested, and only one group would
be found. This would take O(3nlogyn) time. Then the entire group would be sent to
the brute-force comparison algorithm in order to find the final collison pairs. This
would make the actual worst case be O(3nlog,n + (r£-n)f2), or smply O(rf). Given
that this time complexity is identical to the brute-force method and that no objects
will ever be in callison with al other objects, it's almost aways faster to use RDC.

Pt prerrprrydgd

| L | ,
Ml T MrIMn LM
FIGURE 2.7.9 Near worst-case configurationfor RDC (24 objects).

Conclusion

Although Recursive Dimensional Clustering (RDC) isn't a complete collison detec-
tion solution, it's an impressive first-pass filter for determining groups of objects that
might be in callision. It works with blazing speed, dramatically outperforming brute-
force methods. While partitioning of the world space is the standard solution for
speeding up collison detection, RDC has remarkable performance in the absence of
such techniques. However, for practica purposes, RDC is best suited for analyzing
large numbers of objects (25+) for callision, perhaps even after other partitioning
agorithms have reduced the testable .
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Programming Fractals

Jesse Laeuchli
jesse@laeuchli.com

oday, many 3D games and applications display randomized landscapes. Often,

fractals are used to create these landscapes. Such landscapes are known for their
quality and realism, but only recently has the computer power become available in
game machines to play with them in rea time.

There are anumber of reasons why you might use fractals to make alandscape. If
you created a completely random landscape, setting the heights of the valleys and hills
to any height, it would look random, and unlike any real-life landscape. On the other
hand, if you assigned the landscape heights with an orderly function—for example,
sin—you would get a completely regular and predictable landscape, something not
possiblein real life. It is possible to use fractals to get a mix between the two: aland-
scape where there will not be impossibly wild mountains and valeys, or evenly spaced
hills, but more life-like scenes that match the qualities of the physical landscapes we
See around us.

A good non-mathematical definition of afractal is something regular that has
randomness added in a controlled way. Things modeled with fractals are not com-
pletely random, but they are not entirely orderly either. Fractals are most often used as
textures, or to create geometric models. Things that are complex, but do not have any
regularity (such as people) cannot be directly modeled with fractals.

This gem looks at the more useful fractals, and examines how they are used. Not
all types of fractals will be examined, as many of them are highly mathematical and
have little use in game programming currently. In games, fractals are usualy stored as
height-maps. a rectangular grid with numbers in each cdl representing the fractal's
value at that point. In the case of a fractal landscape, the value represents the height;
in the case of a fractal cloud, it might represent the density. The value can be inter-
preted in many ways, some of which (no doubt) have yet to be invented, however,
since height is the most frequent case, | shal refer to the "height" of a fractal at a
point, rather than using the rather bland word value.

239
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The Plasma Fractal

n—

One of the most common fractds is the plasmafractal ThIS is very essy to program,
the sort of thing demo writers love to optimize, and you have probably seen hundreds
of them (Figure 2.8.1).

FIGURE 2.8.1 A small plasma fractal.

To create a plasma, we create an empty height-map and assign heightsto the four
corners. Then, for each sde, we linearly interpol ate between each pair of corners. The
center squares height is the arithmetic mean of the four corners heights. We then
repeat the process for each of the four squares we have defined with these new ver-
tices, and recurse. This interpolation scheme generates a smooth curved surface
between the four corners, in fact, it can be used done to smoothly interpolate a
height-map.

To make a fractal from this smple curved surface, we introduce a new step at
each leve of recursion. After generating the center vertex, we add or subtract a ran-
dom amount from its height. At the next level of recursion, we do the same thing, but
we reduce the range of the random numbers by a number H. Note that this factor is
the only control available over the fractal. IfH is 0, the height-map varies wildly; as H
gets larger, die height-map gets less varied.

The main advantages of die plasmafractal are that it is extremely easy to understand
and runs very fast. Unless speed is more important than results, though, this fractal
should be avoided for two reasons. Fird, very litde control is available over die fractal.
Second, this fractal has very bad artifacts—very pronounced ridges aong the edges.

Th_e Fault Fractal

Another common fractal is the fault fractal Thls is aso qwte easy to program, but
much dower than the plasma fractal. The fault fractal very roughly smulates the
effect of severe earthquakes along random "fault lines."

To create this fractal, we again create an empty height-map. Then, we apply a
series of "earthquakes' as follows. create arandom line through the height-map, raise
every cdl on one sde of the line up asmal amount, and move every odier cel down
asmdl amount. This process is repeated until the landscape looks good enough.

This technique can create some very good fractals, but generating them is a dow
process. Generally, 1000 to 10,000 fault lines are required before you get acceptable
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Fractal

results. Therefore, the fractal cannot be donein real time! However, for offline pro-
ng, thisfractal isvery easy to implement and does not suffer from the same dias-
ing effects as subdivision fractals such as the plasma.

Thefault fracta is one of the few fractals that work on asphere. The lines become
great circles on the sphere that split the sphere into two hemispheres. Then, each
hemisphere is moved dightly on their common plane.

Fault fractals have no control parameters, other than the sequence of random
numbers used, so it is difficult to generate them artistically.

Brownlan Motlon

........ T

The methods given so far are rather ad hoc approaches to generating fractals. Fractal
brownian motion (FBM) fractals have a more rigorous mathematical background and
have very good mathematical properties, which makes them simple to work with.

An FBM fractal is a combination of noise functions, but each noise function is
specid. The key to this technique is understanding the different types of noise.

First, we have white noise, which is completely random. The static on atelevision
not picking up a signa is akin to white noise. The heights in white noise change
wildly, and are not related to the heights nearby.

Second, we have pink noise, which has alimit on how much its heights change
from one point to another.

In computer graphics, when the term noise is used it usualy means pink noise
unless otherwise specified. Ken Perlin was the first to use pink noise in computer
graphics, when he wrote his now-famous noise() function (known as Perlin Noise).
He was ds0 the first graphics programmer to win an Academy Award—for the afore-
mentioned function. (I look forward to winning my Oscar for best cal to fopenQ!)

While we usually think of noise as a ID function (e.g., sound) or a2D function
(e.g., aheight-map), it can be generated in 3D, 4D, and even higher dimensions. This
can be useful when one wishes to introduce a time component to an animating tex-
ture (which can simulate fire) or to an animating 3D density function (which can
simulate boiling clouds).

To create pink noise, you take a regular grid (or higher-dimension array) and
gtore random values in each cdl. The fractd is then generated at every point on the
surface by interpolating between these values. The defining feature of any such noise
function is then the frequency, which is the inverse of distance between the grid
points. The higher the frequency, the closer the pink noise gets to white noise.

Once you have created pink noise of various frequencies, it is easy to create an
FBM fractal by mixing the heights returned by the noise function. The simplest case
isjust adding the noise functions together, but they can be multiplied or combined in
other ways.

The FBM has a few more parameters than noise aone. In addition to the fre-
quency, there are the octave, amplitude, and //parameters. The octave variable sets how
many noises are added together. The amplitude is a varidble that adjusts the overdll
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height of the noise. H controls how much the amplitude changes over each octave. The
frequency of each dice of noise must be chosen aswell. To understand the effects of fre-
quency on an FBM, we can condder fractal landscapes. When adding noises together,
the lower frequency noise is respongible for hills and mountains, and the higher fre-
gquency hoise creates roughness. This gives a tremendous amount of control over
exacdy how the fractal looks. In addition, it is possible to make the amount that you
change the frequency differ from section to section of the noise function. This makesit
possible to have some areas of your fractal rougher than others, so you could have a
landscape that is rougher in the mountains, and smoother in the deserts.

It is dso possible to multiply the noise functions instead of adding them together.
Doing thiswill create more variety in your fractal. Multiplying noises together hasthe
effect of damping out the lower parts of the noise, and accentuating the higher parts.
If the resulting heightmap is used for a landscape, it will have planes, mountains, and
foothills—if you just add the noises together, the landscape will have a uniform look.
It is necessary to be careful when multiplying noises together, as it is easy to go to
extremes and dampen and accentuate things too much, leaving just aflat plane with
sikes in it!

Now that we have exami ned the theory of creatl ng FBMs the next step is to imple-
ment a noise generator. To generate noise, a source of random numbers to be interpo-
lated has to be generated. The following is the code for my random number
generator:
float random (int x , int y)

int  n=x+y*57;

n=(n«13)*n;

float ret;

ret= (1 - ( (n* (n* n* 19417 + 189851) + 4967243) & 4945007) /

3354521. 0) ;
return ret;
}

This function just multiplies, adds, and subtracts prime numbers from your
numbers, and returns a pseudo-random value between —1 and 1. Thisis not the only
way to generate random numbers, of course. Some systems use pregenerated random
numbers. That method gives a small performance improvement, but then you must
store large amounts of random numbers. With this method, dl that needs to be
remembered is the seed to regenerate the random numbers that were used.

Next, we need afunction that interpolates these random values. A simple lerping
function would work, and it would be fast, but it does not provide very good results.
While some use spline interpolation, this is the dowest and most complex option.
This article uses cosne interpolation to build our noise function. This has good qual-
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ity, it isfast, and it is easy to understand. Note that this is not the only noise function
possible, and it differs from Perlin Noise (which is much more complex). For amore
complete list, see [Ebert98].

Here is some code for cosine interpolation:

double cosineinterpolation(double number-1 .double number2,double x)

{ double ft;

double f;

double ret;

ft = x * 3.1415927;

f = (1 - cos(ft)) * .5;
ret=numberl*(1-f) + number2*f;
return ret;

}

Now that there is a random number function, and an interpolation function, it is
possible to create anoise function by creating random numbers and interpolating diem.

float noise(float x, float y)

t int xinteger=x;
float fractionx=x-xinteger;
int yinteger=y;
float fractiony=y-yinteger;
float vi1,v2,v3,v4,11,i2;
float ret;
v1= randomunber (xinteger, yinteger);
v2= randomunber (xinteger + 1, yinteger);
v3= randommunber (xinteger, yinteger +1):
v4= randommunber (xinteger + 1, yinteger +1);
i 1= cosineinterpolation (vl,v2,fractionx);
i2= cosineinterpolation (v3,v4,fractionx);
ret= cosineinterpolation (il,i2 fractiony);
return net;

¥

The preceding function takes two variables. Normally, the function is caled for
each point on the heightmap or grid in which you wish to store the results. Note that
thisistwo-dimensional noise.

In some casss, it is better to smooth the noise. Smoothing reduces the frequency
of your noise, and makes it look less square. It is pointless to smooth ID noise, as the
same effect is achieved by just reducing the frequency. If you want to smooth your
noise, cal smoothrandom instead of randomnumber in the noise function.

float smoothrandom(int x,int y)

float corners=(randomunber(x-1,y-1)+randomunber (x+1, y-
1) +r andomunber (x- 1, y+1) +randommunber ( x+1, y+1) )/ 16;

float sides = (randomunber(x-1, y)+randomunber (x+1,
y) +randommunber (x, y-1)+randomunber (x, y+1) ) / 8;
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float center = randomnumber(x, y) / 4;
float ret=corners+sides+center;
return ret;

}

This is equivdent to doing integration on the nine points around the center
point. '

After a noise function has been constructed, it is quite easy to create an FBM.
Thisishow itisdone

float FBM(float x, float y, float octaves, float amplitude, float
frequency, float h)

t float ret=0;
for(int i=0;i<(octaves-1) ;i++)
$ ret +=( noise (x* frequency, y* frequency)* amplitude);
amplitude*=h;
" %eturn ret;

While the way the values change over each octave in this noise may work fine in
many cases, sometimes it may be useful to change them. Y ou can change the amount
the frequency and amplitude change over each octave. Y ou can even skip octaves. This
control is another advantage to using FBMs (Figure 2.8.2).

A dight variation on FBMs are multifractals. Multifractals are like FBM's, except
that instead of adding noise, noise is multiplied together. Here is how they are made:

FIGURE 2.8.2 A) An FBM of just afew octaves. B) The same FBM after several more
octaves.



float Milti-fractal Ffloat x,, float y, float octaves, float anplitude,
iloat frequency, float h, float offset) =)

float ret=1;

for(int i=0;i<(octaves-1);i++)

. ret *=(offset)*( noise (x* frequency, y* frequency)*

anplitude); -
anpl i t ude*=h;

}
return ret;

¥

The offset variable gives some control over the multiplication of the noise. You

will notice that the resulting fractal has dififerent kinds of hills and mountains, as well
as planes.

Using FBM

Let's learn how to make clouds Wlth FBMs B -

T A St e e T

Clouds

Clouds are quite easy to make with FBMs. Y ou generate an FBM, then you interpret
al the heights over zero as white, and assign them an alpha value greater than zero. To
al heights lower than zero, assign an aphavalue of zero. Map this texture to a quad or
sphere, colored the way the sky would be at the time of day being modeled. Figure
2.8.3 shows some example cloud textures. See clouds.cpp for more details.

The example program uses OpenGL to map this texture to aquad. While it looks
less redlistic on a quad than on a sphere, it demonstrates the theory.

A B C
FIGURE 2.8.3 (A-C) Clouds generated with FBMs of decreasing frequency.



Rl matics

Landscapes

FBMs are dso useful for creating landscapes; in fact, FBMs can create excedllent land-
scapes. Just interpret the heightmap as heights for the landscape (hence, the name!).
To render it, create a flat plane out of triangles, and at each triangle vertex, use a

height from the heightmap (Figures 2.8.4 and 2.8.5). See landscape2.cpp for the
complete listing.

A B C

FIGURE 2.8.4 Various fractal heightmaps. theground texture is a height-frequency FBM colored by
height. A) Generatedwithasmall frequency, small octave, and small amplitude. B) Thesame
landscapewithamuchhigher amplitude. C) Generatedwithahighfrequency.

A B

FIGURE 2.8.5 Two multifractal landscapes. Note how there are valleys, plains, hills, and tall
mountains all in the same landscape.
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Strategies for Optimizing Al

Steve Rabin, Nintendo of America

steve_ rabin@hotmail.com

"Sophisticated Al requires significant computational power. The problem worsens
%" when dozens or hundreds of autonomous agents must intelligently roam the
world smultaneoudly. Yet this isnt your average optimization problem. Many
domains within games dedl with scalability, but Al has the extrawrinkle of supporting
imaginary paralelism. This paralelisn comes from each Al agent running its own
piece of code with the illusion of al agents thinking at the same time.

As it turns out, paradlelism is one of Al's greatest exploitable assets. This paral-
Ielism, along with other unique attributes of Al agents, can be manipulated to opti-
mize most Al systems. As you read through the following optiinization strategies,
keep in mind a mental picture of hundreds of Al agents al having unique actions and
agendas. When you consider this magnitude, it's more obvious why certain strategies
make sense.

Strategy f1: Use Event-Driven Behavior Rather than Polling

]

Idedlly, autonomous agents should contmuously monitor their world and react a:cord—
ingly. Every frame they might poll the world for events or objects to which they should
respond. This means everything from collison detection to noticing interesting things
to look at. The problem with diis approach is that it promotes an enormous amount of
redundant computation. As arule, individua polling is usually wasteful.

The dternative is to employ event-driven techniques whenever possible. For
example, in a basebdl game when the bal is initiadly hit, the bal could smply tel the
fielders that it was hit. This is extremely more efficient than each fielder polling the
situation to detect when the batter has hit the ball. Granted, this is an obvious use of
event-driven behavior, but it still shows the magnitude of processing that can be saved
by using an event-driven strategy.

Another example would be of an arrow flying through a battlefield. Normally, the
arrow would be checking for collisions with characters. If the arrow strikes a character,
it would then notify the character of the collison as well as the location. The charac-
ter could then react appropriately, responding to where the arrow pierced him. While
this is starting to be event driven, nothing too spectacular has happened yet.

251
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Now consider if you wanted the character to anticipate the impact of the arrow,
or even try to avoid the arrow. A polling solution would involve each character inter-
mittently looking for nearby arrows. Conversely, the event-driven solution is to have
the arrow predict future collisons, as part of its collison detection routine, and notify
any characters that might get hit in the future. The characters can then do whatever
they want with that info, including running away, ducking, or bracing for impact.
The result is very deep behavior without the need to poll for every contingency.

A good example of an event-driven Al system can be found in the first Game Pro-
gramming Gems book, in the article "Designing a Genera Robust Al Engine"
[RabinOQOa).

Strategy #2: Reduce Redundant Calculatrons

% 5 SR T

The goal of thls strategy is to reduce redundant calculatlons by sharing the results
between severd Al agents. Many times agents will individually recalculate the same
information, even though they could have calculated it once and shared it. Thisis an
essy optimization that can often save many cydes

A simple example of this strategy is apparent in collison detection. If every object
were to run its own simplistic collison checks, there would be O(rf-n) tests, or 9900
caculations for 100 objects. However, since a given pair of objects only needs to be
tested once, an optimized collison algorithm would have only O((rf-n)/2) tests, or
4950 calculations for 100 objects. The savings come directly from eliminating redun-
dant work.

Another example of reducing redundant computation is found in pathfinding.
When aplayer grabs a bunch of units and orders them to al move to the other side of
the map, each unit might expect to separately find a path. Instead, afaster and smpler
solution is to let one unit find a path and then let the other units roughly follow him.
This avoids the virtualy identical path requests that would have normally taken place,
thus saving a considerable number of cycles.

Strategy #3: Centralrze Coo__peratron wrth Managers _

Agents often need to cooperate with other agents Whether they compnse a crack
commando squad or a sports team. Cooperation among multiple agents can be made
faster and simpler by having a manager entity make the complex decisions. These
complex decisions usually determine each member's role, while the agent is left to
autonomously execute that role.

For example, imagine a SWAT team that is infiltrating a building. The team
needs to cooperate very tightly in order to secure each position and move on. If mem-
bers had to determine their actions individually, it would be quite difficult to coordi-
nate and would require an enormous amount of inter-member communication.
Instead, a manager entity can plan out each step of the operation and instruct indi-
vidual members as to their immediate god. This simpler approach results in a more
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robust and efficient design. An example of how a manager can simplify the game of
baseball can be found in [Rabin9g].

It's important to remember that with this strategy, managers don't need to be rep-
resented on-screen. Usually these managers are just fictitious entities that organize the
complex cooperaion among Al agents. You can even imagine transient managers that
dynamically form around groups of monsters that have banded together. If that group
then divides or combines with another group, each newly formed group can be
assigned its own manager. With these monster managers, individual monsters can
be coordinated so that optimal targets are chosen and everyone doesn't mob the same
enemy.

Strategy #4: Run the AI Less Often

Rarely do AI agents need to run through dl of therr decrsron making routines every
frame. Many times, agents can run portions of code every couple frames or even every
couple seconds. Since red creatures have reaction times, it's not unreasonable for Al
agents to have less than lightning reflexes. This results in ahandy way to cut down on
Al processing.

Using an agent architecture that supports arbitrary timer calbacks is a great way
to implement this strategy. If an agent can easly set atimer and be notified when it
expires, flexible systems can be built that are easily tunable. The first Game Program-
ming Gemsbook has agem "Designing aGeneral Robust Al Engine" [RabinOOa] that
discusses a timer messaging system that is well suited for this srategy.

One problem with this strategy is the possibility of Al processing pesks. This
would occur if a mgjority of the agents became synchronous in their calback execu-
tions, simultaneously executing every TV seconds or so. The simple solution isto ran-
domize the window of processing for each agent. For example, an agent might execute
his invader-detection code every 0.3 to 0.5 seconds, randomly picking a new delay
within that window after each callback. This random window of execution virtually
guarantees that agents won't become synchronous with each other, accidentaly caus
ing a processing peak.

Typrcdly, A* pathfrndrng is one of the dreaded algorrthms that can eat up CPU
cydes. Since situations rarely change much over a couple frames, it's possible for an
agent to spread a pathfinding calculation over several frames. By saving the results
from each frame and resuming the next frame, a path can be found over 2-4 frames.
This results in a lower per-frame processing load. Any algorithm that can take an
unspecified amount of time can be broken up in this manner.

This dtrategy can be implemented as a specid case in amodule, like a pathfinding
module, or it can be part of an Al operating system. The next gem in this book,
"Micro-Threads for Game Object Al,” by Bruce Dawson, explans how you can
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implement a micro-thread strategy in order to minimize Al loads. This particular
architecture makes it easier for an Al agent to spread calculations over many frames
and can help keep processing loads under control. Following Bruce's gem is "Manag-
ing Al with Micro-Threads' by Simon Carter, which describes how to best structure
your Al within a micro-thread environment.

Strategy #6: Employ Level of Deta|I Al

Strategy #7: Solve Only Part of the Problem -

The level-of-detall (LOD) concept is aclever opt| mlzatlon thaI has many uses outside
of graphics. Currently, most game engines use graphical LODs in order to quickly
render objects that are far off in the distance. The ideaiis to use a low polygon count
model when an aobject is far from the camera, and use a high polygon count model
when it's close. The effect is that the rendering time is greatly sped up with little or no
visual loss to the game. An important redlization is that the level-of-detail concept can
aso be applied to other game programming areas, such asAl.

Practicaly, the level-of-detail technique for Al comes down to three Strategies. The
first is to vary the processing frequency of an agent by how close it is to the camera,
player, or action. The second is to vary the complexity of an agent's algorithms based
on relevance, by doing things such as eliminating precise pathfinding when an agent is
offscreen. The third is to represent multiple agents in a single simulation algorithm as
their individual importance decreases to the player. An extreme example of the third
variation is to smulate the outcome of a far-off military battle with a smple formula,
while battles close to the player might simulate every single soldier and bullet.

Level-of-detail is dl about trying to get away with less work without the player
noticing. If the player can tell something iswrong or different, then the optimization
needs to be scaled back, just as it would be with graphical LODs that visualy "pop.”

When given alarge problem sometimes it sufflces to only solve the part that you need
right away. The rest of the solution can then be computed in the future when you
actually need it. It might even be the case that the situation changes enough that the
rest of the problem is irrelevant and never needs to be computed anyway. This strat-
egy isextremely similar to lazy evaluation.

The best example of this strategy in action is probably hierarchical pathfinding. In
hierarchical pathfinding, the path is found in two phases. Firs, the character's high-
level, room-to-room path to the god is cdculated. Once that is computed, the micro
path to get the character to the next room, toward the goa, can be computed as each
new room is entered. If for some reason the character gets redirected, the remaining
path is thrown away and never computed. This on-demand pathfinding results in a
tremendous speed improvement that is critica for games that have large areas to navi-
gate. See [RabinOOb] for acomplete description of hierarchical pathfinding issues and
implementation.
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Strategy #8" Do the Hard Work Offllne o

Sometimes, aproblem is so dlfflcult that you dont even have the CPU time to solve
it. In the early years of game development, problems such as finding the cosine of an
angle smply took too much time. This resulted in programmers precal culating cosine
for a range of values and simply indexing a look-up table to get the answer. While
today that technique is no longer relevant, the basic strategy is as useful as ever. .

Current incarnations of this strategy can be found in precomputed BSPs, pfe-
analyzed terrains, and carefully trained neural nets. Later, you'll find three gems that
exemplify this strategy: "Terrain Reasoning for 3D Action Games' by William van
der Sterren, "Expanded Geometry for Points-of-Visibility Pathfinding" by Thomas
Young, and "Using a Neurd Network in a Game: A Concrete Example’ by John
Mandow. Each gem exploits the bountiful offline time that can be used to analyze,
refine, and store specidized information that can then be used a a moment's notice
during runtime. Thisis surely one of the most powerful optimization strategies, since
it can cram thousands of hours of wisdom into a few kilobytes of data and a trivia
amount of CPU cydes.

ThIS strategy has the opposte problem of the Iast strategy Often you dont have
enough offline time to create the behavior or scripts for hundreds of background Al
entities that might populate your world. The solution is to come up with very smple
rules that result in intelligent, emergent behavior. Later in this book, the gem "Hock-
ing with Teeth: Predators and Prey” by Steven Woodcock details how flocking can help
create wonderfully complex behavior that is unscripted, yet interesting and lifdike.

Unfortunately, this strategy is a double-edged sword. While it cuts down on the
amount of offline work, it has the potential for unintended consequences. In his gem,
Steven describes a world full of creatures that feed off each other. This sometimes
results in the predators completely wiping out the population of prey, causing the
entire ecosysem to collgpse. By its very nature, emergent behavior is unpredictable
and can be hard to thoroughly test. Consequently, it might be best suited for noncrit-
ica Al entities that aren't pivotal to the progress or completion of a game, such as
background wildlife.

Strategy #10: Amortize Query Costs with
Contmuous Bookkeeplng -

Sometimes alot of data n%ds to be coIIected in order to make an intelligent decision.

If that data is gathered right when it's needed, then it might take an unacceptable
amount of time to calculate. The solution is to continuously update a data structure
with this dataasit changes. Although more time and memory is spent keeping track of
data, it's amortized over many, many frames. The result is that a smple query of the
data no longer causes ahit to the frame rate.
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Influence maps are an excellent example of this strategy at work. Influence maps
are used to analyze general strategic patterns, and in doing so, speed up Al decisions.
As agame progresses, the units keep their info updated within the influence map as
they move, evolve, or disappear. This way, when a general strategic Al wants to ana-
lyze the world, the datais aready available. This results in quick queriesto the influ-
ence map without any significant speed hit. Further in this book, you'll find the gem
"Influence Mapping” by Paul Tozour that explains influence maps and has some
unique insights into making them even more powerful.

This strategy is dso key in a later gem written by Matt Pritchard entitled "A
High-Performance Tile-Based Line-of-Sight and Search System.” In his gem, Matt
uses this strategy of continuous bookkeeping to maintain the line-of-sight data for
hundreds of agents in red time, which is not asimple task. Many RTS games fail to
achieve this frame-by-frame accuracy for their fog-of-war, mini-map, and genera
intelligence; however, Matt fully explains the techniques and strategies that give the
Age of Empires seriesthat extraedge.

Strategy #11; Rethlnk the Problem

Mlchael Abrash iswel known as an opti mlzatlon guru W|th|n the game development
community, aswell as one of the leading figures in graphics research. On many occa:
sions, both in presentations and in print [AbrashOO], he has stressed the importance
of rethinking a problem in order to speed up code by orders of magnitude. His main
premise is that optimizing specific sections of code will dways result in marginal
gans. The red way to optimize is to attack the problem from a dightly different per-
spective, with an aternate approach or algorithm.

This strategy iswell illustrated later in the book by Michagl Zarozinski in his gem
"Imploding Combinatorial Explosion in Fuzzy Systems" In this gem, Michagl
explains an alternate algorithm, caled the Combs Method, which completely circum-
vents the exponential nature of traditional fuzzy systems. Although the method
doesn't produce identical results, the output is very comparable and sufficient for
most purposes. In addition, it smplifies fuzzy logic implementation and planning to
the point where anyone can easily incorporate it into a game.

Rethinking a problem from a different perspective is probably the best advice
anyone can give for optimization. It's the seed from which every other optimization
grows. Only through the process of redefining or abstracting the problem, creating an
analogy, or changing your perspective, can you make the legps that will dlow you to
truly optimize your code. While legps don't come very often, you can learn from
other's legps by simply reading and learning as much as you can about how they
solved similar problems.
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Conclusion

It takes adightly different perspective to optimize the problems that face Al systems.
Dont be afraid to scan the lig of drategies the next time you're faced with trying to
Speed up aseemingly unoptimizable system. With so many ways to view a problem, it
helps to refresh your memory and contemplate how each strategy applies to your
unique situation. Here is arecap of dl the Strategies.

Use event-driven behavior rather than polling.
Reduce redundant caculations.

Centraize cooperation with managers.

Run the Al less often.

Distribute the processing over severd frames.
Employ level-of-detail Al.

Solve only part of the problem.

Do the hard work offline.

Use emergent behavior to avoid scripting.
Amortize query costs with continuous bookkeeping.
. Rethink the problem.

Boow~Nounrwpp
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Asyou read the gems that follow, consider how these optimization strategies have
been applied and exploited within each. While there are a wide variety of strategies,
it's quite amazing how disparate problems can often be solved with the same Strategy.
The genius is in seeing those connections.
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riting good Al can be very difficult. It took many years and millions of dollars

before a computer program was able to beat the world's best chess players.
Game Al doesn't have to play championship chess, but it does have to update many
game objects per frame, in very little CPU time.

Adding to the essential complexity of writing good Al is the "accidental complex-
ity" [Brooks95] introduced by the common methods of implementing Al for game
objects.

As an example of accidental complexity in most games code, let's say we want to
make a "Janitor" object that wanders around our world cleaning up. This janitor's
routine is very smple choose a target, move toward it, digpose of it when you get
close enough, and then repeat. Of course, since thisis for agamewewant to do itin
small steps, one per update loop. Some C++ style pseudocode — without accidental
complexity — might look likethis:

voi d Janitor: :Process() {
while (true) { ;
CameQbj ect* target = Get NewTarget (this) ;
while (Distance(this, target) > k_collisionTol erance) {
Wai t OneFrameO;
MveAB t Towards(this, target);

E)'spose(thi s, target);
) b
}

However, that doesn't work very well in a game because it doesn't share the CPU
with other entities in the world. Therefore, the traditional way to implement such a
janitor object would be as a Janitor dass with avirtual function that is caled every
frame, like this code, taken from the sample on the CD:

ON THE €D

Janitor: :Janitor()
: m_target(0), m state(k_NeedsGoal) {
}
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void Janitor: :ProcessFrane(){
switch (mstate) {
case k_NeedsGoal :

m target = Get NewTarget (this) ;

if (Dstance(this, mtarget) <= k_collisionTolerance) {
mstate = k_Dispose(nj ect ;
ProcessFrane() ; // Call ourselves.
return;

r%w state = k_MovingTowar dsTar get ;
IT Intentionally mssing break.
case k_Movi ngTowar dsTar get :
MoveABi t Towar ds(this, mtarget);
if (Distance(this, mt argetc)J > k_col | i si onTol er ance)
br eak;
el se
mstate = k_Di spose(j ect ;
IT Intentional ly mssing break.
case k_Di spose(j ect:
D spose(this, mtarget);
mstate = k NeedsGoal ;
br eak;

}

What amess Our Al code has gone from simple and elegant to ahuge and unread-
able state machine. Modifying the second verson of die code will dearly be much more
complex, and die state machine cannot be reused widi anodier class, because it requires
m_state and m_target. That's accidenta, or nonessential complexity.

Centra to die problem is that dl of die state now has to be stored in die object.
This is a profound change. In the first version of the code the "target” variable was
declared as alocd variable. It was created exactly when it was needed and fell out of
scope when itsjob was done. Now, the target has to be recorded in the object. We dso
added another member variable to our Janitor class, m_state. Where did this variable
come from? Why waant it needed in our first verson of this routine?

In thefirst version of Process( ), die state isimplied by which line of code is exe-
cuting. It's stored in the program counter. The program counter keeps track of die
current state, the stack pointer points at the current set of variables, and life is essy.
When we implement Al with callbacks, we have to simulate the instruction pointer
and gtack pointer and the benefits they bring us.

A Simpler Method

At this point, it should seem obvious that using calbacks for our entity code is messy.
Therefore, how do we turn our simple version of die janitor code into something that
actudly works? To do that we need to let the rest of the game loop and die other
objects have some CPU time, and we need to synchronize the objects so they do
exacdy one update per frame. To do this we need to put each game entity into a
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separate thread and have the WaitOneFrame() function switch to the next thread. With
such a system, the pseudocode of the first example can be compiled and run perfectly!

We could start an OS thread for each object. This lets each thread pretend that it
owns the CPU, while the operating system manages the magic of swapping things
around to change the CPU state. The WaitOneFrame() function would do the neces-
sary work to switch to the next thread—see the sample code for details.

This sort of strategy works well for Web servers and other multi-threaded apps,
but it's a poor option for games. Many games run in environments where there is no
operating system support for threads—or no operating system at al. Even if there are
threads, they are frequently too expensive for game purposes. Switching threads on
Win32 takes thousands of machine cydes, and each thread uses up a minimum of 8
KB of memory—4 KB for the Thread Information Block and 4 KB for the smallest
possible stack. Both allocations take 4 KB because, in order to keep threads indepen-
dent and allow for stack growth, their alocations are put on separate memory man-
agement pages, and this forces a 4K granularity.

On Win32, there is dso the option of using fibers—cooperatively multitasking
threads. Fibers are a bit better for our purposes because the context switching is much
faster and more easly controlled. However, the stack still takes at least 4 KB, and
fibers don't work at dl on Win95. On Win98, eech fiber sack takes a minimum of 8
KB, making its memory footprint as bad as for regular threads.

A T 0t oA s M G I BT e

Lets step back and thl nk about precisdly what we Want We want to be able to write
Al or other object-updating code that can pretend that it owns the CPU. After exe-
cuting the code for one time dice update, we want to be able to cal WaitOneFrame()
to give the rest of the game some CPU time. When WaitOneFrame() returns we want
execution to continue where it left off, one time dice later. We want this to be fast,
and we want minimal memory overhead.

What do we have to do to switch from one thread of execution to another? The
instruction pointer in a CPU is aregister that points at the next instruction to be exe-
cuted. If we were to write some code that changed the instruction pointer, we could
easily jump from one thread to another. Changing the instruction pointer is easy-
CPUs have many instructions for doing that. In afew lines of assembly language you
can get the current instruction pointer, store it somewhere, and then jump to a new
location. This will give die desired effect of jumping back into a previoudy running
piece of code—but if that's dl you do, you will be terribly disappointed.

The instruction pointer is not the only piece of state in a CPU and it is not the
only thing that determines what function you are executing. Another important piece
of the puzzle is the stack pointer. All of the loca variables of a function are stored rel-
ative to the stack pointer (or the stack frame pointer, but let's ignore that for now). In
fact, the stack pointer is even more important than the instruction pointer, because
function return addresses—instruction pointers—are stored on the stack.



< 23 (el ITIF= 1010 M E LTI L= o N e e R s O

VAITE

ONmca>

Let's imagine that weve written a piece of code that pushes the instruction
pointer onto the stack, then changes the stack pointer, and then pops the instruction
pointer off of the stack. Since the new instruction pointer is popped off of the new
gtack, changing the stack pointer has adso changed the instruction pointer—voilfr,
weve changed threads. In fact, since calling afunction pushes the instruction pointer,
and returning from a function pops the instruction pointer, our thread switching
function is just two instructions—move a new value into the stack pointer, then
return!

Okay, it's not quite that essy. First, CPUs have more registers than just the stack
pointer and the instruction pointer. No problem—well dea with them the same way.
Push them al onto the stack at the beginning, change the stack pointer, and then pop
them dl at the end. Itjust works. The exact details vary from CPU to CPU, but any
CPU that has enough flexibility in where you point the stack pointer can implement
this system. Micro-threads have even been implemented on a Nintendo GameBoy!
On an x86 CPU, a complete thread switch can be implemented in 12 assembly lan-
gu’ge instructions. In the micro-thread sample programs on the CD, that is al the
assembly languagethat isused. Hereisasample SwapT hreads() routine:

SwapThr eads
Il Preserve all of the registers that VC+ insists we preserve.
[l VC++ does not care if we preserve eax, ecx and edx.

push ebx

push ebp

push esl

push edi

/1" Swap stack pointers

Ithov gax, esp

nov esp, s_gl obal StackPoi nter
nmov s_gl obal St ackPoi nter, eax

Il Restore all of the registers that we previously preserved.
Il Yes, they're coming off of a different stack - they were
/1 carefully placed there earlier.

pop ed
pop esi
pop ebp
pop ebx

ret

Isthat dl thereisto it? That depends. On some CPUs, you may have to preserve
floating-point or multimedia registers as well. On the Intel architecture, because of
the, umm, peculiar arrangement of the floating-point registers, it is impractical for
compilers to preserve them over function cals, so compilers dways make sure that al
floating-point numbers have been written to memory before calling any function,
including your WaitOneFrame() function. You aso don't need to preserve al of the
integer registers, because compilers don't expect dl of them to be preserved over func-
tion calls—consult your compiler documentation for details.
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Stack ‘Management

But what, exat:tly, are we assigni ng to our stack pointer when we change threads?
When we start an OS thread we are implicitly allocating and initializing a stack—now
we have to do it ourselves. On Win32, the operating system allocates a4 KB page of
memory for each stack. It aso reserves some extra address space—1 MB by default—
S0 that the stack can grow. If you declare alarge array in afunction, or have deeply
recursivefunction cals, the operating system automatically allocates more 4 KB pages
of memory. If you go beyond the address space that was reserved, it stops you with a
pagefault.

We're trying to avoid alocating 4 KB of stack for each thread, so how much
should we alocate? We might decide that we want to alocate no more than 100 bytes
of stack per object; after al, we want to have hundreds or thousands of these things.
We could use maloc or new to alocate 100-byte blocks and then, with a bit of care-
ful array initiaization, set up this sack so that we can switch to it with
SwapThreads(). This method will work, but it's rather dangerous. If you write any
game entity code that uses abit too much stack, terrible things will happen. Y ou will
corrupt whatever block of memory conies before the thread stack, and your game will
crash. If you decide to use this system, be sure to put some sort of marker at the far
end of the stack, and check these markers after every thread switch to see if they have
been overwritten. At leadt that way you will know when you have trashed memory.

A dlightly different implementation of micro-threads can avoid these strict stack
sze limits. In this variation a large stack is alocated that dl micro-threads share.
When a micro-thread goes to deep, the thread manager copies the contents of the
stack to a resizable backup buffer. This buffer only needs to be reallocated when the
thread's stack size increases, so the buffer alocation time is negligible. Therefore,
the only additional overhead of this method is copying the contents of the stack back
and forth. Interestingly enough, this copying is virtually free, because it primes the
CPU caches and prepares them for running the thread.

So far, sack copying probably doesnt seem any better than dlocating a fixed
stack for each thread. However, the advantage with stack copying is that the stack
usage only needs to be small when you switch threads. If your Al entities need to call
a complex BSP pathfinding routine, a debug print function, or some other function
that uses alot of stack, they can do this with stack copying micro-threads. The tem-
porarily large stack usage is harmless as long as you don't call WaitOneFrame() from
deep within these utility functions. With fixed-stack micro-threads you can never use
large amounts of stack—not even temporarily.

This is a huge advantage. If your Al routines are forced to use atiny little stack
with not much depth, you may end up with Al that has atiny little brain with not
much depth.
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Loading and Saving Games

Compilers will sometimes generate stack frames for each function, which are used for
easer addressing of loca variables and parameters. These stack frames are tied
together in alinked list on the stack. In other words, a typical stack contains pointers
to itsalf. Therefore, the stack image cannot be used in a different location.

Stacks dso contain return addresses—pointers to code. Therefore, if you save a
stack buffer to disk you cannot load it up and expect it to work if you have recompiled
your code—all of the code bytes will have moved.

Even if you ded with the problems of micro-thread stacks containing pointers to
themsalves and to code, the stacks will contain local variables, some of which will
be pointers. When you have pointers in a structure you can till save and restore the
structure if you are careful, but with micro-thread stacks, you don't know where the
pointers are. Careful use of C++ pointer objects can manage this problem, but it is
complicated.

Therefore, loading and saving of games that use micro-thread stacks is problem-
aic. This may restrict their usage to games that don't need to load and save, or to con-
sole machines where the exact memory layout can be restored when saving.

Structured Exception Handling

Win32 structured exception handling is a critical part of a debugging strategy, as it
ensures that detailed crash information is recorded. It is dso used to implement C++
exception handling. However, if you aren't careful, structured exception handlers will
not get caled for exceptions that happen inside micro-threads. That's because the OS
handler that walks the linked list of exception handlers (another linked list on the
stack) gives up if it notices an implausible pointer, such as a stack pointer outside of
the current OS thread's known stack range [Pietrek97].

This can be avoided if you locate your temporary stack somewhere in the address
range of your real stack, well below what youre actudly usng. Remember that it has
to be in afixed location because the linked lists on the stack won't work if it moves,
and you have to make sure that your main thread's stack never goes down far enough
to be overwritten by the micro-thread stacks.

OutputDebugString

OnWindows NT, ifyou cal OutputDebugString() from amicro-thread whenyou're
not running under a debugger, your program may exit, due to the structured excep-
tion handling problem mentioned earlier. This is eadly fixed by placing your stack
appropriately or by using the OutputDebugStringWw95() function on the companion

CD-ROM, which detects whether you are running under a debugger and only uses
OutputDebugString() when it is safe. It dso looks for DBWin32, the freely available
debug output monitoring program, and talks to it directly whenever possible.
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Conclusion

Threads are a simpler method of writing Al code for many independent entities.
Micro-threads let us implement our game entities using threads without die high
memory or CPU cogt of other threading methods. Micro-threads can be eadly imple-
mented on any CPU architecture, with very little assembly language [K eppel Ol].

A sample implementation of micro-threads for Win32 is on the companion CD-

==~ ROM. Also included is asimple game that uses micro-threads, and atest application
«««« £ comParmd Micro-threads to Fibers and OS threads.

Micro-direads have aso been implemented in severa scripting languages used in
games, such as Lua [LuaOl], SCUMM (aproprietary Lucas Arts engine dso used by
Humongous Entertainment), and Python [TismerOl].

A micro-thread janitor can clean up your game code.

References

[Brooks95] Brooks, Frederick P, J. The Mythical Man-Month: Essays on Software
Engineering, Anniver saryEdition, Addison-Wed ey, 1995.

[KeppelOl] Keppel, David, "QuickThreads distribution," available online at http://
www.mit.edu/af §/sipb/project/scheme/src/guide-1.3/qt/, June5, 2001

[LuaQl] "The Programming Language Lua," available online at www.tecgraf.puc-rio.
br/lua/about.html, February 22, 2001.

[Pietrek97] Pietrek, Matt, "A Crash Course on the Depths of Win32 Structured
Exception Handling," Microsoft SystemsJournal (Jan 1997).

[TismerOl] Tismer, Chrigtian, "Stackless Python," available online at www.stackless.
com/, February 23, 2001.




Managing Al with Micro-
Threads

Simon Carter, Big Blue Box Studios

scarter@bigbluebox.com

s discussed in the previous gem, Al in games is generally implemented through

some form of state machine. State machine architecture has a number of advan-
tages for Al. Mogt notably, the system can be suspended at any particular state, afacil-
ity that is critically important for any game that intends to have more than one Al
entity. However, traditional implementations of state machines tend to be messy,
unintuitive, pro'ne to bugs, difficult to debug, and hard to read. Micro-threads offer a
far more elegant way of implementing state machines and can lead to a very robust
and extensible Al system. This gem attempts to give an idea of how to implement
such asystem and take full advantage of its flexibility.

Piece by Piece

Micro-threads alow us to code up state machines using normal, everyday program-
ming practices. Most of the "magic* goes on in the background, leaving us free to
design our Al system as elegantly as we wish, without having to pander to background
architecture issues. Although this is very liberating, it can be difficult to know where
to start when so many restrictions are lifted.

Good artificial intelligence in games is dl about organizing what can become a
very complex system into manageable chunks, and to make these "modules’ as intu-
itive and reusable as possible. An important design decision is the granularity of this
modularization. By way of example, dassc state machines by necessity tend to make
each individua state amodule, and it is this very low-level granularity that makes the
system awkward. Micro-threads allow us to choose the granularity of our modules
ourselves, and choose the level that makes the most sense conceptualy.

From a design standpoint, it is far better to break complex Al into units of
"behavior." In this context, "behavior” is the full set of tests and actions that are used
to modd an entity's responses to particular stimuli; for example, being hungry, being
in a fight, being scared, and so forth. The more behaviors a particular entity has, the
more rich and varied its resulting Al will appear to be. An ided design scenario would
be to have the ability to attach different suites of behaviors to different entities. In

265
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addition, it would be great to be able to reuse certain common behaviors between dif-
ferent types of entities, and hence minimize the amount of replicated code.

A system based on behaviora units will dlow us to congtruct flexible Al out of
these different modules, alowing usto rapidly build up different entity "brains' from
reusable behaviors.

Good Behavior

....................................................................... P T A e ATt

Here's how a general mterface fora beha\nor module might look:
class CAl Behavi or

{ CAEntity* PEntity;

public:
CAl Behavi or (CAl Enti ty* pentlty)
virtual bool |sRunnabl e(voi d)
virtual void Update(void) = 0;
virtual void OnActivate(voi d) =0
virtual void Oeanup(void) = 0;

h

The | sRunnabl e method isresponsible for stating whether the correct conditions
are present for the behavior to run; for example, is there food nearby and is the entity
hungry, for a"hunger" behavior. OnActivateis caled whenever aparticular behavior
becomes "active"" Cleanup is caled whenever abehavior is deactivated and is respon-
sible for making sure that the entity is put back cleanly into whatever state it wasin
before the behavior was activated.

Don't worry about these too much, as they are only necessary when we want to
organize multiple behaviors later. For the moment, the most important method
for our single unit of behavior is Update, as this is the method that performs the meat
of our Al.

In general, aparticular module of Al behavior will ssimply be atree of conditional
tests, which will resolve into different actions. For example, think about what a hun-
gry creature might do.

CFood* pfood = FindPFood(PEntity->GetPos());
if(pfood!=NULL){
I/ Move toward the food until we are near it
whi | e(! Posi tionsAdj acent (PEntity->GetPos(),  pfood->GetPos())
PEnt i ty- >MoveneSt epTowar dsPos( pf ood- >CGet Pos() ) ;
PEntity->Eat Food(pfood); //Eat the food.

}

Here, the creature looks for food and, if it finds it, moves toward it one step at a
time until it is adjacent. When it is near the food, it eats it. Unfortunately, if we ran
this code, the game would freeze in the while loop; this is where micro-threads come
in to save the day. Assuming this behavior dass is being run in a micro-thread, al we
have to do is add one magica line;
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while (!'PositionsAdjacent(PEntity->GetPos() , pfood->GetPos()){
PEntity->MoveOneStepTowardsPos(pfood->GetPos()) ;
MicroThreadSleepO ; // a call to suspend the micro thread.

IE-’Entity->EatFood(pfood);

Suddenly, our smple Al process is astate machine! Now, after every step, the Al
will suspend its processing, returning control to the main game.

It's AII |n the I\/I|nd

Although it may not seem I|ke weve achl eved much yet, we are now able to construct
asingle module of Al behavior. In order to make an entity's life rich and varied, how-
ever, we need some way of organizing and prioritizing multiple, conflicting behaviors
in such away that only one is active a atime. This is where the brain class comesiin.

class CAlBrain

{ M croThr ead| nf o* PM croThr ead:;
std: :1ist<CA Behavi or> Behavi ors;
std: :list<int> Behavi orPriorities;
CAl Behavi or * PAct i veBehavi or;
i nt ActiveBehaviorPriority;
public:
voi d AddBehavior(int priority, CAlBehavioré& behavior);
voi d Updat e (void) ;
};

Each Al entity in our game will have its own brain, and each brain has a micro-
thread. Using the AddBehavior method, different types of entities can add different
behaviors to the suite of possihilities. In addition, each behavior is given a priority,
which can be used to help choose the behavior to run. It is the responsibility of the
Update method of the brain to keep switching control to the micro-thread, which will
in turn keep pumping the U pdate method of the active behavior.

Before that, however, we must make sure that there is an active behavior. When
our entity has nothing to do, we need to run through dl the available behaviors and
choose the one with the highest priority that succeeds in the | SRunnabl e test. We take
that chosen behavior, cdl OnActivate on it in case it has any specia initiaization
code, and set it as our active behavior. Once that behavior has finished, we call
Cleanup onit to run any uninitialization routines it may have, and then do the whole
thing again.

In thisway, abrain will make sure it dways keeps an appropriate active behavior
running. In practice, it is usually a good ideato give dl entities some type of fallback
idling behavior that will aways pass the | sSRunnabl etest, just so that it dways looks
like it is doing something.

There is a dight additional complication to this. Say our entity has decided it
wants to go and run its Sleep behavior for a couple of minutes, because everything is



quiet and its DefendSelf behavior, despite having a higher priority, has found no
aggressorsin the | sSRunnabl e method. Unfortunately, whileitisdeeping, theentityis
attacked by some unscrupulous enemies. Using the system described previoudy, our
deeping Al character will be brutally murdered in his deep, because he would only
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choose another active behavior when his current one finished.

What we need to do is periodically check our behavior list for an entry that suc-
ceeds on IsRunnable and is of a higher priority than the active behavior. If we find
one, we unplug whatever is currently running—in this case, our Sleep behavior—and
dap in our new, higher priority system—DefendSelf. In this particular instance, it
would probably bethejob of the Cleanup method of the Sleep behavior to ensure that
the entity is awake, before the new and rather more violent behavior is plugged in.

The code for the badcs of this system is shown here:
voi d Update()

{

¥

CAl Behavi or* pending = NULL;
i f(PActiveBehavior) {
pendi ng = Fi ndNext Behavi or (ActivePriority);
by
I f(Spending &% !PActiveBehavior)
pendi ng = Fi ndNext Behavi or (-1);
i f (pendi ng)
i f(PActi veBehavi or)
Term nat eAct i veBehavior () ;
PActiveBehavior = pending;
PActi veBehavi or->MnActivate();

|}f (PAct i veBehavi or)
Swi t chToM croThread( PM croThr ead) ;

voi d FindNextBehavior(int priority)

ﬁ/ Find a higher priority behavior that passes |sRunnable

¥

static void M croThreadFunction(void* pcontext)

{

CAlBrain* pthis = (CA Brain*)(pcontext);
whi | e(! pt hi s->Ter ni nat eThr ead) {
I f(pthis->PActiveBehavior){
pt hi s- >Act i veBehavi or Runni ng=true;
pt hi s- >PAct i veBehavi or - >Updat e() ;
pt hi s- >Act i veBehavi or Runni ng = fal se;

& croThreadSl eep();
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Complications
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Dying Considerately

All of this so far has been deceptively simple. Brains run micro-threads, which in turn
cdl update methods in behaviors. However, distributing processing across game turns
has a number of important ramifications with which we need to ded. If we return to
the simple hunger code we looked at earlier, there are a couple of hidden difficulties.
First is the issue of tracked entity death; because the code is now spread across multi-
ple game turns, somebody ese may esat the food we are tracking by the time we reach
it. If our food had simply been deleted from the game when it had been eaten, the
code would crash since our pointer would be tracking invalid data.

Depending on how we handle entity deaths in our game, there are a number of
ways to deal with this. Fundamentally, we have to make sure that any handles we have
on game entities will be valid between game turns. In addition, we should be able to
inquire whether the entity we are tracking has died. One solution is to force our per-
sistent handles to be identifier numbers instead of pointers, unique to every entity
that gets alocated in our game. That way, when an entity dies, our game code can
smply tell us that our handle is invalid. Unfortunately, whenever we wish to access
any part of the entity, we have to turn our handle into a reference to the actua data,
which can result in bloated, inefficient code.

A better method is to write a specia smart pointer system that deals with all of
these issues automatically; a good set of guidelines for writing smart pointers is given
by Scott Meyers [Meyers96]. Classic smart pointers conceptually have a degree of
ownership over the objects they point to, through reference counting of some sort.
What we want is the reverse, a pointer that passes ownership of itsdlf to the specia
type of object a which it is pointing. Whenever a tracking pointer is pointed at one
of our objects, it registers itself with it. Then, when the object dies, it can inform any
tracking pointers that refer to it about its death and set them to a null value. Once we
have this working, al we have to do in our Al code is make sure we check that the
pointer is non-null before we use it. Example code on how to implement this "track-
ing pointer" system is provided on the companion CD-ROM.

Dying Cleanly

There is another issue with which we have to deal. What happens if the object whose
Al we are running dies or is interrupted? If this occurs, then the active behavior needs
to stop, dal the objects we created on the heap need to be deleted, and we have to exit
our Al code as quickly as possible. Again, depending on your preferences, there are a
number of ways to handle this.

An elegant method is to use the C++ exception language facility. When an excep-
tion is thrown, behind-the-scenes C++ magic cleans up the stack and moves control
back up the execution hierarchy, which is exactly the functionality we want. All the
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brain class needs to do is catch the exception and call the behaviors cleanup method.
However, thisis afairly heavyweight approach, and some micro-thread implementa-
tions don't ded too kindly with exceptions.

A simpler approach, although rather more invasive, is to periodicaly check for
whether we have been terminated, and return if we have. This does require some care-
ful structuring of the Al code, but it is dso avery lightweight solution. With some
thought, this can even be packaged up to be only minimaly invasive. In most cases, to
be on the safe side, the brain will keep polling the micro-thread until it receives noti-
fication that the behavior has indeed stopped running, a technique with which you
are familiar if you have used threads before.

void CAIBrain:: TerminateActiveBehavior()

t if (PActiveBehavior){
PAct i veBehavi or - >Set Ter mi nat eFl ag()
whi | e( Act i veBehavi or Runni ng)
Swi t chToM croThread( PM croThr ead) ;
PAct i veBehavi or - >0 eanup() ;
PAct i veBehavi or - >Cl ear Ter ni nat eF! ag()

}

Actions Speak Louder

Taking al these modifications on board, let's see how our earlier example "hunger”
behavior code might now look.

voi d Updat e ()
{

CTr acki ngPoi nt er <CFood> pf ood;
pfood = Fi ndPFood(PCr eat ur e- Ned Pos()) ;
I f (pf ood! =NULL) {
if (ActionMoveTowardsFood( pfood )==Al_OK)
PEntity->EatFood(pfood);

}
EAl Return Acti onMoveTowar dsFood( CSmar t Poi nt er <CFood> pf ood)
whi | e (pfood! =NULL && ! Positi onsAdj acent (PEntity, pfood-
>t Pos())
I f (Term nat edO)r
return( ERM NATE) ;

PEntity->MoveOneStepCloserToPos(pfood->GetPos() ) ;
MicroThreadSleepO;

|}f(pfood!:NULL)
return (Al_OK);

return(Al_FAIL);



3.3 Mar_l_ag__in_g__Al_ wiph _Micro-Threads - - 271

A specid tracking pointer is used to track the food in case it dies. The Action-
MoveTowardsFood method asks the brain to suspend the micro-thread after every step
it takes toward the food. If die action finds that it has been "terminated" by the
behavior's brain, it returns avalue that lets the calling Al behavior know that it should
cleanly exit. Likewise, if the food dies, it returns a code telling the behavior as much.
In addition, al the code that deds with the problems of distributing the process across
game turns has been packaged into a separate method. Structurlng our code in this
way has a number of important advantages:

« Al is effectively atree of conditiona tests that ultimately resolve into actual diings
to do. These "actions' are the only pieces of code that need to be distributed across
game turns; hence, it makes sense to isolate them from die rest of the system.

» Since only actions need to suspend processing, only they need to do any testing
for termination. Keeping the suspension and termination code together keeps
things tidy and reduces the chances of forgetting to do one or die odier.

« Action functions can be put into the behavior base-class and reused between dif-
ferent behaviors.

Extensions

The system described here has been kept purposefully loose, as | have simply
attempted to give an idea of the elegant architecture that micro-threads can provide
for Al. Any number of favored Al tricks can be added, including:

» Giving each behavior a string name, which can be displayed for debugging pur-
poses.

« Allowing brains to be assembled using an externa data scripting language, to
dlow nonprogrammers to create and specidize entities. See Scott Bilas excedllent
gem in this book on the topic.

« Using the "message’ system described in Game Programming Gems to adlow Al
entities to enquire and send information about interesting events in the world
[RabinOQ].

Concluson

T, " e

Mlcrodlreeds dlow an enormous amount of erX| b|||tyfor wr|t| ng Al. Using this free-
dom properly, it is possible to create convincing, fast, lightweight, bug-free Al quickly
and eadly. Particular advantages that this system has over other methods include:

« Behaviors are grouped intuitively into modules. They can be reused between dif-
ferent types of entities trivially by adding them to different brains.

e Thereis no arbitrary jumping around spaghetti links between states, common in
other state machine implementations. As such, when debugging, you can see the
entire conditional tree that led to a particular problem, without having to trace
through disparate states.
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» Programmers can code using their favored programming techniques, without

having to pander to a rigid architecture.
» Data specific to an entity and its behavior can be stored naturaly between game

turns in the behavior dass.
References o o
[Meyers%] Meyers Scott "Smart Pomters," More Effectlve C++, Addison Wedey,
199%.

[RabinOQ] Rabin, Steve, "Designing a General Robust Al Engine," Game Program-
ming Gems, Charles River Media, 2000.
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An Architecture for RTS
Command Queuing

Steve Rabin, Nintendo of America
steve_ rabin@hotmail.com

ed-time strategy games have a unique method of user interaction. Using a

mouse, the player is able to assgn multiple orders to individual units or groups
of units. This interaction has matured over the years, with each new RTS building
and improving on previous designs. One of the most evolved designs is a technique
caled command queuing. This gem describes how this method of interaction works,
and how it can be directly woven into the underlying Al architecture.

RTS Commands i

The basic user mterface for an RTS game mvolves selectl ng units and commanding
them to do some task, such as attack an enemy or move to a particular spot. Thisis a
fairly smple concept that doesn't require any great Al architecture to implement.
However, it's important to first consider the range of smple commands that are avail-
able in most RTS games before discussing more complex combinations. The follow-
ing is alist of common RTS commands.

» Attack a creature or building

» Build a structure or weapon

* Move to a spot

» Patrol to a spot

» Callect aresource (food, raw material, energy)

* Research askill

* Repair a unit or building

» Reclam aunit (recycle dead unit's material/energy)

e Guard a unit or building (attack anyone who attacks it)
» Hold position (attack anything in range but don't move)
* Stop

» Sdf-destruct

273
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Command Queumg

..... B

While playing an RTS game you spend much of your time telling units where to
move. Unfortunately, the pathfinding in most games isn't perfect and it often helps
when the player assists in planning paths by setting waypoints. Waypoints are ssmply
successive move commands that are queued up within a unit. The player queues up
the move commands by holding some special button (like the Shift key) while click-
ing on the ground for each waypoint.

Waypoint queuing was an important step that has opened the door for amore pow-
erful interface system. If you can queue waypoints, why not let the player queue any
combination of commands? In effect, you could tell aunit to attack a creature, repair a
wall, and then build a gun turret, al widiout waiting for any of the tasks to be com-
pleted. In addition, the player could decide, at adighdy later time, to queue even more
commands onto the end of those. Generdly, thisideais known as command queuing.

The trick is to think of every command as a task and to think of a unit's brain as
a queue of tasks. The unit will dways process the task that's at the front of the queue.
Once that task is completed, it's destroyed and the next task is started. When there are
no more tasks to process, a unit should have a default idle task. Figure 34.1 is an
example of a unit's brain queue.

Figure 34.1 shows the result of queuing the commands attack, repair, and move.
It dso0 shows that eech task has data associated with it, such as what to attack or where
to move. New tasks to be queued are placed at the end of the list, but before the
default task. The default task must dways be the last task and it never completes and
isnever destroyed.

If the player commands a unit to do a new task without holding the "queuing"
button, al tasks are destroyed and the new task is put in the queue. Thus, queued
tasks can easily be replaced by asingle, new command.

Brain Queue
(front of queue)

Current
activetask

enemy 24

e ta A
tOuUlill T

_{—» pos (4,7)

.Insert additional
queued tasks here

Bueved — 7"
non-active

tasks = T

Default task
(never completes) L Dﬁfa“h

ey

FIGURE 3.4.1 An Altask listin theform ofa brain queue.
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With this architecture, a common behavior is to alow the player to "seg' the
command queue by sdecting the unit and holding the "queuing" button. The on-
screen result is that arrows show where the unit is planning to go and what they
intend to do, such as build a structure. The elegant way to implement this is to let
each task draw its contribution onto the screen. This alows the player to quickly see
what's queued up in the unit and what additions might be appropriate.

This simple architecture is dso blind to who put the commands in the queue.
Obvioudy, the player can put commands there, but the game can dso preload com-
mands for aNPC (Non-Player Character) that might be patrolling or guarding a spot.
The Al can dso make high-level decisons about which units to attack by smply
putting those commands in the queue. Even packets from over a network can be
dlowed to place commands in a unit's queue. It's avery elegant system that dlows a
lot of flexibility.

ands

PO

Patrolling is a c,ycllc command tham prwlts some mterestl ng consequences for the
system described so far. When a player takes a unit and tells it to Patrol to a spot, the
unit will remember his original spot and then walk back and forth between the two,
indefinitely (or until an enemy is in sight). The player could aso queue up severd
Patrol waypoints and the unit would similarly cycle through the waypoints forever.
Figure 3.4.2 shows a three-point patrol that was initiated with two mouse clicks.

Original Character Position First Patrol Click

Second Patrol Click

FIGURE 3.4.2 Patrolpathfor a unit.

Queuing the First Patrol Point

The first Patrol click from a player actually ends up placing two patrol commands on
the queue. This is because the intent of the player is for the character to move to the
position of the mouse click, and then move back to his origina spot, repeating the
cycle over and over again. Figure 3.4.3 shows the brain queue after just one Patrol
command was issued by the player.
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FIGURE 3.4.3 The brain queue after a single Patrol command was issued.

Interestingly, a Patrol command is identical to a Move command, except that it
gets cycled to the back of the queue. Therefore, our queuing system will work per-
fectly if asimple "cydic" flag is set within a Move task in order to make it a Patrol
task. When the Patrol task completes, rather than being destroyed (like a Move task),
it's put onto the back of the queue (but before the default task). Figure 3.4.4 shows
severd iterations of the three-point patrol sequence from Figure 3.4.2.

Time — )
Frain Queu<) Etrain Queuiz Etrain Queue

(initial pos 1) (Pos2 reacheq) (pos3reache )
&1 pos2 Apos3 : pos1
ﬁil Bl cydlic € | oydic KII3V*ﬂ +cyclic
IL'pOSS _ pos | I pos 2
lg"blkl'. cyclic Kcyclic An ” :..I cyclic

7 N

gl pos_l P11 " pos2 1 pos3
W cydic ]Ii I II cyclic ~ cyclic

FIGURE 3.4.4 Three iterations of a patrol path.

Queuing Additional Commands

Some tricky issues arise when the player wants to queue extra commands when Patrol
tasks exist in the queue. While the following might be slightly subjective, experimen-
taly it's very dose to what most players expect.
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The first issue is where to put additional Patrol commands that are to be queued
up. The player who is adding these extra Patrol points will probably expect that
they're put after the first set of Patrol points (regardless of where the unit currently is
in the brain queue). This is an important point since the unit could be anywhere
along the patrol when the second set of Patrol commands are queued.

The solution is to mark the last Patrol command ever queued. This alows new
Patrol commands to get queued after it. Once new Patrol commands are added, the
"last" marker is moved. Figure 3.4.5 shows an example of three Patrol commands

being queued successively.
Brain Queue Brain Queue Brain Queue

(first Patrol click) (second Patral click) (third Patral click)

| pos2
4 cydlic

pos3

pos 2
cyclic

pos 3
cyclic

pos 4
cyclic
last

FIGURE 3.4,5 Three Patrol commands being queued in order.

The second issue with queued Patrol commands involves queuing additional
non-Patrol commands. In general, the player expects the command to be executed
immediately after the current Patrol waypoint is achieved. Thisistricky since the new
commands must be placed after the current Patrol command, if thereis one, and after
any other noncyclic commands. Figure 3.4.6 shows a case of queuing severd new
non-Patrol commands.

As shown, Patrol commands throw several wrenches into the command queuing
concept. The trick is to implement what the user expects to happen. The user will
typically have a model in his or her head of how the system will work. Uncovering
that model is not an easy task, but it will give you good insight into how to design the
interaction and behavior of the command queuing system.

However, dealing with the users mental mode is a two-way street. It's dso
important to give the players immediate feedback, letting them know the result of
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Brain Queue Brain Queue Brain Queue
(Patrol Issued) (Build Issued) (Repair |ssued)
V- . PR ., Ppos2
LMove 1> cydlic '-_'_l—» cyclic
- SO i 3 Ia Wi last
™ house
pos (4, 7)

|, pos ‘1
cyclic

FIGURE 3.4.6 Queuing additional commands with Patrol tasks already queued.

their input and how it was interpreted. That way, if the users model is incorrect or
flawed, they can quickly reconcile it with the correct model. A wonderful book that
discusses the subject of mental models is "The Design of Everyday Things' by Don-
ad Norman [Norman90].

Conclusion.

i B ot R b T P P o W

Command queumg is now astandard power feature that no RTS game can do with-
out. By using the brain queue architecture to store tasks, many of the complexities of
a command queuing system go away. In addition, you can think of the brain queue as
asmple task list, or you can turn each task into its own neatly wrapped Al system
that knows how to accomplish its job. Either way, your players should be able to
queue up whatever they wish, and easily manage hundreds of units with this smple,
yet powerful interface.

[Norman90] Norman Donald A The Deﬂgn of EverydayThlngs Currency/Double-
day, 1990.
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Overview,

A High-Performance Tile-
based Line-of-Sight and
Search System

Matt Pritchard, Ensemble Studios
mpritchard @ensemblestudios.com

n the realm of strategy games, the concepts of Line-of-Sight (LOS) and Fog-of-War

(FOW) for target identification and acquisition are often encountered. In tradi-
tional turn-based strategy games, using the brute-force approach of completely rebuild-
ing a player's explored and visible maps has generaly proven to be adequate. However,
using the same approaches in a Red-Time Strategy (RTS) game quickly reveds perfor-
mance issues, especidly as the size of the game world or number of units increases. Still,
many commercia RTS games, somevery successful, have used this rebuild-all approach.
Unfortunately, they have to make performance compromises such as forgoing the FOW
altogether or not updating it every game turn, thus alowing inaccuracies to appear in
the display. This gem presents an efficient implementation of a player visihility system
for tile-based games that minimizes the performance impact, while providing support
for fast searching aswell as other gamefeatures.

T T e e st

The first assumption is that internal to the program, sections of the game world area
are represented by smal chunks or tiles, which correspond to a two-dimensiona
array. Mogt real-time strategy games have rectangular game maps, but this implemen-
tation is easy to adapt to a hex-based world layout.

The gods of our player visibility system are as follows:

» The game's explored, visible, and fogged tiles must be fully accurate at dl times.

» Units must be able to search very fast for other units or objects of interest, with
respect to FOW and vishility.

» The system must support up to 16 players at atime, alowing for arbitrary infor-
mation sharing between players.

» The system must scae wdl with respect to more units, larger maps, and larger
search radii.

279
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Definitions

Tile. The smallest discrete square- or hexagon-shaped portion of the game world.

World. The total area in which the game takes place; internally a 2D array of tiles,
aso cdled the map.

Player. A human or computer entity who controls a population of units. Each
player has a unique set of visibility information.

Unit. Any game entity that is owned or controlled by a player. It does not have to be
movable.

Line-of-Sight (LOS). The area around a unit that is currently visible because of its
presence. :

LOS Radius. The range of a units LOS area, measured in tiles.

Unexplored Tile. A tile that the player's units have never seen within their LOS.,

Fogged Tile. A tile that has been explored but is not currently in the LOS of any of
the player's units.

Visble Tile. A tile that is currently in the LOS of one or more of the player's units.

Fog of War (FOW). The concept that if an explored tile is not currently in the LOS
of a player's unit, then the player can't see other players units on that tile.

In an RTS, we assume that for each player, the map starts out unexplored. As tiles fall
into a unit's LOS, those tiles become explored for the player who owns that unit.
When an explored tile is no longer in a unit's LOS, the tile becomes fogged for that
player, yet will never revert to being unexplored. It's important to note that die tile
states of unexplored, explored, and fogged are unique for each player.

Component #1: Individual Player Visibility Maps

The first component of the player visibility system that needs to be implemented isa
vishility count map for each player in the game. This is a rather smple structure: a
2D byte array with a one-to-one correspondence to the tile layout. Each array element
contains a count of how many of the player's units can see that tile (in other words,
how many units LOS contain that tile).

Updating the visibility map is smple. When a unit is first created or moved into
anew tile position, al of the visibility counts are incremented by one for the tilesin
the unit's line of sight. When the unit is deleted, destroyed, or moves off atile, al of
the visibility counts are decremented by one for the tiles in the unit's LOS. The value
in each visibility map element is nonzero if thetile isvisible to the player. However, it
is unclear if a zero value means an unexplored tile or afogged tile. To solve this, we
designate zero to mean fogged, and -1, or 255 in byte storage, to mean unexplored.

Unfortunately, when an unexplored tile is incremented for the very first time, the
value will wrap to zero, which incorrectly means the tile is fogged. However, we can
catch this specid case and ensure that an increment that results in zero gets incre-
mented again. This aso provides a convenient place to add code for additional one-
time processing on the explored tile, such as adding it to a mini-map, recording its
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type, or searching it for resources. Since most games do not ever revert atile to unex-
plored, this special case will not appear in the decrement code. It's worth noting that
the storage element size—in this case, a byte—sets an upper limit to the number of
units that can see a specific tile a one time, which in this case is 254.

Component #2 LOS Templates

T w—

In most strategy games, aunit'sLOS is defl ned as aci rcular areaaround the unit, with
the radius measured in the number of tiles. The smplest way to compute this shape,
which many games have done, is to take a radius-sized box of tiles around the unit's
position and see if the distance from each tile is less than the unit's LOS radius. How-
ever, from a performance standpoint, this is horribly inefficient. Given that this oper-
ation can be cdled a huge number of times each turn, this function begs for major
optimization.

One of the best ways to optimize this is to precompute the LOS area for each pos-
sible LOS radius that is used in the game. This shape information can then be stored
in atemplate structure with different templates used to represent different LOS radii.

The best implementation | have found is to store the LOS area as a series of hor-
izontal strips, with start, stop, and vertical displacements relative to the unit's posi-
tion, starting from the top and working down. The templates are processed
horizontally under the assumption that elements in that axis of the array are stored
linearly in memory, thus minimizing the number of cache accesses during processing.
For units at the edges, clipping the LOS template shape to the game map just requires
clamping the start and stop values in the outer loop. The following code shows a
function to add a unit's LOS template to the visibility count map.

/I This routine "explores" the game map in an area around the

/I specified unit position using a line of sight template

/I The template span data is an array of structs with 3 offset elements:
/I {vertical position, horizontal start, horizontal end}

void VisibilityMap::AddLOSTemplate(int XPosition, int YPosition,
LOSTemplate *template)

int n, x, y, xStart, xEnd; . i
for (n = 0; n < template->number_of vertical_lines; n++)

y = Yposition + tenpl ate->SpanDat a[ n] . Yof f set ;
if (y > map_y nin_coord & y <= map_y_max_coor d)

xStart = max(XPosition + tenplate->lines[n].XStartCffset,
map_x_mn_coord);

XEnd = nin(XPosition + tenplate->lines[n].Xendfset,
map_x_max_coord);

for (x = xStart; x <= xEnd; x++)

i{f ((VisibleMap[y][x]++) == 0)
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ExploreTileForFisrtTimeHandler(x,y);
VisbleMap[y][x] = 1;

}
}
}
}

When aplayer's unit is removed from the game world, the game decrements the
visibility count of its LOS area. If none of the player's other units have thetilein their
LOS, it will be zero, indicating that the tile is no longer visble for the player, and is
now fogged.

When a unit moves from one tile to an adjacent tile, which is normally avery
common operation, it removes its LOS from the old position and adds it back in at
the new position. Since this pair of function cdls will be often made in tandem from
the unit's movement code, another optimization is to combine the two operations
into a single function. This new function takes both the old and new positions and
only updates the portions of the player's visibility map where the increment and the
decrement do not overlap. Another situation iswhen a unit's LOS radius changes. In
that case, the remove LOS function is caled with the old radius, followed by the add
LOS function with the new radius. Properly written, the optimized update function
should handle this case as well.

There are additional advantages to using LOS templates. The first is that differ-
ent shapes can be created for different-sized objectswith the same LOS radius. While
asmdl game unit may occupy asingle tile, larger units, such as immobile structures,
might occupy severa adjacent tiles and possibly even be nonsquare, such as rectangu-
lar or dliptical. An LOS template that appears centered on a one-tile unit would
appear off center when used on the larger unit. Figure 35.1 shows a set of LOS tem-
plate shapes for two different-sized objects, both with aradius of three tiles.

Another advantage of using templates is that nonsymmetrical LOS shapes can be
made. Figure 35.2 shows an example of two rotations of a directiona searchlight

. Tiles occupied
by aunit

D Visbletiles

B:l  Fogged or un-
"l explored tiles

FIGURE 3.5.1 LOS shapes with the same radius for units of different size.
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FIGURE 3.5.2 Noncircular LOSareas with two rotations ofa searchlight pattern.

shape. With a full set of rotated LOS templates, the searchlight unit could be easily
animated to sweep a full cirde, producing a cool game effect with very little specid-
ized programming.

Component #3: The Combined Visibility Map

So far, what's been implemented is more efficient, but it doesn't help with some of the
other gods. This next component, caled the combined visibility map, will tie the other
structures together. This data structure will be accessed the most by the rest of the
game code and will provide a big boost to the searching functions.

Like the individual player maps, the combined visibility map is a 2D array, sized
the same as the tile grid. The difference is that there is only one combined visibility
map for the entire game, and its elements are 32-bit DWORDs instead of bytes.
Given its usage, it could be agood ideato make this globally available to the program.

The purpose of the combined visibility map isto contain dl of the up-to-date vis-
ibility information in asingle place for dl of the players in the game. This is done by
using just 2 bits per element for each player. One bit is to indicate that a player has
explored the tile, and the other bit is used to indicate if the tile is currently visible to
the player. This gives room for 16 players worth of datain eeach DWORD.

The organization of the individual bits in a combined visibility map element is
up to the user to implement. This should have no relevance on performance, as dl
updates should consist of a single binary OR, AND, or XOR operation on the entire
32-bit element, using mask values precomputed for each player.

In practice, the combined visibility map isinitialized to al tiles as unexplored and
fogged. It is then updated when any of the following events occurs for any player:
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« Atileis explored for thefirst time.
« A tile transitions from unexplored or fogged to visible.
» A tile transitions from visible to fogged.

During the display of the game world or other structure such as aradar map, each
player has a visibility mask value that contains the explored and visihility bits shifted
into the correct position for that player. As each tile location is traversed by the vari-
ous functions, the combined visibility map value for that location is ANDed with the
current player's visibility mask. The result gives the visibility and explored status of
that tile for the specified player, on which the code can then operate.

The first benefit of using the combined visibility map is that the player's vishility
masks can be combined. This dlows for various game effects such as sharing lines-of -
sight and visibility with teammates, as well as spying on other players. The effects for
each player can be added or removed at any time by smply updating the player's vis-
bility mask and refreshing the display.

e T L s S T T

The direct approach to searching mvolv& |00k| ng a the occupants of each tile in the
searching unit's LOS area. As more units are added into the game, the number of
searches each turn increases. In addition, as the radius for each search increases, such
aswith ranged units or LOS upgrades, the number of tiles searched rises very quickly.
For example, asingle ranged attack unit with a search radius of 10 tiles would have an
area of about 350 tiles to be searched. Therefore, this direct approach resultsin a per-
formance drop proportional to the number of tiles scanned.

Probably the biggest benefit of using the combined visibility map comes with this
task of searching in a unit's LOS for enemy targets or other objects of interest. Rather
than search the individual tiles, it's better to keep a running list of the other player's
units in a given player's total combined LOS. This is where the combined visibility
map comes into play. Each unit in the game accesses the combined visibility map
entry for the tile it occupies. With this data, each unit knows which players can cur-
rently see that unit. By saving this information from the previous turn, a unit knows
when it moves into and out of the LOS of every other player in the game, even ifit is
not moving. In addition, when a change occurs, the unit can add or remove itself
from a list of units visible to the other player. The update overhead is only a single
DWORD check per unit per turn, except for when the unit has actually transitioned
in or out of another player's combined line-of-sight.

The ligt that the units add and remove themselves from can then be broken down
further depending on what the unit represents to the player (for example, teammate,
combat unit, infrastructure, etc.) The result is that each player will have a series of
very smal lists, often even empty, containing pointers to other players units that are
currently in the player's total LOS.

Once the lists are maintained, there is no longer a need to search large numbers of
tiles, most of which probably won't contain possible targets. Instead, searching
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becomes a process of scanning a far smaler list that contains only possble targets.
The search code can be simplified and the lists will cache better. The performance
improvement can be an order of magnitude better, especidly in situations that involve
many long-range units.

The following code shows how a unit's update would process the changes in LOS
vighility. This code determines for which playersitsvighility status has changed, and
subsequently how to change them.

void GameUnit: :TurnlipdateProcess(. . .)
/I Game specific unit processing code...
}/ 'Néw we check to see if we've gone in or out of anyone's LOS
DWORD CurrentlyVisibleTo =
CombinedVisibilityMap[Y position] [Xposition] ;
if ( CurrentlyVisibleTo != LastVisibleToValue)

i Il Cet on!%.the bits that have changed
DWCRD Vi si |I|vd1anges = Qurrent|yVisibleTo
Last Vi si bl eToVal ue;
Last Visibl eToValue = QurrentlyVisibleTo;  // Save new val ue
for (int playerNo = 0; player-No < theCGane->num Pl ayers;
pl ayer No++)
DWORD Pl ayer Mask = 0x0001 « playerNo; // bit mask for
pl ayer
Il Check to see if our visibility for this player has
changed o
if ((MsibilityChanges & PlayerMask) != 0)
{ if A([SQJr.rentI VisibleTo & PlayerMask) !=0)
I dUni t ToPl ayer sVi si bl eLi st ( pl ayerNo, self);
el se
RemoveUni t FronPl ayer sVi si bl eLi st (pl ayer No, self);
}
}
/I Continue with game processing

}

Another benefit of this method is that the searches will respect the player's tota
visibility and don't need to be restricted in range to the unit's LOS radius. As illus-
trated in Figure 35.3, each of the player's units a the bottom performs a target search
with a search radius greater than its own LOS radius and finds the enemy units visible
to the player on the upper-left Sde. However, they dso failed to find the two enemy
units in the upper right because they are on tiles that are currently fogged to the
player. By respecting the combined LOS and using a search radius not tied to their
LOS radius, more intelligent and humanlike Al decisions can be made.
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Figure 3.5.3 Demonstration of which enemy units can be seen by theplayer. By
respecting the total LOS, the searching units will only see the enemy units on the left, even
though the units in the FOWare closer.
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The same processing code can be used for large units that occupy more than onediein
the game world. The only difference is that the current visibility value is made by
ORing together the combined visibility map values for each tile occupied, instead of
taken from a single tiles value. This dso makes it easy to do things like revealing the
entire map areaoccupied by the unit, even if the player's LOS only falls on a corner of it.

Mirages are another game capability that the combined visibility map makes easy
to implement. Mirages are ghost representations of units that appear visualy in
another player's fogged area, representing what that player last saw when he or she
explored the area. Units that can generate mirages do so when they have transitioned
out of another player's LOS. Also, the mirages know to remove themsalves from the
game when they detect that they are again fully visible to the other player, by check-
ing the combined visibility map vaues.

It never hurtsto rethink asituation, even when it appears simple and straightforward.
The development of this approach was the result of asking "why" and seeing how
seemingly unrelated systems could lend each other a hand. The greatly improved
searching capability is made possible because of the presence of the combined visibil-
ity map. This only works because the individual player visibility maps are dways kept
up to date, every game tick. Therefore, while the individual systems do their specific
jobs, when joined together, more capabilities are exposed and greater optimizations
are achievable.
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We consider agame Al agent to be "intelligent" if it consistently makes decisions
that we consider appropriate in a given context. Thus, we can say that the core
of intelligent game Al is decision-making.

Everyday experience teaches that the key to effective decision-making is not
merely having the best data, but presenting the data in the right way. Raw datais use-
less until converted to contextual information. An appropriate representation of the
datawill force the relevant underlying patterns to revea themselves.

This and the subsequent gem on strategic assessment present techniques for giv-
ing Al agents awell-informed tactical and strategic perspective on the character of the
game world and the current game state. We dso discuss techniques relevant to differ-
ent game genres and virtual environments.

Influence Maps

A e S SR L AT B

Influence mapping is an invaluable and proven game AI techmque for performing
tactical assessment. Influence maps have been used most often in strategy games, but
are also useful for many other types of games that require an aspect of tactical anay-
ds. The generd concepts of influence mapping are an essentid part of any Al deve-
oper's toolkit.

An influence map is aspatial representation of an Al agent's knowledge about the
world. It adlows a computer player to develop a tactical perspective of the current
game state layered on top of the underlying physical/geographical representation of
the game environment. An influence map indicates where a computer player's forces
are deployed, where the enemy is located or is most likely to be found, where the
"frontier" between players lies, what areas remain to be explored, where significant
battles have occurred, and where its enemies are most likely to attack it in the future.
The structure of the influence map aso makes it possible to make intelligent infer-
ences about the characteristics of different locations in the environment. Influence
maps can pick out areas of high strategic control, pinpoint weak spots in an oppo-
nent's defenses, identify prime "camping” locations or strategicaly vulnerable aress,
find choke points on the terrain, and identify other meaningful features that human
players would choose through intuition or practice.

287



288 - B Section 3 _Atrtificial Intelligence

Thereisno single, standard algorithm for creating influence maps, nor any single
way to apply the technique. This gem describes severd of the more popular influence
mapping concepts, but it is only a starting point. The way you construct and employ
influence mapswill depend heavily on the specific strategic and tactical needs of your
particular game and the design of the game world that your Al agents inhabit.

A ‘Simple Influence Map

—

An influence map can operate in almost any type of game world topography—a
sguare grid, a hexagond grid, or a fully 3D environment. For the sake of smplicity,
most of this gem assumes a 2D grid, which is applicable to most strategy games. The
final section of this gem discusses applications in more complex environments.

We begin with aset of square cells superimposed on our gameworld. All the cells
are initialized with a value of zero. For each cdl, we add a certain type of "influence"
wewish to consider. For the sake of this example, well compute an estimate for "com-
bat effectiveness.” Well add a positive value for each friendly unit, and a negative
value for each enemy unit.

The specific value we add or subtract will be an estimate of the unit's combat
effectiveness. For the moment, well assume that each unit has an effectivenessrating
of 1, as shown in Figure 3.6.1.

The next sep is to spread the influence of each cdl to nearby cdls. For now, let's
assume that we propagate each cdl's influence such that each time the influence is
spread to a neighboring cdl, it is diminished by 50 percent. Therefore, avaue of 4
would add two points to each adjacent cell, one point to each cdl two squares away,
then 1/2, and so on.

Figure 3.6.2a shows how the influence of our two bugs spreads across the influ-
ence map. The influence of our two opponents—the sinister and nefarious agents of
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FIGURE 3.6.1 Initial influences.




the dreaded Ford Motor Company—will propagate in a similar way (not shown), but
their influence values will be negative because we hate them.

When we combine the influences of dl the cars and bugs, we end up with Figure
3.6.2b. It should be immediately clear that this gives us an excellent sense of where
each player wields influence. Darker cdls belong to us; lighter cels belong to our
opponent. More importantly, we can now trace a contour for the "frontier" between
friendly and hostile assets. The frontier is defined as any part of the grid where two

adjacent cdlls shift between negative and non-negative values. This is shown as an out-
lined white line in Figure 3.6.2b.

0.7 41 |40.7 |[+0.35
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FIGURE 3.6.2 A) Influencepropagation. B) Thefinal influence map.

We can use this frontier to determine where to place our forces for offense or
defense. By weighting the enemy's forces more heavily than our own (using a multi-
plier greater than one), we can pull the frontier closer to our own forces for a more
defensive posture. Ifwe weight our own forces more heavily, we push the frontier for-
ward and develop toward a more aggressive posture.

Influence Map Cell Data

The preceding example is clearly trivial. An influence map in area game is consider-
ably more sophisticated. Rather than simply containing a number, each of the influ-
ence map's "cdls' is arepository for some amount of data about the game world. Each
cdl is, in effect, a miniature database of relevant data for al the units and resources

that occupy that cdl. Following are examples of some of the types of satistics that a
cel will typicaly contain.
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e Combat grength. This is the estimated combat effectiveness of the units cur-
rently in the cell. This should take into account factors such as attack/defense
strength, current health or hit points, attack range, rate of fire, and so on. It may
aso be advisable to break units into categories in a manner appropriate to the
design of your particular game; for example, to account for the relative strengths
of ranged versus melee, infantry versus cavary, or flying versus land-based versus
aguatic units.

* Vulnerable assts. This is an estimate of the value of a player's current assets in
the cell, such as apart of avillage or military base in atypica strategy game.

» Areavishbility. Thisis a number indicating how long the area has been visible or

invisible to the player.
* Body count. Indicates how many units have died in the cdl in the past, and
when.

* Resources. The total resources still available for exploitation—gold, lumber, etc.
* Passability. An estimate of the difficulty of moving through the cell, possibly
broken down by movement type (flying, walking, tracked, eic.) This vaue is
used to more accurately propagate a cdl's influence to neighboring cells, and can
factor into the cel's desirability for a given decision. A good variant is to sepa
rately store eight passability values, one for each of the directions exiting the cell.

An influence map will typically track these variables for each player in die game
separately. Think of this as maintaining multiple parallel influence maps. each player
updates an influence map for its own assets, plus an additional influence map to repre-
sent its own knowledge of every other player. Thisis useful as it dlows you to distin-
guish the particular strengths and weaknesses of specific opponents, or to blend any set
of friendly or enemy influences together as desired. Be warned, however, that perfor-
mance can quickly get out of hand with more than three or four competing Al players.

Of course, you could also just keep a single influence map for everyone, and let
every Al player access it. In a game with any kind of hidden map or fog-of-war
(FOW), this constitutes "cheating,” and it could produce suboptimal behaviors in
some situations.

D T

Rather than using the basic sIatlsncs for each ceII dlrectly as a basns for decision-
making, it's more useful to combine them into a "desirability value." Thisis acom-
puted value which estimates the cdl's "vadue' with regard to a certain decison. By
comparing the desirability values of different cdls we can construct a ranking of
which cells appear to be "better" for the task than others.

The most useful formulafor desirability is often asimple weighted sum. Pick the
variables from each cell that you consider relevant for the decision at hand, multiply
each by a coefficient that roughly indicates that factor's relative utility in making the
decision, and add the resulting values to determine desirability.
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The specific parameters you sdect to caculate different desirability values will
depend drongly on the particular needs of your game and the unique characterigtics
of your game design. The choice of appropriate coefficients is dso subjective and is
best achieved through careful tweaking and tuning. Simulated annealing or competi-
tive evolutionary approaches are feasible, but probably not desirable. Be forewarned
that you will aso need to compensate for the different units of measurement that you
use for statistics such as unit health/hit points, rate of fire, attack strength, and so on.

A short list of sample desirability values follows. '

» Attack and defense desirability. We can typically compute a single "vulnerabil-
ity" score to represent defense and attack capabilities for this player and his ene-
mies, respectively. A high vulnerability score for an enemy means we can damage
the assets in that area easily, so we should consider attacking the enemy in that
cdl; ahigh vulnerability score for this Al player means that we have significant
assets in the cdl that are susceptible to attack, and we should defend them more
carefully.

Vulnerable areas are typicaly those with many assats and key resources but
minimal opposing military units nearby. Therefore, if an enemy player has avalue
of 80 for "assets' in agiven cdl (representing its base buildings and resources) and
an enemy offensive value of 60 (representing the enemy forces that could poten-
tialy defend it), the final "vulnerability” rating is 20.

e Exploration. For strategy games that use a hidden map or FOW, a good Al
player will dispatch scouts on a regular bass to refresh its view of the battlefield.
A good heurigtic for exploration is to rank the influence map cdls that have gone
unseen the longest as the most desirable for exploration. Other good factors in
this decision are the enemy influence in a cdl and the ared's estimated passability
(s0 your scouts can escgpe if attacked).

» Defensive ast placement. Immobile defensive assets should be placed in areas
close to lats of vulnerable assets. They should be in areas vulnerable enough to be
worth defending, but not so vulnerable that they can't be constructed.

Choke points are dso good spots for defensive assets. Terrain choke points can
be easily identified on die influence map using precomputed passability values;
choke points will be high-passability influence map cdls that connect other high-
passahility areas but are surrounded by low-passability cdls.

* Resource-collection asst placement. Assets that serve as resource collection
points (Town Centers) are typicaly mog effective in easly defensible areas that
are as close as possible to the largest amounts of exploitable resources.

* Unit-producing assat placement. Unit-producing assets (such as a Barracks)
should typicaly be placed in defensible areas closest to enemy forces.

* Vulnerable asset placement. Assats that need to be protected should be placed in
the most defensible areas, and the farthest from potential threats. It's dso usually
agood ideato place such assets in less accessible aress to shield them from attack.
For flat, rectangular game worlds, it's dso often a good ideato consider that map
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corners have fewer avenues of approach and so are often less vulnerable, so you
can weight the desirability values higher at the sides and corners of the map.

Determlnlng Optlmal Cell Slze

et e

The size of the influence map ceIIs is somewhat arbltrary It's atrade-off between accu-
racy and efficiency. With cells that are too large, your influence maps will have adif-
ficult time identifying small features, such as terrain choke points or weak spotsin
enemy defenses. If the cells are too small, things will get out of hand fast; you'll end
up doing alot of redundant computation and possibly using alot of memory aswell.

In practice, it's usually best to make the cdlls fairly large. Avoid the temptation to
assume that smaller cells will make the Al smarter. For atypical strategy game, | rec-
ommend (as a starting point) making each cel large enough to fit 10—20 of your
game's standard "units' side by side along the width or height of the cell, and carefully
tune the cell size from there to obtain the best results in gameplay.

Some readers may note that the arbitrary positioning of the cells over the map
could be problematic. A unit straddling two neighboring influence map cdlswill have
adifferent effect depending on which of the two cells receives its influence. Thiswill
usually not be an issue due to the "influence propagation” described in the next sec-
tion. However, a good way to handle the problem is to modulate the (X, Y) world-
soace offset of the entire influence map on a regular basis (perhaps each time you
recalculate the influence map), using either arandom or periodic offset. Thisis akin
to afishing net floating on the ocean that is washed back and forth by the waves.

Inf_Iye_nce Propagatlon
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Once you have cdculated an |n|t|al vaue for ea:h ceII of the influence map, the next
step is to propagate the vaue of each cdl to some number of nearby cdls, as in the
earlier example. This processis aso referred to as smoothing or blurring asit has alot
in common with standard 2D image blurring techniques (see [EvansOl]).

Influence propagation gives us a much more accurate picture of the current tacti-
cd situation. We don't care only about where units are and what they're doing; we care
about what they might do—what areas they potentially "influence.” 1f we have apair
of Archers in the field flanked by large battalions of Plasma Tanks on either side, we
want our Al to perceive that the area the Archers occupy is redly "owned" by the
enemy. We need to propagate the Tanks influence to the cell the Archers occupy.

Propagation is just a matter of spreading the influence of each cell to neighboring
cdls using a “faloff rule" that determines how the influence of a given cell decreases
with distance as it spreads across the map. The selection of a particular falloff rule is
subjective and there is no single accepted technique—-as aways, you will need to
tweak and tune for optimal results. | typicaly find exponential falloff the most useful:
pick afalloff constant between 0 and 1 (typically 0.6 < n < 0.8), and each time you
spread influence to aneighboring cell, use this constant as amultiplier. Given afalloff
constant of 0.75 (=75%), a neighboring cdl will have 0.75 = 75% of the original
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vaue. A cdl two squares away will have (0.75)? ~ 0.56 = 56% of the original value, a
odl three squares away will have (0.75)° ~ 0.42 = 42%, and so on. The falloff constant
should be proportional to the cdl size: smaller influence map cells require a larger
falloff value to spread the influence the same distance.

Other useful falloff rules include linear faloff (in which a cdl's influence
decreases by a constant value each time it spreads to a neighboring cell) and Gaussian
filters(see[EvansQl]).

Note that if you use floating-point numbers, your propagated influence values
will never actually reach zero regardless of how far you spread them. This means that
each cdl will end up spreading its influence to every other cdl in the entire influence
map. The literature consistently refers to this phenomenon as "abad thing." The sim-
plest solution is to terminate propagation at a certain minimum influence value (usu-
aly a value beneath which the smoothed influence would be too tiny to make a
difference anyway). This cutoff constant is best determined by experimentation.

Note, however, that it's usually a good idea to spread a cdl's influence afair dis-
tance. If your influence map consists of many small cdls and the cdls influenceis not
propagated very far, you will likely end up with alot of empty space (in other words,
alot of zeroes) in the influence map, and it will be difficult to determine exactly where
the frontier lies. Use big cdls, and spread their influence a good distance.

There is dso an interesting alternative influence propagation technique based on
quadtrees. All cdls vaues are passed up the quadtree to each higher layer, so higher-
levd quadtree cdls can be used to obtain approximate "smoothed’ vaues for their
child cdls. Unfortunately, this approach spreads cells influence in a somewhat arbi-
trary fashion. The distance that a cdl's influence is propagated is tightly bound to the
structure of the quadtree, and influence might be propagated far more in some direc-
tions than others. | find this technique less flexible and often less accurate than the
propagation technique described earlier.

Accountlng for Terraln

The propagatlon technlque deﬂ:rl bed here does not necessarlly paint an accurate pic-
turein dl situations. Imagine that a powerful enemy wizard has afortress on one side
of a mountain range. The propagation technique will spread the influence of the
fortress over the mountains even if the wizard has no way to attack us over the moun-
tains, and cannot navigate any of his units over or around them.

There are severd ways to account for the impact of terrain on the influence map.
Probably the smplest is to use a precomputed passability value for each cell and use
this as a multiplier for faloff values, as shown in Figure 3.6.3. Each cdl contains
either asingle passability estimate or a set of four or eight passability values in the car-
dinal directions exiting the cdl. We then spread the influence from the cdl in aman-
ner similar to a breadth-first search or the flood-fill algorithm. Although Figure 3.6.3
does not show it, this can aso handle cdls where influence is merely diminished and
not blocked entirely.



‘Section 3 Artificial Intelligence

—

——

——

FIGURE 3.6.3 Spreading around terrain.

A second technique involves precomputing al possible paths between nearby
neighbors (Figure 3.6.4). For each cdl, we perform a pathfinding step during map
preprocessing that determines the shortest path from that cell to dl neighbor cels up
to a maximum path distance away. We can then store the computed distance to each
target cdl and use this as the actud "digance’ to the neighboring cdl when perform-
ing the propagation step. We consider a cdll to be unavailable for influence propaga-
tion if no path exigs.

FIGURE 3.6.4 Precomputedpropagation.
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The advantage of this technique is that it provides very accurate influence propa-
gation. If there is an easy way to navigate around the mountain range, such as a pass
through the center of the mountains, the influence map propagation will accurately
reflect the fact that the mountains are not a significant tactical obstacle.

Unfortunately, this technique is difficult to apply to dynamic environments. If
your game world alows players to build extended walls or to block off mountain
passes, the precomputed propagation values no longer reflect redlity, and it may be
very difficult to update your influence map in real time. This method can aso poten-
tially require alot of preprocessing time, as it requires us to perform pathfinding from
each cdl in the influence map to potentially dozens or hundreds of other cells.

Special Cc__>__n3|derat|ons
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Terrain will have different effects on dlfferent unlts Flyl ng units will not be stopped
by mountains, and seafaring units will spread their influence over water but not over
land. Therefore, it's important that each influence map cdl track such different unit
types separately (for example, track "flying" vs. "nonflying" assets in each cdll), and
propagate their values differently according to the terrain type.

Quite often, certain units will have very long firing ranges, and if a unit can firea
certain distance, then it can dso fire that distance from any point to which it can move.
A good way to account for thisisfor each influence map cell to separately track ranged-
fire units according to the distance they can fire (possibly categorized as multiples of
the width of an influence map cdl). After spreading the influence for these ranged dis-
tance categories using propagation, we then spread the influence an extraTV cdls from
each influenced cdl without diminishing the value. Thisway, we can account for a bat-
tleship's ability to strike far into the shore, even though it cant go on land.

You may dso find it useful to add mobile units to the map based on their pro-
jected future positions rather than their current positions. This makes the influence
map a bit more accurate, particularly if you don't recalculate the influence map very
often. The simplest approach is dead reckoning—estimate each unit's position per-
haps 5—10 seconds from now based on its velocity vector. Since you're presumably
writing the Al, you might aso simply look up each unit's future position if the unit is
performing pathfinding (although of course this may constitute cheating if an Al
player looks at other players chosen routes).

Refreshmg the Influence Map
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If your Al needs to analyze Iarge portions of the mfluence map on a regular basis, it
may make sense to recompute the entire influence map on a regular basis, perhaps
every 1-10 seconds. Considering the pace of a typical strategy game, a faster refresh
rate will probably not produce a more effective Al. Once the influence map is com-
puted, you can then use it to perform many calculations extremely quickly.

A second approach is demand-based refreshing, a sort of lazy evaluation technique.
This is a moreflexible approach, and is more efficient when you need to perform less
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extensive influence map andysis. With this variant, you compute the values in agiven
cdl only when the cdll is actually queried, searching dl the neighboring cels within a
given maximum distance to see how their values propagate back to the origina cell.
This technique has the added advantage that you can specify the propagation parame-
ters and desirability value coefficients at query time.

This gem has focused thus far on appllcatlons in 2D enwronments However, influ-
ence mapping and related approaches are dso broadly applicable to more complex
environments such as the 3D environments of typical action games.

Using a 2D grid for 3D influence mapping is usualy a bad idea, as it will not
accurately reflect the topography of our game environment. Fortunately, Al pathfmd-
ing in 3D environments is usually (though, aas, not dwayd) based on a navigation
mesh approach (see [SnookOQ]). A navigation mesh conssts of a graph of intercon-
nected convex polygons that describe where characters can move in the game world.
We can use each polygon of the navigation mesh as an influence map cell. The links
between polygons can describe the avenues for influence propagation. Influence
decreases according to the length "traveled" along each mesh node.

Because 3D game worlds are more topographically complex than 2D worlds and
the emphasis is usually on individual combatants, terrain assessment is typically more
important than the red-time player-versus-player tactical assessment that an influence
map can provide. It's critical that our Al agents can pick out the tactical significance of
different areas. Thefollowing list explains some of these tactical assessment factors.

* Vulnerability ("cover). 3D action games typically involve firing powerful
weapons over large distances, so it's criticd to take into account the range of pos-
sible fire locations to and from each cdl of the influence map. Al agents often
need to determine the degree of "cover" in agiven cdl. A simple approach isto
calculate an estimate for the degree of cover for each of the six faces of a cube pro-
jected from each influence map node.

However, we often want to know whether a given cdl (potential destination)
can shoot or be shot from another cell (enemy position). A good line-of-fire rep-
resentation would list the set of nodes that are "atackable' from any given
node—but this could quickly get out of hand for large and highly interconnected
environments that approach an N? degree of interconnectivity. A good solution is
to package groups, of influence map nodes into "zones," such that dl nodesin a
given zone are in the same "room" or "portal,” and use this representation to
determine which zones are potentially vulnerable from other zones.

» Vighility. This is similar to vulnerability, except that it disregards weapon dis-
tances, takes illumination levels into account, and can pass through certain sur-
faces that weapons fire cannot, such as reinforced glass. This calculation becomes
tricky when dynamic lighting is used, and lights can be turned on and off.
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» Passability. As before, this is an estimate of the difficulty of moving through an
area. Tight passages are usudly more difficult to move through, and devators, lad-
ders, and odier such routes cause dow movement and thus have low passability.

« Height advantage. Locations with a high elevation relative to surrounding loca
tions are usualy tacticaly superior for both offense and defense, particularly if
the game features hand grenades.

These are the basic precalculated statistics in our influence map cells. We can now
whip out afew coefficients and compute desirability values.

The best locations for offense are typically those with high passability, high cover,
and low visibility, but which also have a good line-of-fire to many areas of high visi-
bility (and, idedly, low passability). Good offensive locations adso usually have good
cover locations nearby in case the agent comes under fire.

The best defensive locations are those with the highest cover and lowest visibility,
and for which al the potential attacking locations have high visibility.

More to the point, if we precalculate these desirability values for dl the nodes, we
then can propagate these values to their neighbors using our standard influence map-
ping techniques and end up with a complete tactical assessment of the leve.

Finaly, note that we can aso use the influence map to make inferences about our
opponents—we can determine their respective levels of cover, visbility, passability,
and height advantage. We can use this to sdect the best opponent to attack at any
given moment, or to search for a destination that has an advantage over any or al of
our opponents.

Another useful extension is to estimate opponents most likely positions in the
near future by finding the most desirable destinations available to them. This will
adlow us to prepare for our enemies actions, and have the ambush already prepared.
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his gem describes a suite of useful techniques for drategic decision-making.

Where the previous gem on influence mapping provided a means for tactical
assessment on ageographical level, these data structures provide an Al agent or player
with a means of assessing the current game sate on a drategic and functional leve.

These techniques are most clearly applicable to games that involve some aspect of
economic management, resource-allocation decisons, and/or technological advance-
ment, such as drategy games, economic simulations, and "god games" However,
there are doubtless many potential applications to other genres as well.

The resource al Iocatlon treeisa tree structure that repreaents the specific functional
purpose of al the assets under aplayer's control. The tree breaks down dl of the units
and resources currently in play into ahierarchy of functional categories.

The usefulness of this representation derives from its ability to alow an Al player
to evaluate the strategic strengths and weaknesses of al of the players in the game,
itsdf included. The tree a0 provides an excellent bass for awide variety of economic
production and resource-allocation decisons. For example, it provides an immediate
basis for determining what types of new units to produce and how to reallocate exist-
ing units into different functional roles.

At the top of the tree is a root node that represents a player's total assets. Directly
beneath the root is abreakdown of the major different categories of assets available in
the game.

Let'simaginewe break this down into Military, Economic, and Intelligence. Each
of these is broken down further into subcategories. Military might be broken down
into Offense and Defense, for example, and each of these could be broken down into
Ballistic, Ranged, and Melee to indicate different functional roles for military units.
Economic would likely be broken down into Resource Gathering, Unit Production,
Base Construction, Tech Advancement, and so on down the tree. Figure 3.7.1 illus
trates a small dice of the resource alocation tree.
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Defense

FIGURE 3.7.1 The resource allocation tree.

The leaves of the tree are the specific types of units available. For example, "Pike-
men" sits in Root/Military/Offense/M el ee/Pikemen. The Pikemen node itsdlf would
likely include various datistics on al the Pikemen weve dedicated to an offensive
capacity, such as the total quantity, total hit points, total number of Pikemen killed in
combat, and so on.

Just as with an influence map, an Al player should maintain a separate instance of
this data structure for each player in the game, including itself. The graphs for the



LI

Sectlon 3 Art|f|C|aI Intelllgence

other players will represent this player's current knowledge and best estimates of the
functional breakdown of each player's current strategic assets.

A Pikeman is primarily a defensive unit, but it could aso be used for attack or
exploration. This raises the question of how to categorize a single species of unit that
can participate in multiple functional roles.

An Al player will typicdly dedicate a given unit to only one functional role at any
given moment, so | recommend categorizing unitsin termsof their current functional
employment rather than attempting to split a single Pikeman into, say, 10% Explo-
ration, 60% Defense, and 30% Offense. The Pikeman nodes beneath Offense,
Defense, and Exploration should represent the Pikemen that are currently dlocated to
eaech of those functional roles.

It's dso important to note that at any given moment, the resource alocation tree
contains only those assets that | actually possess or am currently capable of producing.
If I have no Mage Towers and can't currently build one, there is no reason to include
it as anode in the tree.

Calculatmg DeS|red AIIocatlon

o T

The structure of the resource dlocatlon tree prowdes us W|th avery smple and nat-
ural means for determining appropriate resource allocation. We can rank the intended
priority of each node in the tree by proceeding down the graph from the root.

Begin with avalue of 1.0 at the root, indicating a desired 100% resource aloca
tion. At each node, we split the current vaue into an appropriate fraction of the
desired dlocation for each child node. Starting from 1.0, we break this value down
into Military = 0.3, Inteligence = 0.1, and Economic = 0.6. Under "Military," we
break this 0.3 down further into 67% Defense and 33% Offense (Defense = 0.2 and
Offense = 0.1). This process continues down the tree so that we caculate a "desired
allocation" value for each tree node.

The agorithm for determining the numeric breskdown at each node will depend
on the design of your game. Each nonleaf node will require custom logic code to con-
tinuously update the distribution to its child nodes in response to the evolving state of
the game world. This is a matter of tweaking and tuning to achieve optimal resuilts.
Initially it's often agood idea to simply take afew guesses and use predetermined con-
stants until you get a good sense of what specific factors should cause the computer
player to change these weights as a given game sesson unfolds.

Determlnrng Current AIIocatlon

e (oo T T ———

Stmultaneously, we can use the tree to calculate a"current allocation" value for each
node. This gives us a breakdown of the assets we actually possess.

This calculation proceeds in the opposite direction, from the bottom of the tree
up to the root. We iterate over dl the Pikemen currently dlocated to Defense, for
example, and calculate some value indicating every defensive Pikeman's estimated
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value (say, by multiplying an attack strength value for Pikemen by that specific Pike-
man's current hit points). We then add al these Pikemen's scores together and mark
this as the current allocation value of the Pikeman node beneath Defense/Melee. We
then pass this number up to the parent node (Melee), which adds together all of
the numbersit receives from its children (such as dl the Spearmen and Footmen weve
alocated to Defense) and forwards this number up to its parent (in this case
Defense). Ultimately, the root node receives input from al of its children, and we end
up with afat floating-point number at the root that indicates the total current assets
of dl our possessions in the game world.

Once weve generated this value for "totd assets,” we can renormalize to values
between 0 and 1. Revisit each node in the tree and divide its "current allocation” value
by the root node's value, so that the root node again has avalue of 1.0.

At this point, it should be obvious that we can directly compare the current dlo-
cation value in each tree node to the desired alocation value to trivially determine how
far we are over or under budget in any particular capacity.

Strateglc DeC|S|on Maklng

It should be apparent that theflnal aIIocatlon tree representatlon instantly provides us
with an excellent way of organically maintaining the balance of our forces. If I'm in a
battle and | lose dl 20 of my Elephants, the Elephant node and dl its parent nodes are
now under-allocated relative to their desired allocation.

Of course, this won't necessarily mean that | replace dl my Elephants with new
Elephants. As the parent node of Elephant receives the resources it needs to fill in new
child nodes, it may decide that the best course of action is to build a battalion of
PlasmaTanks now that it's uncovered the requisite technologies.

The resource allocation tree is useful primarily for deciding which new units to
construct and how to alocate existing units to the most appropriate roles. The first
priority is usually to find those nodes that are most desperately in need of additional
alocation, and then determine whether this is more appropriately addressed by redl-
locating existing units or by creating new ones.

The resource allocation tree aso gives us agood way to design unique player per-
sondlities. Developing an expansionist, military-oriented "Genghis Khan," an eco-
nomicaly obsessive capitalist, or a research-oriented technocrat is just a matter of
tweaking the coefficients for the appropriate parts of the tree to favor or disfavor spe-
cific nodes. With alittle tweaking at different parts of the tree, Al players can be made
to favor individual species of units, different balances of growth versus defense, spe-
cific strategic categories of assets, or overall play styles.

Where combat is concerned, it's often a good idea to keep a precomputed "com-
bat balancing table" of relative unit strengths, and use this for making decisions under
the Military branch of the tree. This is essentially a 2D lookup table that alows you
to determine the general effectiveness of any unit in combat against any other. By ana-
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lyzing the functional asset tree that represents your knowledge of a particular enemy,
you can determine the composition of his forces and emphasize the production of the
asts that will be most effective againgt them.

Findly, the resource dlocation tree is an excellent place to store dl types of addi-
tional datidics. Severd of the factors we would typicaly track in an influence map
cdl are dso appropriate to afunctional asset tree node.

It's dso often agood idea to track which nodesin the tree have proven effectivein
the past, and which nodes have been attacked by enemy players. In die former case, it
would alow me to detect that my Pikemen have served me well against another
player, and to use this to direct my growth and development toward the functional
roles that made my Pikemen victorious. In the latter case, it will dlow me to detect
that my enemy has a proclivity for attacking my resource-gathering units (for exam-
ple), and to take additiona steps to protect them in the future.

Measuring Value

Probably the most Sgnlflcant challenge W|th thIS technlque is finding an appropriate
way to measure each unit's value in its particular branch of the tree. The numeric
units used in each node need to be commensurate with dl other units valuesin their
respective branches. Vaues under the Military branch should represent units' contri-
butions in combat, and should take into account attack strength, rate of fire, move-
ment speed, armor value, current hit points, and any other appropriate parameters.
Vdues in the Intelligence branch should take into account factors appropriate for
each unit's exploration ability, such as vishility range and movement speed, but prob-
ably not attack strength or hit points. Nodes in Resource Collection (under Eco-
nomic) should take into account how quickly each resource-gatherer can collect
resources, drop them off at the depot, and get back to the resources again. Finding an
appropriate way to correlate these values is, like so much elsein game Al, amatter of
experimentation to find the optimal solution for your particular game.

Another potential challenge is handling economic systemswith multiple resources.
In games where different units cost different amounts of, say, gold, energy, and
tiberium to produce, a single dlocation value does not trandate directly into a single
resource. The potential solutions to this problem are beyond the scope of this gem.

The Dependency Graph

The dependencygraph is adatastructure that model S dl the dependenu% between the
different types of assets in the game. The dependency graph encompasses al depen-
dency-based relationships, such as a game's "tech tree" and "building tree."

The primary dependency type is a creational dependency. This indicates some
number of conditions that must exis before a given species of asset can be con-
structed. For example, you must possess a Barracks before you can build a Pikeman.
You must construct a Castle before you can reach the Imperia Age.
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Creational dependencies can aso include resource dependencies and other, more
abstract dependencies. A Barracks requires gold and lumber. Gold and lumber come
from the labors of peasants. Peasants get the gold from a gold mine and lumber from
the forest.

Figure 3.7.2 shows a tiny sample dependency graph comprised soldy of cre-
ational dependencies. A peasant can create Barracks and Archery Ranges, but the
Archery Range can only be constructed after reaching the Medieval Age.

The second type of dependency is a support dependency. A Mage unit might
require mana, which can only be generated by a Shrine. Without a shrine, the Mage
will be essentidly usdless, as he cannot cast spells without a Shrine to feed him his pre-
cious mana.

As with the previoudy discussed data structures, an Al player should maintain
several parallel dependency graphs, one for itself and one for each of the other players.

Medieval Age :

FIGURE 3.7.2 The dependency graph.

Dependency Graph Nodes

A given node in a dependency graph will typically contain severd different types of
data. Useful categories include the total number of units of that type that the player
currently possesses (or is believed to possess, if we are looking at another player); the
total estimated vaue of those units; and the number of those assets currently in pro-
duction (being created by a Barracks, for example). Given the overlap between their
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concerns, it may be possible for a*node" in the dependency graph to be similar to a
"node’ in the functional asst tree, or even be the same physica data structure. The
main difference between the two is that the resource alocation tree tracks only the
currently available assts, while the dependency graph tracks all possible assts

Economlc Planning
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Thefirst and most ObVIOUS use for adependency graph is building toward agod. A
computer player can use the dependency graph to determine what it needs to build in
order to be able to produce a given asset. "1 know | want to build a Wizards Tower
eventually, so to get there, | need to build aLibrary, and then secure asuitable source
of mana, and then start buildingaMage Hall . ...”

The choice of which dependencies tofill in first is atrade-off between reacting to
the present and planning for the future. A purely reactive Al will usetheresourceallo-
cation tree to rank all the assets it can potentially create immediately and pick the best
available node. A more planning-oriented Al will analyze dl the nodesin the graph to
find a long-term goa worth pursuing, query the functional asset tree to determine
which dependencies are likely to be the most valuable, and build toward the most
promising technology, however deep in the graph it may be.

Note that this process becomes tricky when there are several possible ways to ful-
fill a dependency—when either A or B will dlow C. This seldom happens in practice,
as game desgners wisdy avoid these types of dependencies. In a situation in which
there are so many optional dependencies that the best route to a given node isn't obvi-
ous, any standard search agorithm should solve the problem quickly.

Flndlng Vulnerable Dependenmes

...... e

A dependency graph can be used to analyze strengths and weaknesses in a player's
forces, and to pinpoint its opponents most vulnerable dependencies. In RedAlert 2,
the enemy Al will usualy destroy my Barracks after taking out my War Factory. This
is aclever and potentially devastating strategy as it forces me to spend precious time
and money rebuilding the Barracks before | can consider rebuilding my War Factory.

There are three factors that generally determine whether a given node in the
dependency graph is "vulnerable.”

* Intrindc value. Some assets are vauable of their own accord. A Nuclear Slo is
valuable because it can attack the enemy directly. Assets deeper in the graph (far-
ther along in the tech tree) usualy have much higher intrinsic values.

e Strong child dependencies. Some assets are worth targeting because of what
they can create or support. A War Factory can create tanks and other vehicles. A
Library allows meto create the Mage Hall, whichwill eventually lead to Mages. A
Fusion Plant supplies lots of electricity to aplayer's base (asupport dependency).

* Weak parent dependencies. We can dso eat away at parent dependencies, as
with the Barracks destroyed after the War Factory. Graph nodeswhose parentsare
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relatively weak (few instances of each supporting asset) and easy to attack (poorly
defended) are more vulnerable to this type of attack.

We can use the same heuristic for both attack and defense. For attack, we often
want to select the most valuable opposing player dependencies, and go after the War
Factory first and the Barracks second. In defense, we use the graph to prepare for that
exact possibility—we increase our defense and build duplicate buildings as backup.

Strategic Inference

One subtle advantage of the dependency graph is that it provides a basis for making
inferences about other players current assets and likely strategies based on incomplete
observations. For example, if | know my enemy has aBarracks, | can be confident that
he either has Pikemen aready or is capable of creating them in the near future. Simi-
larly, if | see an enemy Pikeman, | can be 100-percent certain that he has a Barracks
somewhere about (or at least, that he did when Pikeman unit was created—there's
always the chance that the Barracks was destroyed after he created the Pikeman).

Inference works in two directions: forward and backward.

With forward inference, we know that the player in question possesses a given
unit or resource, and we can project the likelihood that he will then fill in the child
dependency. Each Barracks we observe makes the existence of Pikemen more likely.

With backward inference, we go back up the chain and assert that a given unit
makes its dependencies nearly certain. Seeing a Pikeman makes us very confident of a
Barracks, even if weve never observed it directly.

This kind of dependency-based inference can go along way. If | see an enemy
Grand Mage, | can assume there's a high probability that he dso has a Mages
Arcanum building, High Magic upgrade, aWizards Tower, a Sages Guild, aLibrary,
and all the other dependencies leading up to the Grand Mage unit. Furthermore, |
can then turn around and use forward inference on each of these nodes with their new
probabilities. Since the Grand Mage alowed me to infer the existence of a Sages
Guild, | can assume that the player is probably capable of producing a Sage.

This processis aform of probabilistic inference and is broadly similar to a popu-
lar inference technique known as a"Bayes network™ [see the Referencesfor details).

Interestingly, it'saso possible to useinference to make certain nodes less probable.
If we set an upper bound on the maximum possible size of a player's economy at a
given point during the game—either on account of the amount of time he's had avail-
able to build up, or by reasoning based on inferences using data from the influence
map—then certain dependencies make others less likely. Four minutes into the game,
I know that the best player can build a Red Dragon Roost or a Nuclear Silo, but not
both. Therefore, the presence of either makes the other less likdly.

Of coursg, thisis al alot of work, and you can just as easily cheat and look at the
other players assets directly. As always, | leave this decision to your conscience and
your opinion of how this decision would affect the entertainment value of your
game.
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Plgyer Personallty
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Aswith the functlonal asset tree we can use the dependency graph to give Al players
distinct personalities.

The vulnerability values for the various nodes in the dependency graph are a
prime candidate for tweaking. By exaggerating or deflating the vulnerability values for
different nodes, we cause our Al players to deflate or overvalue the significance of
those assets. If we tweak the values on the dependency graphs we maintain for oppos-
ing players, we change the likelihood diat we will target certain enemy assets rather
than others. If we tweak the values on our dependency graph of our own assets, we
change the way our economy develops and the specific technologies we embrace.

One smple technique for setting initial priorities is to pick a set of ultimate
"goals' for agiven Al player. Look at al the rightmost (deepest) nodes in the graph,
find asuitable agorithm to rank these fina dependencies by desirability, and come up
with good fina desirability values. You can then propagate these desirability values
back toward the left side of the graph, and thiswill give the Al player avery clear indi-
cation of which technologies it should generaly favor.

Puttlng It AII Togethe_r

o st e o s iy

Most of Al is dedson-makl ng, and a good repr&eentatlon of the game date can make
an Al player's decisions vastly easier to make.

This gem and the previous one have described data structure foundations for this
type of decision-making. Although not every game will be able to use dl of these data
structures, there are endless opportunities for intercommunication between whichever
of these data structures you use for shared strategic and tactica decision-making.
When the Influence Map, die Resource Allocation Tree, and the Dependency Graph
communicate and share their data, we end up with awhole diat is more than die sum
of its parts. The Influence Map tells you where the enemy is, die Resource Allocation
Tree tells you what you need to hit him with, and the Dependency Graph tells you
how to build it and how to keep it full of gas once you're up and rolling.
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ft1 ocation! Location! Location!" This decree not only holds for red estate, but

N dso for the virtual worlds in 3D action games. There, locations play a key role
as sniper spots, strongholds, avenues of attack, bottlenecks, or "red armor” power-up
areas. When locations are important in a game, they had better be important in the
gameAl aswadll.

This gem presents a technique for reasoning about locations and their role in the
game. It shows how to trandate location concepts to algorithms, so that the Al can
compute and grasp these concepts. This helps the Al in picking good locations for its
actions and in understanding the positions that other actors occupy. It literaly puts
the Al in abetter position to assist or chalenge the player.

First, we pick aterrain representation that the Al can handle efficiently: waypoint
graphs. To illustrate waypoint-based reasoning, an example problem is introduced.
Then, we identify tacticd attributes and relate them to waypoint properties. We con-
struct formulas to compute these waypoint properties, using static data such as the
world geometry, and dynamic data such as actor activity. Finally, we discuss how to
integrate terrain reasoning in our game and we look at various other applications of
waypoint-based terrain reasoning.

Representing Terrain to Reason About It

Reasoning about Iocanons would be easy |f there were onIy afew locations. However,
today's game worlds feature tens of thousands of accessible polygons. In a game, mul-
tiple Al actors take into account both visible and invisible locations. If this were done
in terms of raw polygons, that effort would probably consume more resources than
the 3D graphics rendering.

To complicate matters further, the value of alocation isn't so much determined by
its own characteristics as it is its relationship with the surrounding locations. For exam-
ple, is it easy to access the location? |s die location observable by many odier locations?
Are there any power-ups nearby? In addition, actual gameplay matters alot: some loca-
tions (for example, near an objective) are frequendy visited, whereas other areas are not.

307
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Thus, to reason effectively and efficiently about terrain, we had better pick arep-
resentation that approximates the terrain using far less detail than the raw polygonal
geometry. That representation should express relations between locations easily, and
support capturing of location-based game activity. Idedly, the representation alows
us to use precomputed intermediate results, leaving us some CPU time for more
advanced Al or afaster game.

Waypomts

Most 3D game Als dreﬂy have aterraln repr@entatlon that is easy to handle. They
use waypoints, or similar navigation aids such as grids, or cdls (see [SnookeOO],
[RabinOQ], [ReeceOQ]). These waypoints represent the most relevant part of the ter-
rain: the terrain that is accessble to the game actors. Each waypoint is a sample, an
approximation, of its immediate surroundings. The number of waypoints is typicaly
in the order of 250 to 2500.

Reasoning in terms of waypoints is attractive because many game Als dready use
these waypoints to move around, to find paths, to mark the presence of specid items
and obstacles, and to receive hints from the level designer. Because the Al performs
many of its actions with waypoints in mind, and because it thinks of players as being
near waypoints, capturing gameplay data per waypoint is easy and almost free.

Before we start reasoning about the waypoint-based terrain representation, that
representation needs to approximate the terrain and relevant properties well enough.
The network of waypoints should be sufficiently dense to represent al relevant loca
tions as well as any cover and concealment present. Typicaly, that means a larger
number of waypoints than required for Al navigation and pathfinding.

Terrain reasoning often deds with other inter-waypoint relations than shortest
path and movement. The need for these additiona relations and the reasoning about
waypoints are best illustrated using an example.

Example Terrain and Al Needs
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To illustrate waypoint-based terrain reasoni ng let's Iook at the following example: in
the area depicted in Figure 3.8.1, we want our Al actors to pick solid offensive and
defensive tectica pogtions, both before and during a fight.

To support the Al in efficiently picking and visiting strong positions, we compute
for each waypoint and for a number of directions, the offensive and defensive vaue of
that waypoint. This value is computed using the waypoint graph and world geometry
and improved with captured gameplay "experience” Such a "tacticd™ understanding
of each waypoint can be input for pathfinding, for flocking, to pick guard positions
overlooking an objective, and so forth.

The example areafeatures one objective and two entrances, and is populated by a
dense grid of waypoints. Note that just the waypoints themsalves (in Figure 3.8.1 cen-
ter) aready give you a good clue of the level's architecture.
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FIGURE 3.8.1 (left) A top view of the example terrain, featuring two entranceslexits, and
one objective 0. The terrain is covered by a good number ofwaypoints, including
waypoint w. (center) The waypoints in the example terrain, and the valid lines ofsight
from waypoint w to other waypoints. (right) The distribution of lines of sight from w,
and theproposed sectors to aggregate them.

Tactical Analysis

In assessing the tactical value of a location, many factors need to be considered. A
large number of these factors can be trandated to properties of awaypoint, which in
turn can be computed. Let's consider the example area from both a Quake-style
capture-the-flag game and from a tactica simulation perspective.

In a fast capture-the-flag game, characterized by rapid movement, power-ups,
nonlethal weapons, and rocket launchers, the tactica value of a location is largely
determined by the following characteristics:

» Locations that provide for fast movement and freedom to move in any direction
are essentid for attackers.

» Locations near power-ups are valuable.

» Locations susceptible to rocket blasts aren't that attractive.

» Locations overlooking the path to theflag while being hard to spot when rushing
to the flag make for good defensive positions.

In atactica simulation, characterized by lethal weapons, dow movement, cover,
stedlth, and sniping, other characteristics become key.

» Nearby cover is important for offensive and defensive actions. Even partia cover
or reduced visihility at alocation can be a serious advantage.



310 Sectlon 3 Art|f|C|aI Intelllgence

 Locations where movement is dow or predictable (near the entrance, for exam-
ple) make for bad offensive spots, whereas the locations overlooking them
become more attractive for defense.

« Aswithin the capture-the-flag game, locations that overlook the objective, and
locations overlooking the main paths to and from the objective are important as
well.

Fr_pm Tactical Values to Waypomt Propertles

S ———

Now that we have |dent|f|ed anumber of tactical characteristics that largely determine
the offensive and defensive values of alocation, we need to turn them into an evalua-
tion function and output.

First, we look at the waypoint propertl es that we can use to express tactical char-
acterigtics. Figure 3.8.2 illustrates the different types of waypoint properties available.

A waypoint has propertiesthat are loca, such asthelight level and the presence of
a power-up or door. Another category of properties is determined by the waypoints
membership in a larger terrain representation (typically a group of waypoints). For
example, the waypoint may be part of aroom, a street, or aroof. Note that both the
local properties and the group membership properties are nondirectional.

The relations between waypoints, however, are directional. For example, way-
point w (in Figure 3.8.1) can see amost dl waypoints to its east, and it will be hard to
approach waypoint w from the east without being observed. In a 3D world, height
differences often cause awaypoint to be easily accessed from one direction, and much
harder (read: taking alonger path and more time) from other directions.

A lagt, but essential, aspect is the distribution of the waypoints relations. For
example, if awaypoint overlooks many other locations in primarily one direction, the
player or Al isableto focus on that direction and see al visible activity instandy, with-
out having to worry about attacks from other directions. The concentration of rela-
tions in a sector is calledfocus.
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FIGURE 3.8.2 Waypointproperties: (from left to right) local properties, group membership, relations
with other waypoints, and focus.
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Computing Way pomt Propert|es

To compute a useful offensive or defenswe rating for a given waypoint and direction,
we need to implement each agpplicable tacticd characteristic as a function of waypoint
properties.

Many tacticd characteristics can be decomposed into primitive functions about
the waypoint graph, in effect dealing with linear distance, travel time, line-of-sight,
line-of-fire, objectives, and obstacles. For example, an important characteristic of a
good attack position is that it provides for rapid movement at that position. A "water"
position does not dlow rapid movement locdly. A waypoint with a "water" locd
property should rate low in enabling rapid movement.

In smdl rooms and tunnels, it is difficult to dodge rockets and avoid the blast
from arocket or grenade. Locations that are more spacious thus offer an advantage. If
awaypoint is part of an area (represented by a group of waypoints) that is a small
room or tunnel, it should rate lower in being "open." Thus, the waypoint's group
membership can be used to compute a tactical characteritic.

In the following code, two tactical characteristics are computed using aloca way-
point property and a group membership property, respectively.

float GetLocalRapidMovement( waypointid wp )
{ /] result in [0 .. 1], higher values meaning higher speeds
return(GetActorMovementSpeedAtWaypoint(wp)
| GetMaxActorMovementSpeed( ) );

Eloat GetOpenAreaMembership ( waypointid wp )
{ // result in [0 .. 1], higher values meaning more open
return 1.0 - max( IsPartOfSmallRoom( wp ),
IsPartOfTunnel( wp ) );
}

It is more complicated to compute a directiona relation for a waypoint. A spe-
cific relation for waypoint w, such as the availability of nearby cover from another
waypoint wy that has aline of sight on w, is computed in the following function.



float GetCoverFromThreatsInDirection(waypointid w) {
float property [kMaxDirections];
unsigned int entry[kMaxDirections];

/I set all property and entry values to 0

/I pass one: collect and interpret relations
for (waypointid w_to = 0; w_to < kMaxWaypointld; w_to++ ) {
direction dir = GetDirectionForWaypoints( w, w_to );

/I check for line-of-fire from w to to w

if ( (w_to!=w) && (HasLineOfFire(w_to, w)) ) {
entry[dir]++;

/I get value for relation (value in [0..1])
float value = GetCoverFromThreatsAt( w, w_to );
property [dir} += value;
}
}

/I pass two: level result into [0 .. 1] range
for ( direction dir = 0; dir < kMaxSectors; dir++ ) {
if ( entry [dir] >0 ) {
property [dir] /= entry [dir];
}

i
}

float GetCoverFromThreatsAt(waypointid w, waypointid w_at) {
for (waypointid w n = 0; w_n < kMaxWaypointld; w_n++ ) {
/I check for lack of line-of-fire to neighbor of w
if ( IsNeighborOf (w, w_n) && (!'HasLineOfFire(w_at, w_n)) )
return 1.0;

]rfeturn 0; // no cover found
}

In afirst iteration over dl waypoints, solely those waypoints with aline of fireto
w are considered. For each of these waypoints, the number of w's relations is incre-
mented, and the value of the nearby cover available is accumulated.

In a second"iteration, the amount of "nearby cover" is divided by the number of
relations, to return a value between 0 and 1. Rather than using the number of rela
tions here, wewill usethefocus() function to deal with the concentration of relations
in acertain direction. Thisfocus() function is explained later.

InafunctionsuchasGetCoverFromThreatsAt() (thesecondfunctionat bottom
of the previous code listing), avery simple approximation is made. A more advanced
approximation might use fuzzy logic to ded with such issues as the travel time to the
nearest cover, the amount of cover available, and the weapon effectiveness over the
distance between the waypoints.
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FIGURE 3.8.3 Smple computation of the focus values for waypoint ~w in the example
terrain. All relations areprojected on a 2D dish withfour 90-degree sectors. Thefocus of
a sector is a weighted ratio of its relations versus the relations in other sectors.

The focus of a waypoint reflects the concentration of relations over the various
directions. Focusis particularly valuablein defense and when survival isimportant. In
these cases, it is not sufficient for alocation to offer great sniping opportunitiesin one
direction. The location adso needs to offer flank and rear protection; that is, have few
line-of-sight/fire relations to the sides and to the rear.

Thefunctionfocus( w, d ) expressesthe distribution of relationsin one direction
relative to the distribution in other directions. The exact implementation of focus()
depends on the number of different directions consdered (the sectors) and the type of
relation for which the concentration is considered (often the line-of-sight). Figure 3.8.3
illustrates an implementation of focus for waypoint win our exampleterrain, using sim-
ply four sectors to represent die various directions possiblein a3D sphere. When deter-
mining the focus, you should aso ded widi the exceptiona case of a waypoint having
relations solely in asingle sector. Then, adefault maximum should be used.

Thefocus() function assumes amore or less uniform distribution of waypoints
across the terrain. However, the function is largely robust against moderate deviations
in that distribution. When we have expressed every tactical characteristic in a number
of waypoint property computations, we can combine them as follows:

rating( w, d ) = Z k. x local_propertyi( w )
+ £ kj x group_membershipj( w )
+ focus(w, d ) x I ki x relation™ w, d)

Note that for focus() to correcdy emphasize or dampen the results from the rela-
tionx() functions, these relation* () should dl return positive values. This rating
expresses the Al's a-priori understanding of a location and its role in the game. This
rating, the tactical value of alocation, is based on die waypoint graph and world geom-
etry, and implicitly uses some static game constants such as actor movement speeds,
weapon performance, and power-up locations. For the example area discussed, we are
now able to automatically annotate each waypoint with its offensive and defensive val-
ues in agiven direction (given some time for experimentation and tuning).
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Learnrng from Gameplay Experrence _

L e s

Obvioudy, not every vaue will be fuIIy correct Our terrarn sampling, by means of
waypoints, is an approximation, and so are the evaluation functions used to compute
the values.

In addition, we have been ignoring actua gameplay. That mistake, however, is
easly turned into an advantage.

Because the Al uses waypoints for its actions, and thinks of the players as being
near waypoints, we can record their activity at a waypoint with little effort. We can
use that information in two ways. We can use it to correct the outcome of our com-
putations, and we can use it as additional input in the computations.

We can improve, for example, the defensive value of awaypoint in adirection by
adding the damage done by an actor, and subtracting the damage received by an actor
at that waypoint. In other words, we add a little reinforcement learning to the Al's
understanding of the locations. That will correct part of the error present in our
results. More importantly, it leads to an Al that will vary and adapt its choice of loca-
tion based on its past successes and failures!

The captured gameplay data can aso be input for our waypoint properties. For
example, the more "hodtile traffic' waypoints that can be seen from a location, the
more useful that location will be for defense. Such arelation can be computed easily,
if the required traffic data is available. When using gameplay data as input for the
computations, the Al actually gains tactica understanding of the terrain.

Puttrng Terrarn Reasonrng in the Game

----- TR R T T o

So, our AI can andyze the example area by a series of computations, using geometry
data, travel time, shortest paths, line-of-sight, line-of-fire, and waypoint-related
gameplay data. These computations have O(n®) time complexity, because in comput-
ing some of the waypoint-to-waypoint relations, other nearby waypoints are aso con-
sdered. In practice, the computations take some tens of seconds. This kind of
waypoint reasoning is best done when preprocessing alevel and possibly between mis-
sions, as a background thread.

Few resources are used by the results from the terrain reasoning algorithm. Typi-
cdly, they condgt of severd tables per waypoint, each table containing a smal number
of bytes. The tables can quickly be read and contain knowledge about the terrain that
would otherwise be almost impossible to obtain. In addition, the reinforcement learn-
ing based on gameplay data enables some varying and adaptive Al behavior at negligi-
ble costs.

In general, waypoint-based reasoning need not be CPU intensive. Terrain reason-
ing is quite feasible during gameplay, provided the Al considers a small set of way-
points, and has intermediate reasoning results available. Using small [ook-up tables
for each waypoint to store both the nearby waypoints and the visible waypoints, the
Al can, for example, efficiently plan paths that avoid locations under firefrom threats.
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Dynamic game terrain and entities, such as doors, vehicles, destructible terrain,
and smoke do complicate the terrain reasoning, because these dynamics partially
invalidate precomputed results. Notably the line-of-sight, line-of-fire, and paths will
be affected by dynamic terrain. Nevertheless, it often remains attractive to use pre-
computed intermediate results. It is often more intelligent and efficient to use these
results and try to correct for any dynamics than to use no reasoning at al.

The terrain reasoning discussed here is a set of heuristics. It takes a number of
experiments and some analysis to find the right ingredients and weights for your Al
terrain reasoning. To effectively tune and verify your agorithm, visuaization of the
(intermediate) reasoning output is essential. The output can be interpreted easily
when projected onto the terrain within the game. Alternatively, you can export the
results to a spreadsheet for further analysis.

Other Appllcatrons

Waypoint-based terraln reasoning is presented here us ng a srmple example, precom-
puting the offensive and defensive vaues of the game locations. The ideas behind the
reasoning have a much wider use than that example. The idea of dissecting tactical
guidelines and expressing them as evaluation functions per location is an approach
that will work for many games where the Al needs to reason about locations.

Just ask yoursdlf the question:

"Ifl were to defend this base (or whatever the Al needs to do), why would | prefer
location x over location y, and what does distance, travel time, line-of-fire, the type of area,
(or whatever terrainproperty or gameitemyou can come up with) have to do with it?"

Waypoints, if placed in a sufficiently dense graph across the terrain, serve many
more purposes than just navigation. Together with a few small lookup tables for
nearby waypoints and visible waypoints, they enable the Al to predict out-of-sight
opponent movement, and to find a nearby location providing a new line-of-sight.

Waypoints are a handy means to "host" additional cods for A* pathfinding. If
we tag al waypoints that are visible from the assumed threat positions with extra
cogts, the A* pathfinder provides us a path offering cover from the threats where
available. If we aso tag dl waypoints that restrict our movement, the path returned
will be even more "tactical." These are just two of the many examples of waypoint-
based reasoning. You can probably think of a few more that will put your Al in a
strong position.

Conclu3|on

PO S D s T

Waypoint graphs provrde an easy-to-use representatron of the game terrain. You can
trandate many of the terrain-related tactics in your game to waypoint-related proper-
ties. As an example, this gem shows how to build a per-waypoint evaluation function
that expresses the value of a location for general offense, general defense, or a parti-

]
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cular tactic such as ambushing or sniping. This will provide your Al with a good
understanding of the terrain.

You can extend and improve that evaluation function with captured gameplay
data, resulting in an Al that becomes more varied and adaptive. There are many other
ways your Al can reason about terrain using waypoints. Just try to relate the tactical
guidelines to waypoint properties (that fit in alook-up table).
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Expanded Geometry for
Points-of-Visibility Pathfinding

Thomas Young
thomas.young@bigfoot.com

n Game Programming Gems, Bryan Stout and Steve Rabin described "points-of-
visibility" pathfinding [StoutOQ], [RabinOO]. This is essentialy away to find the
shortest path around polygona obstacles.

As Steve pointed out, there are big advantages to the method. It enables you to
create aminimal representation of the search space, resulting in very fast searches. In
addition, paths found are perfectly direct.

In this gem | explain how to automate construction of expanded geometry from
polygonal obstacles, and how to use this to implement points-of-visibility pathfinding.
By using expanded geometry, we overcome most of the disadvantages of the technique.

« Points of visibility can be extracted directly from the expanded geometry without
designer assistance.

e It is possible to support dynamic objects (such as characters, doors, moving
blocks, and so on) by generating and integrating expanded geometry for those
objectsonthe fly.

* The expansion can be parameterized to support characters of different szes and
formations.

For many games, pathfinding is fundamental to the Al. It is up to the pathfinder
to guarantee certain aspects of character behavior. It is essentid, for example, that Al
characters do not get stuck against obstructions. Characters must not fail to find a
path around obstacles when that path looks obvious to the player. When collison
against obstructions is complicated, even these capabilities are difficult to guarantee.

If we accept some limitations on the collison mode for character movement, we
can use exactly the same model for both collison and pathfinding. By using expanded
geometry we can build a pathfinding system that is exactly correct for this collison
model. This system is guaranteed to understand correctly any position a character can
reach, and returns paths that are guaranteed to be unobstructed, so characters can't get
stuck.

Higher-level Al built on a "perfect” pathfinding system is much easier to code
because you don't need to catch those tricky Stuations, such as a character getting

317
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stuck because no path can be found from its current position. By depending com-
pletely on the results of the pathfinding system, it is possible to build sophisticated
movement-related Al with far fewer lines of code. It is aso much more fun.

Defrnrng a Collision I\(_Io_del

il

A collision model precisely specm% character coIIrsron against the environment. We
build our collison modd around a "collison shape' for each character. The collison
shape is a convex polygon chosen to best represent the shape and size of that charac-
ter. The shape translates with the characters origin when the character moves, but
doesn't rotate when it turns. The character is obstructed for positions where its colli-
sion shape overlaps the environment.

The environment is represented polygonally and can be comprised of convex and
nonconvex polygons that mark obstructed areas, 2D meshes to represent unob-
structed areas, or some combination of these representations (Figure 3.9.1).

: -(-Qbstr ucted

: jl ttnobstructed

FIGURE 3.9.1 Caollision shapes inpolygonal environments.

Polygonal Pathfrndrng

Ol o g b P VAT

Now that we have specmed a colllsron model |t is thejob of the pathfinder to find
paths for a character that are unobstructed for this model. For simplicity, | consider
only the traditional pathfinding constraint; that is, to find the shortest path from the
start position to a given goa position. The problem can be restated as finding the
shortest set of unobstructed line sections connecting start to goal.

Expand and Conquer

TSR O - — T——

The trick is to build an expanded geometry that combr nes our collision shape with
the shape of the obstacles in the environment. This representation greatly simplifies
the queries we require for our pathfinding system.
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The expansion we use is a Minkowski sum of planar sets. Specifically, our
expanded geometry will be a Minkowski sum between the environment and the
negated collison shape. This is sometimes called a Minkowski difference.

The Minkowski sum of two sets A and B is the set of values that can be generated
by adding some member of set A to some member of set B. A polygon can be viewed
as aplanar set; that is, the set of points inside that polygon.

Our expanded geometry represents the set of points that can be generated by sub-
tracting some offset in our collison shape from some point inside the environment.
This means that for each position in our expanded geometry, some point in the colli-
sion shape overlaps the environment. Therefore, our expanded geometry represents the
set of points where our character will be obstructed (Figure 3.9.2).

Doesn't Callide \"~ Doesn't Callide

~

FIGURE 3.9.2 Callision shape in polygonal environment, point in expanded environment.

Collison between a collison shape and the origind polygona environment is
identical to collison between a point and the expanded geometry. To find out if a
character can be placed at a position, we test whether that position is inside our
expanded geometry. To find out if aline section is obstructed for a character, we sim-
ply test whether the line collides against our expanded geometry.

For points-of-visibility pathfinding, the set of convex corners in our expanded
geometry gives us our points of visibility. Two points can be connected if the line
between the points doesn't collide against our expanded geometry.

Mlnkowskl Sum of Convex Polygons

P

To bqu our geometry we start by |00k| ng at the S|mpler case of asingle convex poly-
gon abstruction. The negated collison shape is dso a convex polygon, so we must
construct a Minkowski sum of two convex polygons.

For convex polygons C and O, this sum can be visudized as the space swept out
by dragging the center of C around the perimeter of O (Figure 3.9.38). This space will
be bounded by a larger convex polygon. The sum can dso be visudized as the shape



=

==chonks Frinciallnieligencg

FIGURE 3.9.3 A) Sum of convex polygons. B) Alternative visualization.

enclosed by the center of the (non-negated) collision shape as it dides around touch-
ing the perimeter of O (Figure 3.9.3b).
Edges in the expanded polygon are generated in three ways (see Figure 3.9.3B):

1. Directly from an edgein C, when C is placed a a corner of O.
2. By acorner of C as C moves aong an edge in O.
3. By an edgein C as C moves aong aparalel edgein O.

When there are no parald edges, each edge in C and O is used exactly once, giv-
ing usalimit for edgesin our expanded polygon equal to die edges in C plus the edges
in O. Thisis useful for us to dlocate space in advance for the expanded polygon.

It isfairly easy to build the expanded polygon. Vertices in C are numbered in a
clockwise direction (Figure 3.9.49). For each edge in O, we determine which of these
vertices is used to expand the start and end points of that edge (Figure 3.9.4b). This

FIGURE 3.9.4 A) Verticesin C. B) Stan and endpoints, interpolated vertices.



3.9 Expanded Geometry for Pomts—of -Visibility Pathflndlng S 3n

A B

FIGURE 3.9.5 Ordering by edge vectors, start and end expansionfor an edge.

gives us our type (2) or type (3) edges. Type (1) edges are constructed where the end
point of one of these edges does not connect to the start point of the next, by inter-
polating vertices in C, if required, and adding edges (dso Figure 3.9.4B). Interpola
tion is just a case of counting through vertices in C until we reach the vertex that
expands the start of the next edge.

So, how do we determine the start and end expansions for each edge in the first
place? We can define acircular ordering on vectors, based on the directions of die edges
in C (Figure 3.9.5). For each edge in O, position in this ordering tells us which vertices
in C expand the start and end points of diat edge (dso Figure 3.9.5). For ahit of extra
speed, this position can be tracked incrementally as we loop through edges in O.

Expandlng Nonconvex Geometry

Now that we can expand a convex polygon there isa stral ghtforward way to extend
this to a nonconvex polygon. We smply split the nonconvex polygon into convex
parts and expand each part separately (Figure 3.9.68). However, this can result in a
large number of overlapping polygons with a lot of unnecessary edges and corners.

To make awell-formed Minkowski sum, we should detect intersections between
expanded polygons and connect them together to make a single expanded shape. A
fundamental problem with this approach is the fact that intersections may not fall
exactly on points representable by the numbers we are using for coordinates. More-
over, ifwe use approximate points at intersections, then our padifinder no longer cor-
responds exacdy to our collison model, although this may not matter if our collision
engine will aso be built around the same expanded representation.

A good solution is to make a "lazy man's Minkowski sum." Here we are not con-
cerned with the set of obstructed points, but rather with transitions from unob-
structed areas into obstructed areas. This approach is more appropriate for external
boundaries that can't be decomposed, as such, into convex polygons. Thiswill dso be
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more relevant if we need to make extensions in the fixture to support features such as
overlapping geometry.

To build a"lazy man's Minkowski sum,” we can use virtually the same method we
used to expand a convex polygon. The difference is that we do not interpolate points
at a concave corner. If the end point for the edge before the corner is not same as the
start point for the edge after the corner, then we get an intersection and a discontinu-
ity in the expanded edge lit (Figure 3.9.6b).

This process is a lot easier to code and a lot faster than generating a true
Minkowski sum. For a start, we don't have to perform any triangulation or detect
intersections. For large collison shapes, we can ill end up with unnecessary edges
and corners, but this is usualy not a big problem.

A B

FIGURE 3.9.6 A) Nonconvexpolygon expanded as convex subparts. B) Lazy man's
Minkowski sum.

C_h_oosmg a ( CoII|S|0n Shape __
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The fact thar[ our callision shape doent rotar[e isamajor Ilmltatlon for our collision
model. Because the characters in our games will amost certainly need to rotate, we
will want to use rotationally symmetrical collision shapes in order to get the most con-
sistent collision behavior. A circle would be the best approximation, but we can't usea
circle because the resulting expanded geometry would have no corners and hence no
points of vigibility. Instead, we must use an N-sided regular polygon to approximate a
circle.

In general, the more edges we use in our collision shape, the more edges and cor-
ners we get in the resulting expanded geometry. With more edges and corners,
pathfinding becomes more expensive (sometimes exponentially). Squares and
octagons are obvious choices because they are rdatively simple and because they can
be aligned with the coordinate axes.

In the past, it was important to use axis-aligned collision shapes for performance
reasons. For vector comparisons against horizontal, vertica or 45-degree lines,
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multiplication can often be avoided. Nowadays, branch prediction issues mean that it
is better to simply go ahead and perform the same multiplications for al cases, so
there is no longer any performance reason to only use axis-aigned shapes. For some
platforms, avoiding multiplication may gtill be an important issue, however.

Conclusion

I have shown how a pathfinding system can be constructed that is precise with respect
to a reasonably interesting polygona collison mode. There is a trade-off to be made
between sophisticated collison systems and collison systems that characters can
"understand.” For games where you are able to use this model for both character col-
lision and pathfinding, there can be abig payback in reduced debugging and simpli-
fiedAl.
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Optimizing Points-of-Visibility
Pathfinding

Thomas Young
thomas.young@bigfoot.com

he "points of vishbility" pathfinding method has anumber of advantages (see Steve

Rabin's article in Game Programming Gems, [RabinOQ]). Also, with expanded geom-
etry we can make this an exact mediod to guarantee correct paths with respect to agiven
polygonal obstruction set (see "Expanded Geometry for Points-of-Visihility Pathfind-
ing" in tins volume.) Complexity is independent of scde, so it is possble to efficiently
compute paths over long distances, and by precaculating the network of connections
between points of vishility, an extremely fast pathfinder can be constructed.

As map complexity increases, and with it the number of points of visibility, we
find that the number of connections between these points can increase exponentialy,
particularly on maps with large open areas. Memory can become an issue, especialy
on console platforms. In addition, the need for interesting Al demands that pathfind-
ers must support dynamic features such as moving objects, characters, doors, and so
on. To support dynamic features such as these, we need to work with points of visi-
bility that are generated on the fly, and obstacles that can move to invalidate connec-
tions. If we are not careful, the overhead for calculating visibility with these dynamic
features can dso increase exponentialy.

| present some optimizations that enable us to quickly discard many potential
paths and to greatly reduce the size of our network of connections. This results in
faster searches and less overhead for dynamic objects. With these optimizations, our
algorithm will scade better to handle increasingly complicated maps.

e e

For this gem, | assume that the pathfinding agent can be considered as a point agent
in a polygonal environment. Section 3.9 explains how a more interesting collision
model can be converted to this form.

Our pathfinder uses an A* algorithm with a set of points of visibility as possible
intermediate states between start and goa. The points of visibility are derived directly
from the convex corners in our polygona environment. For an explanation of the A*
algorithm, see Bryan Stout's articlein GameProgramming Gems [ StoutOOQ)].
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Storing the Shortest Path to Each Point

T e RS e P R T

An |mportant first step to prevent exponentral growth of our search tree is to ensure
that only the shortest path to any intermediate point is retained for further consider-
ation. This is not a specific optimization for points-of-visibility pathfinding as it
should probably be standard behavior for any A* implementation. This needs to be
stressed, however, because it makes abig difference to scalability.

In Bryan Stout's article, he describes the use of an open list and a closed list. At
each step of the A* algorithm, these lists are searched to find any other paths that dso
end at the current point under consideration.

One important difference between tile-based pathfinding and points-of-visibility
pathfinding is the number of potential intermediate locations we need to consider.
Since we only consider the convex corners in our environment, this will tend to be an
order of magnitude less than the number of tiles required to represent the same map
for tile-based pathfinding.

This means that it is feasible to use an array (with one entry per point of visibil-
ity) to keep arecord of the shortest path found so far to each point. Instead of search-
ing through open and closed lists, we need only make a single lookup into this array.
In fact, this means that there is no longer any need for a closed list at all.

The array must be cleared before each use, but on most platforms, there will be a
fast memory clear routine readily available, so the time this takes is usually irrelevant.
If there is a very large number of points and you expect to only use a small number of
these for each search, then it might be worth keeping the closed list as a record of
which points must be cleared after the search is complete.

Connectlng the Corners

...... e T R e e

Each gtep in the A* algorlthm mvolves taking the best partral path found so far and
generating a set of successor paths. Each successor is formed by connecting the end of
the partial path to another point with aline section. The point can be either a point
of visibility or the goa point. The straightforward approach is to generate a successor
for every point in the world for which the line section will be unobstructed.

By preprocessing collision between al pairs of points of visibility and building a
(possibly large) table, we can determine very quickly at runtime which other points of
visibility can be reached from some source point of visibility. The start and goa posi-
tions will change at runtime, so line sections to and from these points cannot be pre-
processed. The same is true for any points of visibility resulting from dynamic
obstacles.

Optimization #1. Only Consider Paths to Silhouette Points

As seen from some source point, each other point in the world can be classified as left
silhouette, right silhouette, or not a silhouette (Figure 3.10.1).
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FIGURE 3.10.1 Silhouettepoints.

This optimization is based on the observation that we don't need to consider path
sections that connect to nonsilhouette points. Any path section going to a nonsilhou-
ette point will result in a corner that can be cut to make a shorter path. (Thisistrue
unless that point coincides exactly with the god point, or with another silhouette
point. In both cases, there will be an alternative mechanism to generate that path.)

The optimization applies when we are generating the set of successors to a partial
path. | will refer to the point at the end of this partial path as the current point. The
points we consider using to extend the path are potential next points. We can ssimply
discard any of these points that are not silhouettes as seen from the current point.

We discard nonsilhouette points because the resulting path can aways be short-
ened by cutting a corner. To better visualize what is going on here, it is useful to
understand that the shortened path will be realized as the search continues. Thiswill
happen either by connection directly from the current point or by connecting to asil-
houette on a blocking object.

If we are using a visibility graph, then this optimization can aso be applied
directly to the connections in our visibility graph. Any connection can be removed
from the graph where the destination point is not a silhouette from the source point.

Optimization #2: Only Consider Paths that Go
Around the Corner

This optimization is aso applied when generating successors to apartial path.

For this optimization, we are interested in the line section at the end of our par-
tial path. When generating successors for the first time, from the start position, the
partial path is empty so this optimization does not apply. | will refer to the point at
the start of this line section as theprevious point. The point at the end of the partia
path is our current point. As aresult of our first optimization, the current point will
aways be a silhouette point as seen from the previous point.

The reasoning behind this optimization is similar to die reasoning behind die first
optimization. Any path diat does not go around the silhouette point will result in a cor-
ner that can be cut to make a shorter path. Figure 3.10.2 shows a silhouette point, a set
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of path sections that go around that point, and one example of a path that can be dis-
carded. Again, the shortened path will be redlized either by a direct connection from the
previous point, or viaanother silhouette point if the direct connection is obstructed.

To implement this optimization, we use the vector from the previous point to the
current point and the vector from the current point to the potential next point under
consideration. At aleft silhouette, the next vector must be on the right of the previous
vector and to the left of the obstacle. At aright silhouette, the next vector must be on
the left of the previous vector and to the right of the obstacle (Figure 3.10.2).

Discarded

Start

FIGURE 3.10.2 Thepath mustgo around each corner.

Sllhouette Zones

T T M R ST

For |mplementat|on itis useful to deflne two zones relan ng to each point of visibility
(Figure 3.10.3). Each point of visibility is positioned at a convex obstruction corner.
The zones are formed by extension of the obstruction edges before and after that cor-
ner. The zones classify this point of visibility as seen from some arbitrary point. If that
point is in the left silhouette zone, then our point of visibility is classified as left sil-
houette, and vice versa

To go "around" the silhouette point, the next point must be in the opposite zone
to the previous point, but it must dso be inside the set of vaid destinations bounded
by the extension of the axis from the previous connection.

We can apply the second optimization to the connections in our visibility graph.
Each connection in our graph has a source point and a destination point. When gen-
erating successors, these correspond to the current and next points, but there is no
information in a simple visbility graph about the position of the previous point. This
means that when we apply this optimization to the visibility graph, we must allow for



FIGURE 3.10.3 Silhouette zones at a corner.

al possible positions for the previous point. This just means that our set of vaid des-
tinations becomes the set of points in either of our silhouette zones.

So, to apply this optimization to our visibility graph, we dso discard connections
where the destination point is not in one of the source point's silhouette zones. When
we retrieve a connection from the vishility graph, we know the position of the previ-
ous point so we can make a more specific test to possibly discard that connection.

Points Connections before Connections after
Environment 1 21 231 98
Environment 2 9% 1638 568

Figure 3.10.4 shows two examples of obstruction environments. The table above
shows the number of connections in our visibility graph before and after using sl-
houette optimizations to discard connections.

FIGURE 3.10.4 Environment 1, Environment 2.
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Using Silhouette Zones with Spatial Partitioning

The optimizations | have described enable us to reduce the number of connections in
our visibility graph, and to reduce the size of our search tree. For dynamic points, we
still need to test for connection to and from every other point in the world. We can
quickly discard many of these connections, but connections that cannot be discarded
need to be tested for collision.

The next step is to build a representation to quickly determine a minimal set of
points that can potentially connect to or from a given dynamic point. Silhouette
zones are agood starting point for building this representation. The zones for a given
point of visibility give us an area within which dynamic points can potentially con-
nect to that point of visibility. The exact nature of this representation should vary for
different types of obstruction environments.

In maps with low vishility, built from rooms connected by portals, silhouette
zones can be projected through portals to determine which rooms can potentialy see
the corresponding point of vighility.

For a more generd system, silhouette zones can be clipped againgt the polygonal
environment to determine the arealin which agiven point isvisible. The resulting shapes
can then be entered into some genera spatid partitioning system. If the shape for one of
these areas is represented exacdy, then thereis no need for any collision checking once it
is known diat adynamic point is insgde that shape. (Note that exact representation of the
clipped areamay depend on using an exact representation for line intersections.)

Conclu5|on

There are many more detalls mvolved in bUIldI ng an eff|C|ent points-of-visibility
pathfinding system. | have described some techniques for quickly discarding many
connections and therefore reducing the total number of paths that must be consid-
ered. Thisis agood first step.

I have briefly mentioned how silhouette zones can be used with spatial partition-
ing to handle dynamic points efficiently. To support the addition of dynamic obsta-
des efficiently, agood spatia partitioning system is essential.

A final detail is the problem of testing for connection from one dynamic point to
another. For the case with no dynamic obgtades, this only needs to be done once, for
the potential connection from start point to goal point. With dynamic obstacles, this
test may need to be performed a large number of times, so an efficient implementa-
tion becomes important.

Referen Ces ..............................................................................................................
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ocking (sometimes called swarming or herding) is atechniquefirst put forth by

Craig Reynolds in a 1987 paper he did for SIGGRAPH entitled "Hocks, Herds,
and Schools A Distributed Behaviord Modd" [Reynolds87]. In this paper, Reynolds
defined the three basic rules (or steering behaviors) for flocking and explained how
they interacted to give lifelike group behavior to creatures he cdled boids. In Game
Programming Gems, | wrote ashort gem introducing the subject [WhodcockOO] and
added another steering behavior to make what | cdled the "Four Rules of Flocking."

Separation: Steer to avoid crowding loca flockmates.

Alignment: Steer toward the average heading of local flockmates.
Cohesion: Steer to move toward the average position of loca flockmates.
Avoidance Steer to avoid running into loca obgacles or enemies.

What's interesting about these four simple behaviora rules is how lifelike the
resulting behavior of the boids can seem. Watching the origina demo from the first
book (dso provided on the companion CD-ROM files for this chapter), one can se
groups of boids codesce and move in ripples around their world. When they

ONTH ECD approach boids belonging to ancther flock, they flee, breaking apart into smaller
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flocks, if necessary, to avoid contact with anybody not belonging to their flock. If
split from their original flocks, individual boids eventually find fellows and form a
new flock, which in turn would eventually find other flocksto join.

Another interesting aspect of flocking is that the movement agorithm itsef is
gatedless—no information is maintained from movement update to movement
update. Each boid reevaluates its environment at every update cyde. Not only does
this reduce memory requirements that might otherwise be needed to provide asimi-
lar behavior using approaches besides flocking, it also alows the flock to react in red
time to changing environmental conditions. As a result, flocks exhibit dements of
emergent behavior—no one member of the flock knows anything about where the
flock is going, but the flock moves as one mass, avoids obgtadles and enemies, and
keeps pace with one another in afluid, dynamic fashion.
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This technigue has proven to be a valuable one for video games, having uses in
everything from unit formations in an RTS, to redlistic behavior of crowds in RPGs.

This gem builds on the original article in a number ways, borrowing from some
of the suggested enhancements outlined there, together with one or two suggestions
received by readers. I'll expand on the origina demo, adding some features that
somewhat individualize the boids, giving each boid a new feature—hunger. The
world itsdf will be made a bit more difficult to navigate through the introduction of
obstacles. I'll then introduce a new discriminator that gives our boids a reason to flee
each other—some will be predators that actually feed on the others! Boids will now
come in three flavors: hawks, sparrows, and flies. To this end, well be adding a"Fifth
Rule";

e Survival: Steer to eat as needed, or to avoid being eaten if a predator is seen.

exists in that realm but the boids themselves. Left to itself (and assuming it dldnt run
into a boid from another flock), a given boid would pretty much fly around forever,
wandering aimlessly. The only flocking-related code that might otherwise have influ-
enced a boid's motion was a minor function | added to the flocking algorithm (in
CBoid::Cruising()), and even that didn't contribute much. The world wrap code
(which teleported boids flying off one side of the world to the other side) could screw
up flocks a bit, but they aways eventually found each other again.

More variety is needed if were to make the lives of our creations more interesting
and to provide an environment closer to one that might be found in an actual game.
To help give our boids more to think about this time around, we've got to give them
something new to deal with—obstacles.

Obstacles

An obstacle is pretty much what it sounds like—something that's in the way. A new
class of object called CObstacle has been added to create these. A CObstacle object
forms an impenetrable cone-shaped barrier that al boids will try to avoid during their
travels.

This class gives us a smple way to make the world a bit more interesting and pro-
vides them with some interesting navigational challenges. Obstacles can be created
anywhere within the world with any arbitrary orientation, using either specified va-
ues or randomly determined ones. The CObstacle: :GetPosition () method has been
added to help us with collision detection and in determining if an obstacle is in the
lineof sight of agivenboid, whileCobstacl e: : GetRel ativeDiameter() will returnthe
relative size of the obstacle at the boid's cruising atitude.



Critters of All Kinds

Figure 3.11.1 shows how boids now come in three flavors, arbitrarily named hawks,
sparrows, andflies, asthey are dl flying creatures. Each servesanimportant roleinthe
ecology of our gem by hunting and feeding on each other.

- Moves quick - Moves average - Moves dow

- Sees further - Sees average - Can't seefar
- Hunts Sparrows - Hunts Hies - Hunts nothing
- Randomly reproduces

FIGURE 3.11.1 Types of boids.

Every Boid Is a Bit Different

The origina Smple Flocking demo initialized al boids with various parameters—range
of sight, maximum speed of flight, etc.—which were identical for dl boids anywherein
the world. There were no particular discriminators to distinguish one boid from
another, beyond the flock to which it belonged. Boids belonging to other flocks were
automatically enemies and avoided like the plague (if that switch was turned on).

The Predatorsand Prey flocking demo individualizes each boid abit by allowinga
randomized component upon boid crestion. A boid thus crested (via a new construc-
tor added to the CBoid class) will nhow have some "persondlity,” making each one a
little bit different from its fellows. Some won't see well, while others will see farther
than their brothers. Still others will want to maintain more distance from their fellows
than the norm. Some will be hungrier than others, and so on.

Why do this? There are a couple of reasons, both of which add to the lifelike
behavior of the creatures in our little world. First, providing each boid with dlightly
different capabilities is smply more redligtic than an endless army of clones. Second,
the differenceswill combine to provide some novel forms of emergent behavior asour
boids interact, again providing what in the end is a more redistic representation of a
group of creatures moving en masse. The tug and pull of two boids in the same flock,
one of which wants to maintain a cohesion much tighter than its fellow, will make for
some interesting group dynamics, as will a boid that can see an oncoming predator
just abit farther than any of his flockmates.

Additionally, the new demo adds some finer control over what types of boids
are considered "enemies’ and what types aren't. A new parameter has been added to
the CBoid constructor that alows specification of that boid's type. This adlows for sim-
pleteststo beadded tothe CBoid:: SeeEnemies() and CBoid:: FindFood() methodsto
compare types and determine if a given boid is a predator to be avoided or prey to be
hunted.
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Does this dl add some overhead? Y es, though it's not much. The needs of die par-
ticular implementation, of course, will drive any such design decisions. For example,
in an RTS game, every unit of archers might well be fairly generic, while in an FPS
game, every squad-mate is an individual with unigue characteristics.

Feeding the Flock

It follows that if we're going to have classes of boids that feed on one another, we're
going to need something to control that hunger. Nothing outside of the Jaws movies
has an insatiable appetite, and our boids are no exception.

To represent this, both hawks and sparrows have a hunger rating that decrements
alittle each update cycle. "When it reaches zero, our boid will become hungry and will
begin to actively seek out prey to satisfy that hunger. In our demo, hawks hunt for
sparrows, of course, while sparrow boids will seek out flies. FHies are at the bottom of
the food chain and don't eat anything, but they will reproduce if there are enough of
them in one flock. Each time a hawk or a sparrow egts, a random test will determine
if it's dtill hungry by comparing its current hunger rating to its starting hunger rating.
For example, if ahawk starts out with 10 hunger points and has eaten four sparrows,
there's a 40-percent chance it will be satisfied and stop eating.

Since it isn't my desire to build a complicated feeding simulator, both hawks and
sparrows "eat" when they successfully collide with their favorite food. A hawk will
attempt to close with any sparrow boid it sees, while a sparrow boid will deliberately
deer to intercept the nearest fly. Anything eaten is, of course, removed from the
world.

There's Always Another Fly

Since hawks feed on sparrows and sparrows feed on flies, fliesare both at the low end
of the food chain and arguably the most important members of it. If they die off,
every other boid will too, sooner or later. To prevent this, flies have one feature that
no other type of boid has—they can reproduce. To do this, I've added a Reproduction
parameter to the CBoid class that controls the creation of new flies. When enough flies
congregate in aflock, they can reproduce, creating a new fly boid every few seconds.

Dinner on the Go

As mentioned previoudly, feeding is a pretty straightforward affair. When a hawk or
sparrow is hungry (in other words, its Hunger rating has decremented down to zero),
it will look for the nearest food it sees and try to collide with it. Any hawk that suc-
cessfully intercepts a sparrow will gain one hunger point and then check to determine
if it's eaten enough. The sparrow, on the other hand, is immediately removed from the
world. Sparrows hunt fliesin asimilar fashion.

Since hawks are normally faster than sparrows, and sparrows are normally faster
than flies, about the only thing that will prevent a given sparrow or fly from being
eaten is afailure on the part of the predator to catch its prey. Each boid will, of course,
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automatically try to avoid any and dl predators it sees, and so that natural motion
will help somewhat. Interestingly, the biggest singlefrustrating factor for predatorsare
the obstacles well be scattering about the world. Avoiding collison with them will
often dow down a predator enough for an individual target to get away—for awhile,
anyway.

Flocklng wrth Teeth

T —————)

The results of dl this effort can be seenin the Flocking with Teeth demo on the CD.
The demo maintains the same control features of the origina, with the user being
ajeto Pan IM] zoorn as desired, turn on bounding bubbles to better visualize boid

sight, avoidance, and cohesion distances, and so forth.

A few hawks (the larger delta-shaped objects) prowl in aworld filled with obsta-
des of dl szes. Groups of sparrows (the medium-sized delta-shaped objects) flit
between masses of flies (the masses of pixel-sized objects), eating them nearly asfast as
they can reproduce. Every so often, a hawk becomes hungry and swoops towards the
nearest flock of sparrows, causing them to scatter in dl directions to avoid being
eaten. Often an obdtacle will frustrate either predator or prey, preventing capture or
escape. Scattered flocks of sparrows and flieswill seek the safety of others and form
new flocks, and the whole cycle starts over again.

Depending on how the demo is set up, and to some degree blind luck, most
demos end in one of two ways. The most likdy outcome is what amounts to ecologi-
cd disaster—the sparrows eat dl theflies or the hawks eat al the sparrows. If dl the
flies die off, the sparrows aso eventually die too from lack of food, and the hawks (left
foodless) will follow soon after. If the sparrows al die because the hawks arejust abit
too good at what they do, the hawks will eventualy die as wdll, leaving aworld filled
with nothing but flies and obstacles. This seemed to happen quite a bit in most of
my tests.

Another possibility is a sort of stass between the sparrows and flies. The hawks
might al die off dirough bad luck and not finding any sparrows to edt. If this hap-
pens, the sparrows will live on, feeding on the flies for an indefinite period. They
might eventually kill off flies, which puts us back into the first scenario described ear-
lier, but a balance is dso possible, with thefliesreproducing just fast enough to keep
al the sparrows fed and happy.

If sparrows and hawks are dlowed to reproduce (nhot the demo default, but
an easy exercise for the reader), just about any outcome is possible. This is the most
realistic way to configure the simulation, but it's dso the most difficult to balance
properly.

AIthough overdl I'm fa|rly happy W|th the performance of the demo for the purposes
of this gem, there are severa improvements and enhancements that suggest them-
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salves, particularly if one were to try to adopt this code for agame. Although only flies
can reproduce in the demo, it's a simple matter to alow both sparrows and hawks to
do s0. Another potential improvement that could help "dose the loop" ecology-wise
might be to give the flies something to feed on as wdll, perhaps hawk feathers.

Vision is ill handled very basicaly, with al boids having perfect 360-degree
vision that enables them to see infinitely in any direction. In reality, most predators
have rather keen and far-sighted forward vision, while most prey animals are fairly
near-sighted with vision to the sides (compare the wolf to the sheep, for example). It
wouldn't be too difficult to make vision in the demo more realistic and force hawks to
actually search for sparrows rather than ssmply stumbling across them, although the
additional overhead associated with limiting vision (line-of-sight tests, angle-of-vision
tests, etc.) can add alot of math overhead.
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Fuzzy logic was ably presented in the origindl Game Programming Gems article
titled "Fuzzy Logic for Video Games' by Mason McCuskey [McCuskeyOQ]. Like-
wise, a generic Finite State Machine was introduced in that same book, in the article
"A Finite-State Machine Class' written by me [DybsandOQ]. This gem will serve to
marry these two concepts into a generic Fuzzy State Machine (FUSM) C++ class that
you can use in your games, and to provide you with an additional overview of fuzzy
logic, aswell as some ideas on how to use fuzzy logic in your games.
Firdt, let's briefly review the FAQ definition of fuzzy logic:

"Fuzzy logic is a superset ofconventional (Boolean) logic that has been
extended to handle the concept ofpartial truth—truth values between
"completely true" and "completelyfalse” [FAQ97]."

Thus, instead of the states of ONand OFF, or TRUE and FALSE, a fuzzy state
machine can be in a state of almost ONor just about OFF, or partially TRUE or sort
of FALSE. Or even both ONand OFF or TRUE and FALSE, but to various degrees.

What does this mean to a game developer? It means that a Non-Player Character
(NPC), for instance, does not have to be just AMD at a player, but that the NPC can
be dmost MAD, or partly MAD, or redlly MAD, or raging MAD at a player. In other
words, by using a FuSM (implementing fuzzy logic), agame developer can have mul-
tiple degrees of state assigned to a character (or a concept within the game—more on
this later). This could also mean that states in a game do not have to be specific and
discrete (often referred to in the fuzzy logic world as crisp), but can be, well, fuzzy (less
determined). The real advantage to thisis discussed in the next section.

Status in a FUSM s typicaly represented internally using the range of real num-
bersfrom 0.0 to 1.0; however, that is not the only way we can represent afuzzy value.
We can choose literally any set of numbers, and consider them fuzzy vaues. Continu-
ing the NPC attitude example [DybsandOO], let us consider how to maintain the "dis-
like portion” of the attitude of an NPC toward a player within a FuSM. We could use
the range of integers from 1 to 25 to indicate that an NPC has a variable feeling of
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FIGURE 3.12.1 A) Fuzzy values for didlike attitudes toward player. B) Fuzzy values that
overlap.

ANNOYANCE toward a player, and the range of integers from 26 to 50 may reflect an
NPC's variable feeling of MAD toward a player, while the range of integers from 51 to
99 may indicate the NPC's variable feding of RAGE. Thus, within each type of atti-
tude toward a player, the NPC may possss various degrees of didike such as
ANNOYANCE, MAD or RAGE (Figure 3.12.1).

Before we leave this brief introduction to FUSMSs, let's clear up one common mis-
conception often associated with fuzzy logic: there is no specific relationship between
fuzzy values and probability. Fuzzy logic is not some new way to represent probability,
but instead represents a degree of membership in a sat. In probability, the values must
add up to 1.0 in order to be effective. Fuzzy logic values have no such requirement (note
the overlap example just presented). This does not mean that fuzzy logic values cant
happen to add up to 1.0, it just means that they don't have to for a FUSM to be effective.

Why Use aFuSM In a Gc_ar_n_e_?

A T T —

In this author's opinion, the number one reason to use FuSlVIs in acomputer gameis
that it is an easy way to implement fuzzy logic, which can broaden the depth of rep-
resentation of the abstract concepts used to represent the game world and the rda
tionships between objects in the game.

In essnce, to increase gameplay!

How do FuSMsincrease gameplay, you ask? FUSM s increase gameplay by provid-
ing for more interesting responses by NPCs, by enabling less predictable NPC behav-
ior, and by expanding the options for choices to be made by the human player.

Thus, a player does not encounter an NPC that is just MAD or not MAD about
being attacked by the player. Instead, the player must deal with an NPC that can be
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various degrees of being MAD. This broader array of consderations increases game-
play by adding to the level of responses that can be developed for the NPC, and seen
by the human player.

Another effect of adding FUSMs to computer games is to increase the replayabil -
ity of the game. By broadening the range of responses and conditions that the player
may encounter in given situations during the game, the player will be more likely to
experience different outcomes in similar situations.

How To Use I___:u__SMs in a Game

R

ActuaIIy, various forms of FuSMs have been uwd alot in computer games!

One example of where a FUSM has been used in computer games is for the health
or hit points of an NPC or agent. Instead of the agent smply being healthy or dead
(finite states), using a range of hits points can reflect the agent being anything from
completely healthy to partialy healthy to almost dead to totally dead (fuzzy states).
Another example of using a FUSM in a computer game can be found in the control
process for accelerating or braking an Al-controlled car in a racing game. Using a
FuSM in this case would provide various degrees of acceleration or braking to be ca-
culated in lieu of the finite states of THROTTLE-UP or THROTTLE-DOWN and
BRAKE-ON or BRAKE-OFF actions. And as our ongoing example of representing an
attitude shows, a FuSM is perfect for representing NPC emotional status and attitude
toward the player or other NPCs.

Applying fuzzy logic to states in a computer game is relatively straightforward, as
noted in the previous examples. Those decision processes that can be viewed as having
more than two discrete outcomes are perfect candidates for the application of fuzzy
logic, and there are many of those processes to be found.

Now let's consider putting fuzzy logic into a generic C++ class, a FUSM.

Review of Game Programming Gems' Generic
Flnlte State Machlne in Ct++

The original Generic FSM in C++ [DybsandOO] conssted of two classes FSMclass
and FSM state. The FSM class class object encapsulated the actual finite state machine
process, maintained the current state of the FSM, supported the container for the var-
ious FSM state dlass objects, and provided control for the state transition process.

The FSM state class object encapsulated a specific state and maintained the arrays
of input and output states for which a transition could be performed for the state of
the object.

Inputs to the FSM were presented to FSMclass: : StateTransition(), which
determined the appropriate FSM state object that was to handle the input (based on
the current state), and then theinput was passed to FSM state: : GetOutput () to obtain
the new output state.
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The new output statewas returned to the FSM user process by FSM class:: State-
Transition() and was aso made the new current state of the FSM class object. Thus,
the generic FSM provided a crisp and discrete state transition in response to an input.

Adaptlng the Generlc FSM in C++to FuSM____l_n C++

There are only afew changes needed to transform the Generlc FSM into aFuSM. The
first isto add support to the FSMclass dass object for multiple current states. The next
changeisto modify the FSM state classto support degrees of beingin astate. Findly, we
need to modify the state transition process within both dass objects to support atran-
sition to multiple states and adegree of being in the new state. During this refinement
process, we will morph FSMclass into FuSMclass and the FSMstate class into the
FuSMstatedass

The reader isinvited to review the Fuzzy/Finite State Machine project found on
,-ke companion CD-ROM, and to follow along in that project code as the various
classes arereferenced.

The adaptation process begins with the FuSMclass dass that, while similar to
FSMclass, is how capable of supporting multiple current states (the new FUSM class
and FuSM state class members are shown in bold.) This capability is provided by the
FuzzyState List m_list member, which isan STL list object that contains pointers
to FUSM state objects. A pointer to any active fuzzy state (based on the current input
value) object is saved in this list. This way, multiple current states can be supported.
As in FSMclass before, FuSMclass aso maintains an STL map object (the Fuzzy-
State Map m_map member) for containing pointers to all possible FuSMstate objects
that could be considered by FuSM class.

We continue the adaptation process by developing an access member function
(cdled GetNextFuzzy StateMember()) that will provide an accessing service to the
FuSMclass object. The GetNextFuzzy StateM ember() member function maintains a
pointer to the next FUSM state pointer in the FuzzyStateJ-ist m_list, so that al
active current states can be accessed by processes outside of FuSMclass. Thus, this ser-
vice is how you can get access to the active current states by your program. By contin-
uingtocal GetNextFuzzy StateM ember () until you receiveaNULL pointer, your
program can determine dl the active fuzzy states.

The next step in the adaptation process is to modify the FUSM state class to sup-
port various degrees of membership. This support is provided by adding the new
member varidbles of int m_iLowRange and int m_iHighRange. For smplicity, this
design views the fuzzy membership range as whole positive numbers, and could be
eadly adapted to view membership as a set of real numbers. For convenience, this
adaptation dso maintains two additional attributes of the FUSM state object: thevalue
of membership in the set for this FUSM state object (int m_iValueOf Membership), and
the degree of membershipintheset (int m_i DegreeOf M embership).

Notice that the biggest difference between thefinite state object (FSMstate) and
our new fuzzy state object (FuSM state) is that a state transition array is no longer
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needed. This is because in fuzzy logic, it is possible to be in one or more states at the
same time; while in finite logic, it is possible only to be in one state a atime.

Concluding the adaptation process involves modifying the state transition
process in both the FUSM class and FuSM state objects to support the possibility of
multiple current states and to support various degrees of membership within a given
date. For FuSMclass, this means modifying StateTransition() to process the Fuzzy-
State Map m_map member containing all possible states, giving each FuSMstate object
an opportunity to effect a transition based on the accumulated input value (the int
m_iCurrentl nput member found in the FuSMclass). Those FUSM state objects that do
transition have their pointers saved off in the FuzzyState List m_list member, thus
indicating that the FuSMstate object is an active current Sate.

For the FUSM state class object, the adaptation process involves replacing FSM -
state: :GetOutput () (from the FSM) with a new transition function. The new FuSM-
state: :DoTransition() member function accepts the input value maintained by
FuSMclass and considers the degree of membership this input value represents. If
membership within the fuzzy state exists, the member function returns a TRUE and

_ ) maintains the status of membership for any future access.
(& This completes the adaptation process. For more details and the code listings, see
ONTHE CD e FUSM project on the companion CD-ROM.

Now Fuzzy Up Your GamesI

Usingthe FuSM cI assand FuSM state classesasagwde you are now ready to start mak-
ing your games more fuzzy! Doing so will enrich the gameplay experience of your
players and broaden your own understanding of how to deploy one of the more flexi-
ble forms of artificial intelligence tools available to game devel opers.
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The Problem

Imploding Combinatorial
Explosion in a Fuzzy System

Michael Zarozinski, Louder Than

A Bomb! Software
michaelz@LouderThanABomb.com

Fuzzy logic, when you come right down to it, is just a bunch of "if-then" date-
ments. One of the biggest problems in using fuzzy logic is that the number of "if-
then" statements grows exponentidly as you increase the number of fuzzy sets you
"if" together. This is caled combinatorial explosion, and can make fuzzy systems dow,
confusing, and difficult to maintain. In games, speed is essential, and combinatorial
explosion can make the use of fuzzy logic impractical.

For an introduction to fuzzy logic see "Fuzzy Logic for Video Games' by Mason
McCuskey in the first Game Programming Gems [McCuskeyOQ]. For this gem, well
provide some definitions, asthere islittle agreement on fuzzy logic terminology.

« Variable. A fuzzy variable is a concept such as "temperature,” "distance," or
"health."

e Set. Intraditiona logic, sets are "crigp"; either you belong 100 percent to aset or
you do not. A set of tall people may consist of al people over six feet tal, anyone
less than six feet is "short”" (or more appropriately, "not tall"). Fuzzy logic alows
setsto be "fuzzy" so anyone over six feet tall may have 100-percent membership
in the "tal" set, but may aso have 20-percent membership in the "medium
height" set.

Table 3.13.1 shows the effects of combinatorial exploson as more variables and/or
sets are added to the system.

This exponentid growth in the number of rules can bring any system to its knees
if every possible rule must be checked on each pass.
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Table 3131 The Effects of Combinatorial Explosion

Number of Varlables B Sets Per Variable Number of Rules
52 25
5°= 125
5' =625
55 3125
= 15,625

=78,125
5° = 300,625

= 1,953,125
5" =9,765,625

'Soooxlovmbwlxm
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The Solutlon

.........................

Wllllam E Combs an engmeer a Boemg, developed a method for turning the expo-
nential growth shown above into linear growth known, appropriately enough, as the
"Combs Method." This results in a system with 10 variables and 5 sets per variable
having only 50 rules, as opposed to 9,765,625 rules.

It is important to note that the Combs Method is not an algorithm for convert-
ing exiging "if-then" rules to alinear system. You should start from the bottom up,
creating rules that fit in with the Combs Method.

If you're interested in the theory behind the Combs Method, see the proof at the
end of this gem.

The Real World

To bring this theory into the real world, well look at atrivial system for calculating
the aggressiveness of aunit in agame. For now, well consider aone-on-one battle with
three variables, ignoring any surrounding units (friend or foe):

e Our hedlth
* Enemy hedlth
« Distance between us and the enemy

The health variables have three sets. Near death, Good, and Excellent.

The distancevariable has three sets. Close, Medium, and Far.

Finally, our output (aggressiveness) has three sets. Run away, Fight defensively,
and All-out attack!.

Traditional Fuzzy Logic Rules

If we were using atraditional fuzzy logic system, wed start creating rules in a spread-
sheet format as shown in Table 3.13.2.
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Table 3.13.2 Some Traditional Fuzzy Logic Rules

Our Hedth Enemy Hedlth Distance Aggressiveness
Excellent Excellent Close Fight defensively )
Excdlent Excellent Medium Fight defensvely
Excellent Excellent Far All-outattack!
Excellent Good Close Fight defensively
Excellent Good Medium All-out attack!
Excellent Good Far All-out attack!
Excellent Nesar degth Close All-out attack!
Excellent Near death Medium All-out attack!
Excdlent Near degth Far All-out attack’
Good Good Close Fight defensively
Good Near death Close Fight defensively
Near death Excdllent Close Run away

Near death Excellent Medium Run away

Near degth Excellent Far Fight defensively

Note that Table 3.13.2 only shows 14 of the 27 possble rules. While a trivia
example such asthisisfairly manageable, combinatorial explosion quickly coniesinto
play. In agame, we may need to take into account more variables such as the relative
health of our forces and the enemy forces that may join in the battle. If we were to
represent these two additional variables (bringing the total number of variables to
five), the table would grow from 27 rules to 243 rules. This can quickly get out of
hand. Fortunately, the Combs Method only needs 15 rulesto ded with the same five
variables.

Combs Method of Fuzzy Logic Rules

Building rules in the traditional system, we look at how the combination of input sets
relates to the output. To build rules using the Combs Method, we look at each indi-
vidual set's relationship to the output and build the rules one variable at atime (Table
3.13.3).

In a Combs Method system, it is recommended that al variables have the same
number of sets as the output variable. This is not an absolute rule, but it gives esch
output set the chance to be paired with an input set for each variable.
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Table 3.13.3 Each Individual Set's
Relationship to the Output

Our h_ee]th __Aggressiveness
Excellent All-out attack!

Good Fight defensively
Near death Run away

Ene___rr_]y_ ___health - Aggresswenes_e__ .
Excdlent Run away

Good Fight defensively
Near deeth All-out attack!
Distance Aggres____s___lveness _
Close Fight defensively
Medium Fight defensively

Far All-out attack!

Concrete Example

Totest the wstem Wel I usethefol I owing val ues.

¢ Our hedlth: 76.88
* Enemy health: 20.1
+ Digance: 854

So.7

Figures 3.13.1 through 3.13.3 show the "Degree of Membership," or DOM, for
theinput valuesin the system (note that the DOMsfor avariable do not haveto sum
to 100 percent).

~ Excellent

FIGURE 3.13.1 Our Health>r a value of 76.88. Near death: 0%, Good: 18%,

Excellent: 53%.

- 1oog

ooy
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FIGURE 3.13.2 Enemy Healthy»rd value of20.1. Near death: 60%, Good: 17%,
Excellent: 0%.

Figures 3.13.1 through 3.13.4 were taken from the Spark! fuzzy logic editor,
which alows you to visually create afuzzy logic system, integrate it into your game,
and change the Al in rea time without having to recompile.

FIGURE 3.13.3 Distance fir a value of 8.54. Close: 83%0, Medium: 0%, Far: 0%.

Concrete Example with the Traditional System

Using the rules we created earlier, the rules listed in Table 3.13.4 are activated in the
traditional system.
The DOM of the input sets are ANDed together to get the output set's DOM. The
ANDiNg is logicdly equivalent to taking the MINIMUM of the three input values.
The denazification method were using—center of mass—takes the MAXIMUM
value for the output set then finds the center of mass for the output sets (Figure
3.13.4).
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Table 3.13.4 These Rules Are Activated in the Traditional System

OurHeath ~  EnemyHeath ~  Distance ~ Aggressiveness
Excdlent (53%)  Good (17%) Close (83%) Fight defensively (17%)
Excellent(53%) Near desth (60%) Close(83%)  All-outattack! (53%)
Good (18%) Good (179%) Close (83%) Fight defensively (17%)

Good (18%) Near desth (60%) Close (83%) Fight defensively (18%)

FIGURE 3.13.4 Traditional system output. Fight defensively: 18%; All-out attack: 53%;
Aggressiveness. 68.66.

Concrete Example Using the Combs Method

Using the same input values, the Combs Method rules are listed in Table 3.13.5.

The Combs Method result of 60.39 is not exactly the same as the traditional
method (68.66), but we wouldn't expect it to be as we're using a different inference
method. The Combs Method is ORing the values together, which is the same as
taking the MAXIMUM (Figure 3.135). Traditiona fuzzy logic ANDs vaues
together, which takes the MINIMUM; hence, the difference in the fight defensively
output sets.

Note that (in this case) if we took the MINIMUM of the output sets (and there
is no rule saying we can't) we would get the exact same result as the traditional fuzzy
logic method. This is aresult of the rules we sdected for the Combs Method. Since
there is not an agorithm to convert traditional fuzzy logic rules to the Combs
Method, we cannot say that by simply taking the MINIMUM you will aways get the
same results as in the traditional method.

The Proof

It is not essential that you understand why the Combs Method works in order to use
it. Formal logic can be confusing, so this proof is provided for the reader who wishes
to have a degper understanding of the theory behind the Combs Method. The Combs
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Table 3.13.5 Combs Method system output. Fight defensively: 83%;
All out attack: 53%; Aggressiveness: 60.39.

OurHedth Aggressiveness

Excellent (53%) All-out attack! (53%6)

Good (18%) Fight defensively (18%)

EnemyHedth ~ Aggressveness —
Good (17%) Fightdefensively (17%)

Neer deth (60%)  Fight defensively (60%)

Disance ~ Aggressveness .
Close (83%) Fight defensively (83%)

T Hundway T Fight dafengfvaipw 2ziJilli.iisl Spgs’\’?'

FIGURE 3.13.5 Combs Method system output. Fight defensively: 83%b, All out attack:
53%. Aggressiveness: 60.39.

Method is based on the fact that the logical proposition (p and g) then r is equivalent
to (pthenr) or (qthenr).

Since fuzzy logic is a superset of formal logic, we can ignore "fuzziness' and just
prove the equivalence of the Combs Method to the traditional method. In Table
3.13.6, p and q are antecedents and r is the consequence. The antecedents are State-
ments such as "if Jim is tal" or "if Jim is hedlthy.” The consequence is apotential
result such as "Jm can play basketball”.

This proof is straightforward, except for the x thenjy type clauses. These are stan-
dard formal logic propositions, but their truth table is confusing—especially when x
andy are false but the proposition is true. See [aiGuruOl] for some examples that will
help clarify this proposition's truth table.
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Table 3.13.6 Antecedents and Consequences

_J7_..pandg T  Ipandq)thenr pthenr  qthenr  (pthenr)or Qthenr)

m| || d|H|4 O
R e T e T
m{mnim|mmim—H| 4
m|4in{4{mi4|nl4
i N R e R R N |
444 H|m|H
i N e e R R
|44 |d|d{d]niH

If you need visua proof, the Venn diagrams are shown in Figures 3.13.6 and
313.7. Since Venn diagrams can only show AND, OR, and NOT relationships, the
following conversions are made by material implication:

» Traditiona Logic: (p and q) then ris equivalent to (not (p and q)) or r
e Combs Method: (p thenr) or (qthenr) is equivaent to ((not/>) or r) or ((not q)
orr)

e = e e

pandq not (p and g) (not (pand q)) or r

FIGURE 3.13.6 Venn diagramfor Traditional Logic.

(notp)orr (notg)orr  ((notp)orr)or((not q) orr)

FIGURE 3.13.7 Venn diagramfor Combs Method.
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Conclusmn

If forced to make ach0|ce betW%n fast and mtelhgent gameAI fast will win almost
every time (ignoring turn-based games). The Combs Method dlows you to create Al
that is not only fast, but dso complex enough to result in rich, lifelike behavior, thus
providing amore engaging experience for the player.

Next time you're faced with creating a complex behavior system, give the Combs
Method a try. You may be surprised by the depth of the behavior you can get with
such a small number of rules.

Referen ces
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Using a Neural Network in a
Game: A Concrete Example

John Manslow, Neural

Technologies Limited
Jfm96r@ecs.soton.ac.uk

he origina Game Programming Gems book included a contribution that gave a

broad and comprehensive overview of the field of neural networks [LaMotheOQ].
This gem complements that by providing a concrete illustration of the application of
one of the most useful and widely applied neural networks, the multiplayer percep-
tron (MLP). In so doing, it describes how to identify problems that can be solved by
the MLP, and highlights the steps required to produce a solution.

The Game

To provide aconcrete |IIustrat|on of the appllcatlon of the MLP for this gem, it was
necessary to construct an application that was sufficiently simple that the role of the
neural network was clear, but not so trivia as to have any obvious aternative solution.
The application that was settled upon was a simple tank game where two tanks are
placed on a randomly generated side-view landscape, with the leftmost tank con-
trolled by the player, and the rightmost tank by the compuiter.

The tanks take turns firing at each other, and the first one to score a hit is
declared the winner. Each tank aims by adjusting the inclination of its barrel—a task
made especidly difficult because the tank's shell decelerates as it travels (due to drag)
and is affected by wind (which, for smplicity, maintains a constant speed and direc-
tion for the duration of the shell's flight). The main challenge for the Al is thus how
to st the inclination of its tank's barrel to hit the enemy tank. This gem will show
how an MLP can be taught, by example, to solve this problem.

The Multllaye(_Perceptrpn

The MLP is a type of neural network that became popular in the mid-1980s as a
result of the discovery of a particularly efficient way of teaching it. Since then, the
technique has grown rapidly in popularity and is currently one of the most widely

351
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gpplied neural network architectures in industry, and has even been used in a number
of games (such as Codemasters Colin McRae Rally 2.0).

Although more advanced techniques are nhow common in academia, the MLP
remains popular because it is one of the easiest to understand, easiest to code, easiest
to apply, and offers robust performance even in the hands of relatively inexperienced
users. The MLP is thus a good starting point for people new to the field of neural net-
works and a powerful tool for more experienced users.

A neural network such asan MLPisredllyjust acomplex nonlinear functionwith
a number of adjustable parameters that can be changed to control its shape. The
process of teaching the network (or trainingit, asit is more commonly cdled) issim-
ply one of adjusting its parameters so that the function it represents takes on adesired
shape. Although polynomials and splines can be used to address similar problems to
the MLP, the structure of the MLP makes it particularly robust.

The shape of the function to be learned is indicated by pairs of input-output sam-
ples and thus neural network training consists of nothing more than curve fitting-—
adjusting the parameters in the network so that it fits roughly tJirough the samples.
This process will be familiar to many readers from science class, where it was often
necessary to draw smooth curves through data collected from experiments.

Since neural networks often represent quite complex equations, they are fre-
quently visualized in terms of directed graphs. For example, Equation 3.14.1 is the
formulafor the outputj/ of an MLP with one linear output, Ninputs, Xj to x//, and M
hidden neurons, and Figure 3.14.1 is its graphica representation. Although the MLP
is represented by a directed graph, arrows are usually omitted from the network dia
gram since information flow is adways in the direction of input to output.

Input neurons

Hidden neurons

FIGURE 3.14.1 The graphical representation of the MLP in Equation 3.14.1. The
ellipses indicate that the number of inputs and hidden neurons can vary.
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The adjustable parameters of the network are the w's (weights) and b's (biases),
the digtinction being that weights connect neurons together, whereas the biases excite
or inhibit individual neurons even in the absence of other activity in the network. The
biases are not shown in Figure 3.14.1 snce each can be consdered to be part of the
internal make-up of an individual neuron. A detailed examination of the structure of
neural networks is given in [LaMotheOO] and [Haykin94] and will not be repested
here.

For the purposes of diis gem, it is sufficient to understand that an ML P represents
the function given in Equation 3.14.1, and that that function will be used to calculate
die inclination of die Al tank's barrel that is required to hit die player's tank. The w's
and b'sin Equation 3.14.1 are adjustable parameters that we can use to fit the MLP to
a et of samples diat illustrate how the inclination of the barrel should be set, and that
those parameters are found using some curve-fitting procedure, otherwise known as
training.

So, in order to train the MLP, we need a set of samples that consists of input-
output pairings that are examples of how the Al tank's barrel should be set to hit the
player's tank. Clearly, from the problem were trying to solve, we want the network'’s
output to be the inclination of die Al tank's barrel, but what should die inputs be?
This often complex question is considered in the next section.

Input_Selection

Before the input-output samples that are required to train the network can be col-
lected, it is necessary to decide what inputs the MLP is going to need. Clearly, the
inputs must contain the information necessary for die MLP to caculate the correct
output; in diis case, die inclination of the tank's barrel that is required to hit the
player's tank.

The selection of inputs is often difficult in practice, since awide range of informa-
tion can usualy be extracted from the game world, and the problem being solved is
often too complex or poorly understood to specify exactly what information is useful.
In this case, much time can be spent training many different networks with different
combinations of input variables to see which perform best. To minimize the effort
required to find good combinations, the following guidelines should be followed:

e Use prior knowledge about the problem you're trying to solve. Make educated
guesses about what information in die game world is likely to be relevant. If you
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think the network output should depend on a particular function of variables,
add that function into the set of network inputs.

» Abstract variables derived as afunction of much simpler ones often provide more
precise information than any of their constituent parts. For example, in astrategy
game, asingle indicator of enemy strength may be more useful than lots of indi-
vidua indicators relating to different aspects of it.

» Usevariables that provide as different information about the game world as pos-
sible, because this lets you convey the same amount of information with fewer
inputs. For example, no benefit would be gained in giving the relative positions of
the players tank and the Al tank in both polar and Cartesian coordinates since
they contain no unique information.

» Try using combinatorial search agorithms to look for good combinations of
inputs. For example, forward sdlection takes a large set of candidate inputs and
repeatedly adds single inputs to the network, at each stage adding the one that
improves performance the most. Such techniques require minimal human inter-
vention, but are dow and may fail to find the best combination.

Although it is tempting to avoid the laborious process of input selection by pro-
viding the network with access to dl variables that may be of relevance, thisislikely to
result in a network that performs poorly and in unpredictable ways. Input selectionis
the most labor-intensive part of developing a neural network application, and finding
asmall set of inputs that is rich in relevant information is crucial to success.

Fortunately, our prior knowledge is sufficient to say exactly what informationis
required to work out the inclination of the Al tank's barrel—the displacement
between the tanks (expressed, say, as two inputs, x-displacement and"-displacement),
and the wind speed and direction (expressed as a single signed input). The drag on the
shell isfixed, and hence the network does not need to be told the strength of drag, but
will learn its effect during training. Now that it has been decided what inputs to use,
it is possible to collect the samples that will be used during training.

Collecting Data

The simplest and most obvious way to generate samples that show how to set the
inclination of the Al tank's barrel is for a player to control the Al tank, and to record
the selected input variables (relative positions of the tanks and wind speed) and the
inclination of the Al tank's barrel every time the player controlling the Al tank scores
ahit. This process is repeated until a sufficiently large set of samples is available for
training. Since a human player typicaly hits the enemy tank only in around one in
five shots, the many hundreds or thousands of samples required for training can take
along time to collect.

To generate the samples used in this gem, the data collection process was auto-
mated by performing simple random searches for the correct inclination. This was
done by setting the Al tank's barrel to random inclinations until, by chance, it scored
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ahit. At this point, the relative positions of the tanks, the wind speed, and the incli-
nation that achieved the hit were recorded, and the process repeated for new, ran-
domly placed tanks and a random wind speed.

Although this was highly inefficient, it required no human intervention and was
left running until a sufficiently large data set had been generated. In addition, the
simulation of the game world need not be run a normal goeed and may be accder-
ated by, for example, disabling rendering, provided that this does not change its
behavior. Overnight, this process achieved around 1200 hits and hence cregted a data
set of roughly 1200 samples.

One important question that needs to be asked when collecting data is, "How
much datashould | collect?' Unfortunately, thereis no simple answer to this, because
it depends on the complexity of the problem you're trying to solve. In practice, pro-
vided that the number of hidden neurons is kept small (the 10 used in this gem would
normally be considered quite a large number), good performance can be achieved
with as few as 10" training samples for a network with 7 inputs.

One important hazard in developing neural network solutions is that the last-
minute tweaking of a game engine that is often done to fine-tune game play can, ifit
changes the behavior of the game world, cause the neural network to perform poorly.
This can be overcome by repeating the data collection and training processes to pro-
duce a new set of parameters for the network. Provided that the changes in the behav-
ior of the game weren't too dragtic, the difficult problem of input selection will not
normally have to be repeated. Now that weve decided what the network is going to
control and the inputs it needs, and weve collected some training data to show it
what to do, we're ready to train it.

Training the MLP

As has dready been described, the MLP is a nonlinear function that is fit to a series of
samples by adjusting its parameters. This training process is achieved by using an
optimization algorithm to search for the parameters that minimize a measure of the
error with which the MLP reproduces each output sample given their associated
input. The mean squared error is the most commonly used error measure and is ca-
culated from the sum of the squares of the differences between the MLP s outputs and
the corresponding outputs in the samples, divided by the number of samples.

Although the gradient descent optimization algorithm is usually used to fit an
MLP to the training samples, this article uses a rarely applied technique caled the
perturbation search because it is easer to code, easier to understand, and easier to
apply (for example, it is guaranteed to be stable). In addition, the perturbation search
does not require gradient information,

e Making it easy to experiment with awide range of network structures, nonlinear-
ities, and error functions.

< Eliminating common bugs that result from the incorrect calculation of gradient
information or propagation of that information through the network structure.
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« Allowing integer versions of networks (aimed at low-end platforms) to be opti-
mized directly, avoiding some spurious behaviors that can result from the conver-
sion of floating-point networks to integer form.

» Permitting the inclusion of discontinuous functions in the network.

The basic perturbation search can be summarized asfollows. Measure die perfor-
mance of the MLR Perturb the MLP's parameters by adding a smal amount of
random noise to each one, and remeasure its performance. If its performance deterio-
rated, restore the parameters to dieir original values. Repeat this process until some
stopping criterion is met.

Since dl of the techniques that can be used to train an MLP will indefinitely
improve its performance (if only incrementally), some decision must be made as to
when to stop training. To this end, the MLP's performance should periodicaly be
evaluated in the game, and training should stop either when the measured perfor-
mance is adequate, or when further training fails to improve performance.

When evaluating the performance of the MLP in the game, great care must be
taken to exercise the gamein away that is representative of how the gamewill actually
be played. This ensures that the environment that the MLP is presented with during
this testing phase is similar to the one that it will encounter once the game has
shipped, and hence guarantees that the measured performanceis a useful guideto the
how the MLP will perform in the final product. If the MLP's performance in the
game failsto reach auseful leve, consider the following causes:

e The optimization algorithm has hit a plateau or a locad minimum [Bishop95].
Try restarting training from arandom set of parameters.

e The input samples contain insufficient information about their associated out-
puts for the network to reproduce them. Repeat the input selection process to
find new inputs that contain more relevant information.

e The network is too simple to learn the relationship between the inputs and out-
puts in die sample data. Consider transformations of the inputs that might sim-
plify the relationship, or increase the number of hidden neurons in the network
(but keep them to an absolute minimum).

» The samples are not representative of the environment that the network encoun-
ters in game. The behavior of the game world must not change after the training
samples have been collected, and the samples must contain everything that the
network will encounter in-game in the right proportions.

Computational Issues

Since game Al operates in an environment in which CPU time is a a premium, it is
important to consider the computational cost associated with neural networks.
Unfortunately, training an MLP is processor intensive, making the MLP poorly
suited to in-game learning and, in most cases, much simpler learning mechanisms can
amost dways be employed. In contrast, computing the output of a trained MLP
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requires very little processor time, particularly since dl internal quantities can be
modeled using integers and nonlinear functions replaced by look-up tables. Such
optimizations have dlowed the MLP to be used in severd red-time titles on the PC
and Playstation.

Results R ——

FoIIowrng the steps outllned in the precedl ng sectlons an M LP was created that had
three inputs, two consgting of a Cartesian representation of the relative positions of
the player's tank and the Al tank, and one representing wind speed. We collected
1207 examples of successful shots, and the MLP was trained for around two-and-a
half hours on a PC with a 500MHz Intel Celeron processor. At thistime, training was
stopped because the MLP's performance was as good as was required, achieving a 98-
percent hit rate in the game.

Conclu3|on

e R R R R S AT e

ThIS gem descrl bed the steps taken to produce the neural network Al that isused in

Ce% the smple tank game that is included on the CD. The interested reader is strongly

‘onmeCD  encouraged to pursueimportant issues such asinput selection and overfitting in refer-
ences such as [Haykin94] and [Bishop95], which are able to provide both a broader
introduction and greater detail than is possible here. Findly, there is no substitute for
practical experience—experiment with the MLP class that accompanies this article
and apply it to your own problems. Follow the development process that was out-
lined, and you'l discover neural networks to be a flexible and powerful tool.
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Considerations

Comparison of VIPM Methods

Tom Forsyth, Mucky Foot Productions
tomf@muckyfoot.com

V iew-Independent Progressive Meshing (VIPM) has moved from the status of an
interesting research project, to promising new technology, to sensible addition to
al the best engines, and now into the Direct3D graphics API itsdlf. It is now becom-
ing almost required for any engine, and its inclusion in the Direct3DX library means
that one form of VIPM is relatively easy to add.

However, in an effort to push the performance of VIPM, and in particular to
drive the hardware as efficiently as possible, severa new forms have been developed,
each with their own tradeoffs and characterigtics. This gem is intended as a guide to
some of the more promising versions, and should help people decide which of the
many variants to use in particular situations.

This gem does assume a basic familiarity with VIPM, and there is no space for a
thorough introduction here. However, there are several good guides both in print and
online. The two best known are Jan Svarovsky's gem in Game Programming Gems
[SvarovskyOQ] and Charles Bloom's Web site [ BloomOl], both of which have excellent
step-by-step guides to implementations of the "vanilla® VIPM method. All of the
methods discussed here use the same basic collapse/split agorithm, but implement it
in different ways.

T.here are aféw malnpomtson Which thé varioUs methods need to be judged. Differ-
ent situations demand different choices, and the different ways each object type in a
game is used may mean that different methods of VIPM are used. Things to consider
include:

e Global memory cos. How much memory is taken up just by the mesh repre-
sentation of the model? This memory is shared between dl onscreen instances.

* Ingance memory cogt. How much memory is used for each instance of the
object drawn onscreen? This memory is duplicated for each instance and cannot
be shared.

» Streaming or referenced memory cost. This is the amount of data actually ref-
erenced on each frame. There may be a large amount of existing data for an
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object that is mainly left on CD or swapped out to a hard drive by virtual mem-
ory. However, on each frame the actual amount of data referenced may be small,
alowing the data to be streamed and/or handled efficiently by the virtual mem-
ory system. This is especialy important for consoles that typically have limited
memory.

* CPU cogt. How many dock cydes does the algorithm take, in terms of user code?
This includes both single-frame rendering costs and the cost of changing the level
of detail from frame to frame.

» API interface efficiency. How many CPU cycles are used in driver and API
interfaces getting data down to the graphics card?

* Bus bandwidth. How much data must be sent to the graphics card? On a PC,
this means the AGP bus bandwidth.

» Vertex—cache coherency. Modern graphics cards try to fetch, transform, and
light eech vertex only once, even though the vertex will be used by multiple tri-
angles. To do this, they have avertex cache that holds the most recently used ver-
tices, and applications need to try to use verticesin this cache as often as possible
to get maximum performance. An agorithm that uses more triangles than
another may ill be faster because it has a higher vertex cache hit rate.

Vertex cache coherency will be quoted in terms of the number of vertices loaded
or processed per triangle drawn, or "vertices per triangle." Current triangle reordering
algorithms for static (i.e., non-VIPM) meshes using modern vertex caches of around
16 entries can get numbers down to around 0.65. For an example, see [Hoppe99].
This gives suitable benchmark figures to compare efficiencies when the mesh is con-
verted to aVIPM one. Also note that when calculating the vertices per triangle using
triangle strips, only drawn triangles should be counted, not degenerate ones. The
degenerate triangles are a necessary evil—they add nothing to the scene.

Algorithms that are good at streaming alow the application to draw huge worlds
that are mostly stored on disk, and to degrade image quality gracefully if the stream-
ing of data hits alimit somewhere along the way, such as available disk bandwidth or
available memory on the machine.

This dso helps systems with virtual memory; if the data is accessed linearly, the
virtual memory manager can swap out data that has yet to be accessed, or has not
been accessed for along time. Static data can be optimized even further and made
into a read-only memory-mapped file. This dso ensures that irritating "loading level™
messages are no more tedious than absolutely necessary. The object data does not al
need to be loaded at the beginning; the player can start playing the level with low-
resolution data and as the detailed models are needed, they will be loaded.

All the methods discussed here are based around implementations of the same
fundamental algorithm. Single operations are done that collapse a single vertex onto
another vertex along one of its triangle edges. No new "average' vertex is generated,
and no collgpses between vertices that do not share an edge are dlowed. Thee are
worth looking into; however, the current consensus is that they involve a higher run-
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time cost for equivalent error levels on most current hardware. Of course, things
change, and new algorithms are dways being invented.

A note on the terminology used: The resolution of a mesh is proportional to the
number of triangles in it. Thus, a high-resolution mesh undergoes edge collapses and
becomes a lower-resolution mesh. The opposite of an edge collapse is an edge split,
where asingle vertex splits into two separate vertices. For agiven edge collapse, there
is a kept vertex and a binned vertex. The binned vertex is not used in any lower-
resol ution meshes, whereas the kept vertex is. For agiven edge collapse, there are two
types of triangles. Those that use the edge being collapsed will not be in any lower-
resolution mesh and are binned. For atypica collapse, there are two binned trian-
gles, athough there may be more or less for complex mesh topologies. Those that
are not binned but use the binned vertex are "changed" triangles, and changed so
that they use the kept vertex instead of the binned vertex. When performing an
edge split, the previously binned vertex and triangles are "new," athough they are
often dtill called binned because there are typicaly no split data structures, just col-
lapse data structures that are done in reverse. Most of the perspective is in the col-
lapsing direction, so words like first, next, before, and after are used assuming
collapses from a high-triangle mesh to alow-triangle mesh. Again, splits are done by
undoing collapses.

This gem will be talking in avery PC and DirectX-centric way about CPUs, AGP
buses, graphics cards ("the card"), system/video/AGP memory, index, and vertex
buffers. Thisis generally just aconvenience—most consoles have equivalent units and
concepts. Where there is a significant difference, it will be highlighted. The one term
that may be unfamiliar to the reader is the AGP bus; this is the bus between the main
system memory (and the CPU) and the graphics card with its memory. There are var-
ious speeds, but this bus is typically capable of around 500Mbytes/sec, which makes
it considerably smaller than the buses between system memory and the CPU, and
between the graphics chip and its video memory. Some consoles have a similar bottle-
neck; others use a unified memory scheme that avoids it. In many cases, this is the
limiting factor in PC graphics.

VanillaVIPM___

This is the best-known version of VIPM, and the version used by the Direct3DX8
library. It has agloba list of static vertices, arranged in order from last binned to first
binned. Each time a collapse is done, the vertex being binned by the collapse is the
one a the end of the list, and the number of vertices used is decremented by one. This
ensures that the used vertices are dways in a single continuous block at the start of the
vertex buffer, which means that linear software T&L pipelines aways process only
the vertices in use.

The triangles are adso ordered from last binned to first binned. Each edge collapse
generaly removes two triangles, athough they may actually remove anywhere from
zero upward for meshes with complex topologies.
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Triangles that are not binned but are changed during a collapse simply have the
index to the binned vertex changed to that of the kept vertex. Since the index list
changesastheleve of detail changes, thetriangleindex bufferisstored asper-instance
data. The index buffer is comprised of indexed triangle lists (each triangle defined by
three separate indices), rather than indexed triangle strips.

Each record of collgose data has the following format:

struct VanillaCollapseRecord

£ Il The offset of the vertex that doesn't vanish/appear.

unsi gned short wKeptVert;

Il Nunber of tris removed/ added.

unsigned char  bNuniris;

/1 How many entries in wndexOffset[] .

unsigned char  bNumChanges;

/1 How many entries in wndexOffset[] in the previous action.
unsigned char  bPrevNurChanges;

Il Packing to get correct short alignnent.

unsi gned char bPadding[1];

Il The offsets of the indices to change.
/1 This will be of actual Iength bNunChanges,
Il then immediately after in nmemory will be the next record.
unsi gned short w ndexOffset[] ;
}i

Thisstructureisnot afixed length— windexOf f set [ ] growsto the number of ver-
tices that need changing. This complicates the aoccess functions dightly, but ensures
that when performing collgpses or splits, dl the collapse datais in sequential memory
addresses, which dlows cache lines and cache prefetching algorithms to work .effi-
ciently. It dso dlows the application to stream or demand-load the collapse data off a
disk very eadily. Because it is static and global, it can aso be made into a read-only
memory-mapped file, which under many operating systems is extremely efficient.

Although at first glance bPrevNumChanges doesn't seem to be needed for collgoses,
it is needed when doing splits and going back up the list — the number of windexOff -
set[] entries in the previous structure is needed so they can be skipped over.
Although this makes for convoluted-looking C, the assembly code produced is actu-
dly very smple.

To perform a collapse, the number of vertices used is decremented since the
binned vertex is dways the one on the end. The number of triangles is reduced by
bNumTris; again, the binned triangles are dwaysthe ones on the end of thelist.

The changed triangles al need to be redirected to use the kept vertex instead of
the binned one. The offsets of the indices that refer to the binned point are held in
windexOff set[]. Each one references an index that needs to be changed from the
binned vertex's index (which will dways be the last one) to the kept vertex's index —
wKeptVert.
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Vani | | aCol | apseRecord *pVCRCur = the current collapse;
i Cur Nunerts-;
i QurNunilri s -= pVCRCur - >bNunifri s;

unsi gned short *pw ndi ces;

/1 Get the pointer to the instance index buffer.
p! ndexBuf f er->Lock ( &w ndices );

for (int i =0; i < pVCRCur->bNunChanges; i++ )

ASSERT ( pwindices[pVCRCur->w!ndexOffset[i]] ==
(unsigned shortJiCurNumVerts );
pwindices[pVCRCur->w!ndexOffset[i]] = pVCRCur->wKeptVert;

;/ Give the index buffer back to the hardware.
p!'ndexBuffer->Unlock();

/I Remember, it's not a simple ++

/I (though the operator could be overloaded).
pVCRCur = pVCRCur->Next();

Note that reading from hardware index buffers can be a bad idea on some archi-
tectures, so be careful of exactly what that ASSERT () is doing—it is mainly for illustra
tion purposes (Figure 4.1.1).

Index list VanillaCollapseRecord Index list
: | wKeptVert =4 F—
bNumTris=2 ol

bNumChanges = 3 124

bPrevNumChanges = -1 954

windexOffset [3] = { 463

5 476

5 457
12} T4

846

FIGURE 4.1.1 An edge collapse with before and after index lists and the V anillaCollapseRecord.



Doing asplit is simply a matter of reversing the process.

VanillaCollapseRecord *pVCRCur = the current collapse;
pVCRCur = pVCRCur->Prev();

unsigned short *pwindices;

p'ndexBuffer->Lock ( &pwlindices );

for (it i = 0; i < pVCRCur->bNumChanges; i++ )

{ ASSERT ( pwi ndi ces[ pVORCur - >w ndex(f fset[i]] ==
PVCRQuUr - >wKept Vert ); .
pw ndi ces[ pVORQur - >wW ndexCf fset[i]] =
(unsigned short Ji Cur NunVerts;

!}CurNumTri s += pVCRCur - >bNuniri s;
I Qur NumVer t s++;

pl ndexBuf f er - >Unl ock() ;

Note that in practice, and for arbitrary historical reasons, in the sample code the
VertexCollapseRecords are stored last first, so the Prev() and Next () cdls are swapped.

VanillaVIPM is simple, easy to code, and has decent speed. It should probably be
the first verson used for any evduation of VIPM, because it is so smple, and even
thiswill give good scalability, streaming, and so on.

The good thing about vanillaVIPM is that it streams very well. Collapse infor-
mation and index buffer datais completely linear in memory and ordered by collapse,
so implementing a streaming system with fallbacks for when data is not immediately
availableisextremely easy.

However, there are many bad things about vanillaVIPM. Vertex cache coherency
is poor. Because triangle order is grictly determined by collapse order, there is no
way to reorder triangles for better vertex caching.

Another problem is the rdaivdy large per-instance memory use. The whole
index data chunk needs to be replicated for each instance. This can be reduced by
only alocating as many indices as are actually currently being used, and growing or
shrinking as needed (dlong with a bit of hysteresis to prevent calling malice() and
free() dl thetime), but it is dill large if there are lots of objects onscreen.

Findly, vanillaVIPM only works with indexed triangle ligts, which can be a poor
choicefor hardware that prefers strips.

Skip Strips

ip strips is a dightly overloaded name. It was borrowed from a paper on View-
Dependent Progressive Meshing (VDPM) [EI-Sana99]. VDPM s significantly more
complex and requires some fairly extensive data structures to achieve good efficiency,
and askip list is one of those data structures. However, the section that inspired this
VIPM method was the bit that noted that to bin atriangle, it does not have to fall off
the end of the index list, as in vanilla. There is not much wrong with smply making
it degenerate by moving one of its vertices (usually the binned vertex) to another one
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(usually the kept vertex), and leaving it in the list of drawn triangles. Hardware is very
good at spotting degenerate trlangles, and throws them away very quickly without
trying to draw any pixels.

This means that the order of triangles is no longer determined by collapse order;
they can be ordered using some other criteria. The cunning thing that the origina
skip strips paper pointed out is that triangles can now be ordered into strip order, and
indeed converted into strips. This is great for hardware that prefers its data in strip
order. Since this VIPM method was inspired by the paper, it inherited the name,
despite it being somewhat inaccurate.

The ability to reorder triangles increases vertex cache coherency. Strips are natu-
rally good at this—they have an implicit 1.0 vertices per triangle efficiency (for long
strips with no degenerates), and with the right ordering and a decent-sized vertex
cache, they can get much lower values.

One cunning thing about the implementation is that the collapse/split routines
and data structures are virtually identica to vanillaVIPM. The only change is that the
number of drawn triangles does not change with collgpses and splits. Triangles smply
become degenerate; they do not fall off the end of the list.

However, this shows a big problem with skip strips. After many collapses, there
are many degenerate triangles in the list. Although they are rejected by the hardware
quickly, they still take some time to reject, and their index data still has to be sent to
the card. This eats into the bus bandwidth, and lowers the visible triangle throughput
in triangles/second.

After many collapses, the vertex cache efficiency aso drops. The nice neat strips
will have been bent and broken by the collapses, which disrupts the cache efficiency.
Moreover, as triangles become degenerate, the number of indices referring to one of
the remaining vertices increases. A collapse that bins that vertex must change al the
indices that refer to it, including the degenerate triangles. Therefore, the more col-
lapses that are done, the more expensive each collapse becomes, because the size of
windexOffsett] grows This does not scde with the number of triangles drawn,
which is no good since that is the whole point of VIPM—things at lower detail
should take less time to render.

Mult|level Sklp Strlps |

Fortunately, there is asol ution to most of Sklp StI’IpSWOGS After a certain number of
collapses, smply stop, take the current geometry with dl of its collapses done, throw
away the degenerate triangles, and start making a completely new skip strip from
scratch. Continue collapses with this new skip strip until it too becomes inefficient,
and so on.

When creating each new skip strip level, al of the degenerate triangles are thrown
away, which reduces the number of triangles (both visible and degenerate) that are
sent to the card. The triangles are aso reordered to make lists that are again vertex-
cache optimal. New collapses don't need to change lots of degenerate triangle indices
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each time, each instance only needs to copy the skip strip level that it actually uses,
and they become shorter with decreasing detail.

The different index lists can be stored globally snce when switching to anew list,
a new copy is taken and then refined with collgpses to exactly the number of triangles
wanted. Therefore, the fact that there are now multiple index lists is not too bad—its
globa data. This dso restores some of the nice streaming friendliness that the vanilla
method has. The granularity is a bit coarser; the whole of an index li must be
grabbed before anything can be rendered using that leved, but at leest it's no longer an
al-or-nothing thing, and the lower-resolution index lists are actualy very small.

For a bit more efficiency, two versions of the index lists can be stored in global
soace: fully collgpsed (before switching to a lower-resolution list, that is) and fully
uncollgpsed. This means that a sngle-collgpse oscillation across the boundary
between two index listsis gtill fairly efficient. If only the uncollapsed versions are held,
each time the level of detail increases, the higher-resolution index list must be copied,
and then dl of its collgpses need to be performed to draw the next frame. Having the
collgpsed versons stored as well means that a change in the levd of detail of n col-
lgpses only actually requires n collgpses (and sometimes fewer).

The actua collapse/split code and structures are the same as for standard skip
strips, except that thereis agloba array of structures holding the premade index ligts,
the collapse ligts for each one, and the number of collagpses in each. Before doing any
collgpses or splits, the code checks to see if it needs to change levels, and if so, copies
the new leve's index list and starts doing collapses/splits until it reaches the right level
of detail within that leve.

So, this has fixed dl the bad things about skip strips when compared to vanillain
exchange for an increase in globa (but easily streamed or swapped) memory.

Skip strips dso have an equivalent using triangle lists instead of triangle strips.
The principle is exactly the same, but use a different primitive. Some algorithms
require ligs rather than strips, and some vertex cache routines can obtain dightly
higher caching rates with lists than strips. No separate implementation was done in
the sample code, because they are so similar.

Mixed-Mode VIPM

One of the problems with the types of VIPM mentioned so far is that the whole index
list needs to be copied for each ingtance of the object. This can be quite a burden in
some cases, especialy on machines with limited memory, notably consoles, where
everything has to be shoehorned into memory that is usualy half the size that the pro-
grammers would like, even before VIPM is mentioned. It would be excellent if some
of this index list could be moved to globd (i.e, datic and shared between instances)
memory instead of having to be copied for each instance.

On amultilevel skip strip, many of the triangles are not affected, even when that
level isfully collapsed. Therefore, thereis no need to copy those triangles per instance;

Y ST p———
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they can be globa and shared between instances. In fact, for this algorithm, indexed
lists are used—the indexed strip case will be discussed later as avariant. At each leve,
the triangles are split into four ligs:

» The triangles that are not affected by any collapses.

» The triangles that are binned by collapses, but not modified by any before they
are binned.

» The triangles that are modified by collapses, but not binned. .

» The triangles that are first modified by one or more collapses and then binned.

Lists 2 and 4 are each sorted by bin order, just as for vanillaVIPM. Lists 1 and 3
are sorted into whatever order gives the highest vertex cache efficiency. Then list 2 is
appended to list 1, and the combined list is put into agloba index buffer that is &
tic and shared by dl instances. List 4 is appended to list 3, and the combined dynamic
list is copied into instances when they use that level. This list is then modified at run-
time using exactly the same modification algorithm as vanillaVIPM.

To draw the mesh, the required collgpses and splits are done to the dynamic per-
instance list, and the list is drawn. Then the associated leve's static list is drawn, with
the only modification being that the number of triangles drawn will change as static
triangles are collapsed.

The code and structures needed are based on the multilevel skip list, except that
for each level there are two lists: the copied dynamic one and the shared static one.
The other change is that there are two triangle counts, one for each list, and a collapse
may alter either or both of these numbers. Therefore, the bNumTris member is
replaced by bNumStaticTris and bNumDynamicTris, and the appropriate increments
and decrements are added.

This means that a large proportion of each mesh is being drawn from a datic
index buffer that is tuned for vertex cache coherency (list 1). It is not quite as good as
it could be, since the triangles in this list only make up part of the object. There will
be "holes’ in the mesh where triangles have been moved to the other three lists, and
this decreases both the maximum and the actual vertex per-triangle numbers that are
obtained. Some of the dynamic buffer is dso ordered for optimal vertex cache behav-
ior (list 3), athough collapses can interfere with this efficiency, and the mesh for list 3
is usualy far from usefully connected, so there is a limit to what any reordering
can do.

Like dl multilevel methods, it is streaming friendly; although in this case, since
the lists are ordered by collapse order, the granularity is even finer at the triangle leve,
not just the list level. Whether this is terribly exciting is a different question—the
finer control is probably not going to make much of a difference in performance.

This doesrequiretwo DrawlIndexedPrimitive() cdlsto Direct3D (or equivalent
API), although on most platforms, thisis not a bottleneck and does not affect render-
ing speed. It may be important for very low-triangle meshes, and for these, switching
to another method may be appropriate.
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Mlxed -Mode Skip Strips R

Mixed-mode skip strips are |dent|cal to mlxed mode |IStS, except that strips are used,
and instead of the dynamic list being done with vanillaVIPM, it is done using the
skip strips agorithm. Aswith skip strips, using strips means that ordering by collapse
order is too inefficient, and diis means that list 2 triangles now have to be binned by
being made degenerate. This forces them to become dynamic insteed of detic, and
they join lists 3 and 4. The triangles from these three lists are merged and treated asa
skip strips —reordered for optimal vertex cache efficiency, copied for each instance,
and modified by collapse information.

The disadvantages with this method are that there is now more data being copied
for each instance, and because the triangles are ordered by strip order and not collapse
order, triangles cannot be binned entirely by simply dropping them off the end of the
index list. However, both these factors are only mildly worse than the list version, and
if the hardware needs to be fed strips, thisis sill an excdlent method.

]

Slldlng Wlndow

S . e B b et b

Siding wmdovv VIPM mtroduc&; the |dea of fuIIy static and globa index buffers,
with no editing of indices, and therefore a tiny amount of per-instance memory.

Sliding window notes that when a collapse happens, there are two classes of trian-
gles binned triangles and modified triangles. However, there is no real need for the
modified triangles to actudly be at the same physicd postion in the index buffer
before and after the collgpse. The old version of the triangles could simply drop off
the end of the index buffer dong with the binned triangles, and the new versions
added on at the other end.

Therefore, instead of an example collapse binning two triangles and editing three
others, it actudly bins five triangles and adds three new ones. Both operations are per-
formed by just changing the first and last indices used for rendering—sliding a "ren-
dering window" aong the index buffer (Figure 4.1.2).

The index buffer is split into three sections. At the beginning are triangles added
as aresult of changes, in reverse collapse order. In the middle are triangles not affected
by collapses, in any (vertex cache-optimal) order. At the end are triangles binned or
changed by collapses, again ordered in reverse collapse order—first collapse at the
end. Note that atriangle modified as the result of a collapse cannot then be involved
(either binned or changed) in another collapse. To be modified by a second collapse
would mean that triangle would have to fall off the end of the index buffer. It has
dready been added to the beginning so it cannot then dso fal off the end—the
chance of the ordering being just right to allow this are incredibly dim.

Once atriangle has been modified by a collapse, the only way it can be involved
in another collapseisif anew index buffer is started that has dl the same triangles as
the previous (collapsed) one. The ordering of this new one is not constrained by the
previous collapses, and so can be sorted by new collgpses. Again, the multilevel con-
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Index List SlidingWindowRecord

{
346 m dwFirstindexOf fset = 0,

044 ———————— wNumTris = 7,

014 _
124 }wNumVerts-8
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457 {

6 dwFkstindexOffset =9,
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863 }
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013
148 _|

FIGURE 4.1.2 A collapse showing the index list and the two windows.

cept is used, but in this case because further collgpses cannot happen without it, not
simply for efficiency.

The problem with this at face value is that algorithms such as QEM give an
ordering for collapses. If this ordering is strictly followed, the QEM frequently wants
to do a new collgpse that involves a triangle that has aready been modified by a pre-
vious collgpse. This forces a new level to be made, and the index buffer needs to be
copied. Since only a few collapses have been done, this copy is amost as big as the
origina. If only a few collapses are done before having to make a copy, the memory
used for dl the index buffersis going to be huge.

However, there is actually no need to strictly follow the order of collapses that
QEM decides. Progressive meshing is not an exact science, since it ignores everything
but the distance of the camera from the object, and the whole point is to smply be
"good enough” to fool the eye. Therefore, diere is no rea need to precisdly follow the
collapse order that QEM decides—it can be manipulated a bit.

The way to do this is to follow the QEM collapse order until it decides to do a
collgp=e that involves triangles that have aready been modified. Doing this collapse
would force a new leve, and so this is put off for as long as possible. For the moment
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this collgpse isignored, and the best one that can be done without cregting a new level
isfound. The errors of the two collapses are compared, and if they arewithin acertain
tolerance, then doing them out of gtrict order is not going to affect visual quality all
that much, and the collapse that will not force anew leve is done.

Oncethedifferencein error levelsistoo great, then doing thewrong collapse first
is going to affect image qudity significantly, and the agorithm bites the bullet and
creates a hew level. There have now been a decent number of collapses done before
this copy happens, the triangle count has been significantly reduced, and thus far,
fewer levels are needed before they collgpse down to the minimum leve of detail.

The sample code uses afairly small tolerance level of 10 percent of the average
collgpse error, and even this small tol erance reduces the number of levels dramatically.
Using alarger error tolerance can reduce the memory use even more, although only to
apoint. After awhile, the algorithm simply runs out of triangles that have not aready
been involved in a collgpse. Most meshes can only lose around 20 percent of their tri-
angles before this happens, but this still kegps memory use at sensible levels.

Since no runtime modification is made to theindex or vertex lists, dl the datacan
be made global, and there is amost zero per-instance memory use. There is aso
amost zero CPU time used to change level of detail—each time, a simple table look-
up is made to decide the index lig to use, the start and end index to draw from that
index list, and how many vertices are used. In practice, the index lists are concate-
nated together, so that the first index aso implies the index list to use. The table is
composed of this structure:

struct Sidi ngWndowRecord

unsigned int  dwrirstlndex(fset;
unsi gned short wNunilris;
unsigned short wNunverts;

5

Although the number of triangles and vertices is known to be less than 64k (this
isalimit in dl currently known hardware), because the index list is a concatenation of
many lists, it may easily be greater than 64k indices in length, so 32 bits are required
for it. This does mean that the structure is nicely padded to 8-byte alignment,
though. The rendering code is amazingly smple:

SlidingWindowRecord &pswr = swrRecords[iLoD];
d3ddevice->DrawIndexedPrimitive (
D3DPT_TRIANGLELIST, // Primitive type
0, /I First used vertex
pswr->wNumVerts, /I Number of used vertices
pswr->dwFirst!ndexOffset,// First index
pswr->wNumTris );  // Number of triangles

There is no code to do splits or collgpses as with dl the other methods—the cur-
rent level of detail isjust looked up in die SlidingWindowRecord table each timethe



4.1 Comparison of VIPM Methods _ 375

object is rendered. This dso means that with hardware transform and lighting cards,
the CPU time required to render objects is fixed and constant per object, whatever
their level of detail. The phrase "constant time" is dways a good one to find lurking in
any agorithm.

The major problem with diding window VIPM is that it forces the ordering of
the triangles at the beginning and end of each levd's index lists. This has two effects:
it makes strips hard to use—only triangle lists really handle fixed ordering well—and
vertex cache efficiency is affected.

Fortunately, it is not as bad as it first seems. When an edge collapse is performed,
al of the triangles that use the binned vertex are removed, so they dl go on the end of
the triangle lig. This is typicdly from five to seven triangles, and they form a triangle
fan around the binned vertex. Then the new versions of the triangles are added. These
need to go together at the beginning of the index ligt, there are typicaly three to five of
them, and they form a triangle fan around the kept vertex. These fans can be ordered
within themselves to get the best cache coherency. The middle of the index ligt that is
not affected, and thus has no set order, can be reordered for the vertex cache. This gets
much better cache coherency than vanilla. Although it is ill quite a bit short of the
theoretical ided, it is not unreasonably poor.

Vertex cache coherency can be raised by having a larger middlie index list section
in eech level—by having fewer collapses per level. This takes more memory, but the
extra performance may be worth it, especidly as it is global memory.

Hardware that requires strips rather than lists can till use this method, although
it does require many degenerate triangles to join the different parts. In practice, this
does not increase the number of indices required, it actually reduces it—strips have
one index per triangle, compared to a lig's three. The vertex cache efficiency per
drawn triangle is exactly the same. The raw triangle throughput is increased a lot
(roughly doubled), but since dl of these extratriangles are just degenerate, most hard-
ware will reject them very quickly. If there is a choice, which of the two primitives
used depends on whether the hardware is limited by index bandwidth (in which case,
strips are optimal) or triangle throughput (in which case, lists are optimal).

Sum mary

VIPM seems to be coming of age. It is how mainstream, it has been incorporated into
amajor API, and for discrete objects it has beaten off VDPM and static leve of detail
methods for the most visua bang for the CPU buck (although it is worth noting that
VDPM methods are till chalengers for large landscapes, especially regular-height-
field ones). In addition, it now has a plethora of methods from which to choose, each
with its own advantages and disadvantages. Innovation certainly won't stop there—
there are adready some interesting paths for future investigation, but this roundup
should give a fairly good guide to some of the issues and options when choosing
which VIPM method to implement.
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Table 4.1.1 Summary of Strengths and Weaknesses of Each VIPM Method

Vanilla Skip Strips Mixed-Mode Sliding Window
Ven@< ca:he use Poor Excellent Good Good
Globa memory use Low Medium Medium High
Instance memory use High High Medium Low
LoD- change CPU cost Medium Medium Medium Tiny -
APl APl efficiency Good Good Good Excdlent
Lig efficiency Poor Excellent Good Good

Table 4.1.1 shows the results of each method with their relative strengths and
weskneses. Note that "skip strips' refers to multilevel skip strips—the single-level
version is not actually asensible method in practice, for the reasons given.

References P e T T

[S/arovskyOO] S/arovsky Jan Vlew—lndqoendent Progrc-veMeshlng, GamePro-
gramming Gems, Charles River Media, 2000, pp. 454-464.

[BloomOlI] Bloom, Charles, VIPM tutorial, and various VIPM thoughts gathered
from many sources, www.cbloom.com/3d/index.html.

[HoppeR9] Hoppe, Hugues, " Optimization of Mesh Locality for Transparent V ertex
Caching,” Computer Graphics (SIGGRAPH 1999 proceedings) pp. 269-276.
See d sowww.research.microsoft.com/-hoppe/.

[El-Sana99] J. El-Sang, F. Evans, A. Varshney, S. Skiena, E. Azanli, "Efficiently Com-
puting and Updating Triangle Stripsfor View-Dependent Rendering," TheJour-
nal of Computer Aided Design, vol. 32, no. 13, pp. 753-772. See dw
www.cs.bgu.ac.il/-el-sana/publication.html.



o

Simplified Terrain Using
Interlocking Tiles

Greg Snook

gregsnook@home.com

ith recent advancements in 3D rendering hardware, it seems that everyone is

bringing his or her game to the great outdoors. Far horizons and mountainous
landscapes, once hidden by fog and far clipping planes, are now an obtainable redlity.
Game programmers once consumed with the BSP tree and span-based rendering
methods are now trading in tired old buzzwords for shiny new acronyms like ROAM
and VDPM.

ROAM (Real-time Optimally Adapting Meshes) [Duchaineau] and VDPM (View
Dependent Progressive Meshes) [Hopped8] are outlined elsewhere in great detail (see
the References), so I'll just give them a quick overview here. Both of these methods do
an amicable job of reducing the polygon count (and therefore the rendering load) on
those parts of the terrain that do not require a great deal of geometry, such as reason-
ably flat plains or aress far off in the distance. In turn, they alow more detailed terrain
to exist closer to the camera, or on very rough surfaces, where additional polygons are
needed. Essentialy, they are two rather complex ways to achieve the same simple god:
more polygons where you need them, less where you don't.

The trouble for some applications is that methods such as ROAM and VDPM
tend to rely on procedurally generated geometry to achieve a smooth transition from
low- to high-detall arees. ROAM uses a binary tree of triangle intersections to con-
struct the actual terrain geometry from a given height field. VDPM achieves a similar
effect by using a coarse mesh to represent the low-detall terrain and applying a set of
successive vertex splits to further divide the terrain polygons where necessary. In most
casss, these continuous triangulations disrupt the speed advantage of hardware trans-
form and lighting, which relies on static geometry for optimum speed.

The main reason for thisis that diese methods work almost too well. They have the
power to anayze die terrain down to the poly leve, hand-picking tliose that stay and
those that get collgpsed. This can result in many minute changes to the terrain geome-
try over time, and requires reprocessing of the entire method should the terrain change.
By sacrificing that finite leve of control over the geometry, we can remain hardware
friendly by working over larger aress of static geometry and remain flexible to changesin
the terrain over time.
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What this gem proposes is a far simpler method that most applications can
take advantage of with a minimal amount of coding. It is not intended to wrestle with
the visual quality that ROAM or VDPM methods can produce; instead, it serves to
cregte a simple terrain with the benefits of dynamicaly adapting detail levels and ani-
mation flexibility. It does thiswhile maintaining adata system that is perfectly suited
for hardware transform and lighting.

Tles Revisited T

Many moons ago, game programmers used 2D tiles to represent the playfield. This
was done for one simple reason: less artwork was easier to create and manage. Early
games simply did not have the memory to afford a large amount of pixel data, so
smaller pictures were tiled to create theillusion of alarger area. These small tileswere
also easier to draw and push around, so smooth-scrolling 2D games could easily be
created out of little 32x32 pixd tiles.

The terrain method presented here works on the same basic principle by dividing
the terrain into smaller, reusable tiles. The same advantages apply: smaller bits of data
are easy to push around, drawing can be optimized, and memory is used more effi-
ciently. The obvious difference is that we are no longer dealing with pixel datawithin
the tiles. The terrain tiles are represented as index buffers that link together the ver-
tices of the terrain.

Think of the 3D tiles as a grid being projected down on the landscagpe from
above. Each grid square represents asingle tile in the terrain system. On the surface, it
may not appear as if the terrain tiles ever repedt, given that terrain is a pretty random
set of geometry. The truth is the terrain may never repeat on the surface, but behind
the scenes, there is ample data to tile and reuse.

Consider each terrain tile in the form of avertex and index buffer. While each tile
may contain a unique set of vertex data, the index buffers used to draw the tiles can be
made to repeat rather frequently. In fact, by careful planning of the vertex data, we can
cregte a finite st of index buffer "tiles’ to use throughout the entire terrain.

We do this by taking advantage of a few refinements in the geometry of our tiles.
First, each tile must contain an identical number of vertices, sharing the edge vertices
with its neighbors. These vertices represent the highest level of detail possible for the
tile. Second, the vertices of the tile are arranged in a regular grid on the x-y plane,
using z to represent the vertices height above sea leve. Lagt, we store the vertices of
each tilein an identical order so our index buffers can be used on any tile. Have alook
a the sample tile shown in Figure 4.2.1. Here we have a 17x17 vertex tile showing
the grid-aligned positioning of each vertex, each of which has a unique height value
sampled from the terrain bitmap.

The reason for this vertex organization is simple. Since the vertex data dways
appears in aregular grid and in an identical order, afixed set of index buffers can be
created for the entire terrain. Using the proper index buffer, a given tile can be ren-
dered at any level, ranging from full detail down to a simple pair of triangles. Index
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FIGURE 4.2.1 A sample terrain tile of 17x17 vertices.

buffers that use more of the available vertices create ahigher detailed representation of

the tile. Similarly, index buffers using less vertices render tiles with reduced triangle

(cjou_r;tsl Feilgure 4.2.2 illustrates this by showing a sample tile rendered at different
etail levels

FIGURE 4.2.2 Using index huffers to create two separate detail levels from the same set o
vertices. -

Map Making

In order to create the landscape tiles, we need a sat of source data from which to pull.
A common method is to read elevation data from a height map. This map is ssmply a
grayscale bitmap of the terrain, where the luminance of the pixe is used to represent
the elevation at a given position. The height map has the added advantage that it is
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already arranged in aregular grid, so it can be easily trandated into terrain vertex data.
It can aso serve as an animation resource, adjusting the pixel values to af Tect the ter-
rain height at different locations.

Creating the tile vertices is simple. Since each tile vertex has aknown 2D position
on the x-y grid, dl that remains is to sample the corresponding height pixel from the
terrain bitmap and trandlate it to azvaue for the terrain vertex. For eech terrain tile, a
corresponding block of pixels in the height map can be sampled to create a unique
vertex buffer for the tile. In the case of an animating height map, this process must be
repeated periodicaly to update the terrain vertices.

The index buffer can be thought of as adra\Nl ng templ ate cast over the tilevertices. As
we saw in Figure 4.2.2, the index buffer defines how we pull triangles out of the tile,
controlling how detailed a version of it we draw. Following our key rules, each tile's
vertex buffer has been laid out in an identical order so the index buffers can be used
interchangeably. For an example 9x9 vertex tile, we can create a global set of index
buffersto draw dl possible detail levels for any 9x9 set of vertices, skipping verticesin
the grid to create the level geometry. The top-level index buffer uses dl 81 vertices to
draw 128 triangles, while the lowest level uses only the four corner vertices to draw a
two-triangle quad. In addition, there are two additional detail levels representing 32
and 8 triangles, respectively.

The next requirement is a method to determine which of our four detail Ievels
each tile needs to use when being drawn. This determination can range from asimple
function of the distance between the tile and the camera, to a full heuristic taking into
account die viewing angle and perceived roughness of the tile. The best method to use
depends on die game terrain and camera movement. Hugues Hoppe's paper on the
VDPM mediod [Hoppe] sheds more light on heuristic idess that can be used to sdect
detail levels for each terrain location. The sample application on the companion CD-
ROM, SmpleTerrain, uses the distance from the tile to die camerafor simplicity. Once
the detail level is known, drawing is a smple matter of sending die tilés vertex buffer
along widi die desired index buffer into your chosen rendering API for drawing.

L S T e

TH

We have the basc terraln 5ystem in place but |t is by no means a smooth terrain.
What we have now is aterrain that changes abruptly as tiles of different detal levels
are drawn side by side. In addition to that, seams can appear in the gaps created by
two tiles of different detail levels. In short, we have made a mess, but there is till
hope.

The key to this method is having tiles that interlock. That is, creating tiles that
mesh together perfectly, regardless of the differences in detail levels between neigh-
boring tiles. To do this, adifferent set of index buffers is required to merge tiles of dif-
ferent levels together without gaps and seams. These index buffers can be broken into
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FIGURE 4.2.3 The 16 basic tile bodies. Unshaded areas show where linkingpieces must
beplaced.
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two groups: bodies and links. Bodies represent a major portion of a tile at a given
detail level, with areas removed to provide space for linking pieces. Links, as the name
suggests, link the bodies of different detail levels together seamlesdly.

Figure 4.2.3 shows the 16 possible body types for atile of any given detail levd.
To keep things under control, we specify that tiles only link downward, meaning that
tiles at higher detail levels must use link pieces to fit together with lower-detail neigh-
bors. Looking at Figure 4.2.3, the unshaded areas of each body type then represent
spaces where links are required to connect to a neighbor tile at alower detail leve.

Linking pieces are smaler index buffers that fit into the spaces left vacant by the
body tiles. These index buffers arrange triangles to step down from a tile using a
higher number of vertices to an adjacent one using less. Figure 4.2.4 shows an exam-
plelink tile used to connect two body tiles. Sincewe only link downward in detail lev-
gs, each detail level needs enough link pieces to connect to the details levels below it.
For the example 9x9 vertex tile, we would need three linking pieces for each side of
our highest-detail leve, since it must be able to link to three lower-detail levels. Our
lowest-detail level, the smple quad tile, needs no linking pieces, since al higher-detail
levels must do the work to link down to it.

FIGURE 4.2.4 An example link piece used to join two tiles of different detail levels.
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Table 4.2.1 All Index Buffers Required for Our Sample of Four Detail Levels

DL L . = 2o R TG (e =M T R (L]

4 16 3 for each side 28
3 16 2 for each sde 24
2 15 &R 1 per side 19
1 1 2 _ 0 1

Grand Total: 72

Given our example of a 9x9 vertex tile with four detail levels, we can calculate
that the total number of index buffers required amounts to agrand total of 48 "body"
pieces and 24 "linking" pieces. Table 42.1 shows the full table of index buffers
required to smooth out our terrain. As can be seen, increasing the number of detail
levels increases the index buffer count, but snce these are reatively small in sze and
can be used throughout the entire terrain, they still remain rather efficient.

B_et_ter Faster Stronger

Using the new body end I|nk| ng preoes means we need to change our rendering
method. For each tile, we now need to examine the til€'s neighbors. We choose abody
tile that contains a notched sde for each neighbor that is a a lower detall leve than
the current tile. Then, we sdlect the necessary linking pieces that fill the notches and
connect uswith the adjacent tiles. Each of these index buffersis then sent to the ren-
dering APl along with the tileé's vertex buffer for drawing. In the worst case, we send
five index buffers per tile (one body, four linking), but in the best case, we till send
only one (the full body tile).

Organizing theindex buffersinto triangle strips and fans can further optimize the
method. For larger tiles (33x33 vertices and up), this will greatly reduce rendering
time. In addition, the order of the vertices in the tile can be adjusted for better cache
performance when rendering. The exact order will depend on which index buffersthe
tile will be rendered with most often.

Conclu5|on

Figure 4.2.5 shows the flnal output of the renderlng method The sample program

SmpleTerrain demonstrates the method using DirectX 8.0. Full source code for the
"~~|J s% sample program is available on the companion CD-ROM. In this image, the wire-
frame of the terrain is exposed to show the various body tiles and linking tiles in use.
Ground textures have been removed tor Teadiatility.

The intent of this gem was to provide an aternative to the popular procedural
methods for rendering dynamic terrain while fully enabling hardware transform and
lighting. By using this method, a dynamic terrain system can be up and running
quickly without severely impacting the application's frame rate. While the fina ter-
rain may not rival that of awell-written ROAM or VDPM system, it does provide the

ONJHCCP
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FIGURE 4.2.5 Sample output of the SimpleTerrain“rograzwz showi ng tiles and linking
piecesin use.

same basic advantages of those methods with the potential of greater rendering speed
in hardware.
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\JLJfcile there are many data structures for storing static 3D objects, including
WIf quadtrees, octrees, and BSP trees, they are not dways ideal for large numbers of
dynamic objects. This gem presents an algorithm and demonstration application that
manages thousands of objects in mation that are continuoudy maintained as a collec-
tion of hierarchical bounding spheresin a SphereTree.

The design god for this agorithm has been to make the 99-percentile case spend
amost no CPU time updating an object in motion within the tree structure. Queries
againgt the SphereTree perform more tests than other data structures, but thisis mit-
igated by the fact that the tree can be maintained using very little CPU time. This
datastructure is idedlly suited for gross culling of massive numbers of moving objects
in alarge world space. It doesn't matter if the objects are moving at widely disparate
speeds, or even if many of them are not in motion at al. It dso has avery low cost
when objects are inserted and removed from the tree with great frequency.

i D P

There are certain limitations when using a bounding sphere as a culling primitive. A
bounding sphere does not necessarily fit very tightly around an object, especialy if it
is tall and thin. On the other hand, this over-described bounding sphere can be seen
as a feature, not necessarily a limitation. A bounding sphere must encompass the
complete extent of an object in al orientations. This includes taking into considera
tion dl possble animation poses that might be applied. Additionaly, this bounding
sphereis presumed to encompass al child objects that are attached to the parent. This
dlows for the assumption that whatever the vishbility state of the parent is dso con-
sidered true for its children. Another advantage of an over-described bounding sphere
is that it can be used to cull animations, shadows, and other associated effects. This
extra dop around an object can be an effective tool to determine when to treat an
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object, its children, and its associated effects as active or inactive. Culling shadows,
animations, and specia effectsarejust ascritica as culling geometry alone,

Usmg Sphere Trees

A T T o T

Every object in the smulatlon whether |t is in motion or not, uses the dass
SpherePacktomaintainitselfinsideavaidSphereT ree. Whenanobject changespos-
tion using the method NewPos(), SpherePack smply computes the squared distance
between the new position and the center of the parent node. If it is gtill contained
within the radius of the parent sphere, which is designed to be true amogt dl of the
time, the routine immediately returns. This method is implemented inline for maxi-
mum performance. Thisis the only calculaion performed for the vast mgjority of dl
objects in motion, even if there are thousands of them. For static objects, nothing is
done beyond their initia insertion into the tree.

When a new position would cause an object to pierce the skin of its parent
gphere, then that child is removed 